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Abstract. Hand pose estimation is an important task in areas such
as human computer interaction (HCI), sign language recognition and
robotics. Due to the high variability in hand appearance and many de-
grees of freedom (DoFs) of the hand, hand pose estimation and tracking
is very challenging, and different sources of data and methods are used to
solve this problem. In the paper, we propose a method for model-based
full DoF hand pose estimation from a single RGB-D image. The main
advantage of the proposed method is that no prior manual initialization
is required and only very general assumptions about the hand pose are
made. Therefore, this method can be used for hand pose estimation from
a single RGB-D image, as an initialization step for subsequent tracking,
or for tracking recovery.

1 Introduction

Precise hand pose estimation and tracking is an important task in areas such as
HCI, sign language recognition and robotics. Different data sources and methods
are used to solve this task. One of the possible settings is to use recently intro-
duced consumer range cameras that produce both color(RGB) and depth(D)
data streams. Although the use of such devices makes the hand pose estimation
task much more feasible, it is still unsolved, both because of general problems
of the hand pose estimation and drawbacks of consumer RGB-D cameras.

In general, hand pose estimation is very challenging due to the many degrees
of freedom (DoFs) of the hand as an articulated object, which leads to great
variability in hand appearance and self-occlusions.

The main drawbacks of the available RGB-D cameras are low resolution and
missing range data.

There are three main groups of methods used to estimate the hand pose:
template-based methods, model-based methods and machine learning methods,
as well as different combinations.
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In our work, we concentrate on a model-based hand pose estimation method
combined with feature detection. We use both color and depth images to over-
come the problem of missing depth data. As a result, our method is able to
correctly determine the hand pose from a single RGB-D image.

(a) (b) (c) (d)

Fig. 1: Initial data (1a — color image, overlaid with hand silhouette, 1b—depth
data), hand model (1c), fitted hand and point cloud in 3D(1d).

2 Related works

All existing methods for hand pose estimation can be divided into three rough
groups: template-based methods, model-based methods and machine learning
methods [1]. There exist, of course, different combinations of these methods.
Each group of methods has its own strengths and weaknesses.

Template-based methods. Template-based methods are usually applied in a
single or multiple image setting [2]. To apply these methods, one firstly creates
a database of possible hand poses and then uses this database to find a pose
closest to the input image. The work for shape matching was recently extended
to incorporate depth data in [3]. There are several limitations of this approach:
firstly, this approach can only be used to distinguish between a limited number
of poses and the discrimination power decreases with the increasing number of
poses; and secondly, it requires the creation of a database that strongly depends
on experimental setup.

Model-based methods. Recently, more works appeared on model-based ap-
proach for hand pose estimation and tracking. In these methods, a general model
of a hand, parametrized by continuous parameters, is fitted to an image, based
on the evaluation of similarity between the model and the image. In case of a
single image, one often constraints the number of parameters to a subset of the
26 full DoF [4], or strong assumptions about the image are made [5, 6]. Several
types of clues are used to evaluate the model, such as edges, optical flow [7],
silhouettes, shading [8], color gloves [9], etc. The main disadvantages of model-
based methods are that they are not real-time, not stable due to the high number
of degrees of freedom and occlusions, and require prior initialization. It is also
challenging to apply these methods in case of missing data.

Machine learning methods. Machine learning methods have been rarely ap-
plied to hand tracking due to the high variability in hand appearance and diffi-
culty to distinguish different hand parts and find stable features [10]. However,
due to the appearance of the RGB-D sensors, machine learning methods can be
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used for hand pose estimation more efficiently [11]. It is still difficult to apply
them though, due to the shortcomings of the data delivered by depth sensors.

In our work, we concentrate on model-based approach for hand pose esti-
mation and propose to overcome several disadvantages mentioned above with a
method that:

– determines the hand pose from a single image;
– does not require any initialization or model fitting;
– partially overcomes the problem of missing data;
– can be easily extended to the tracking setting.

This paper has the following structure. In Section 3, we present the data and
explain the main challenges of hand pose estimation. In Section 4, we explain the
main steps of the algorithm. In Section 5, we evaluate our approach both on real
and synthetic data. We conclude our work in Section 6 with a discussion of the
advantages and the disadvantages of our approach and the possible extensions.

3 Experimental setting and data

Fig. 2: Several examples of the RGB-D data; black areas of the depth images de-
note missing depth data; color images are overlaid with the extracted silhouette;
initial finger tips detections are shown as red points.

For our work, we use the Microsoft Kinect sensor. This sensor delivers depth
and color data at VGA resolution. Depth data is available at a distance of 0.6m-
4m.

The data itself is hard to work with due to noise and missing depth data (see
Fig. 2). Missing depth data occurs because of the two reasons: self occlusions
prevent Kinect to acquire the correct depth values for some parts of the hand
and the fingers themselves are hard to capture, because they are thin objects.

Because of the problems mentioned above, only a single depth frame alone
can not be used for hand pose estimation. Therefore, we use RGB data to create
hand silhouettes using background subtraction, so that we are able to partially
recover from missing depth data. On the other hand, as mentioned in Section 2,
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Fig. 3: The work-flow of the algorithm; the final output parameters are marked
in red.

single color images are usually not enough for hand pose estimation, and many
ambiguities can be resolved by using depth data.

We make general assumptions about the hand in the image — we assume
that it is a left hand, rotated so that the palm is at least partially visible.

4 Hand pose estimation algorithm

Our algorithm consists of a number of steps (see Fig 3). We describe each step
of the algorithm in more details in the following sections.

Hand model. We use a 26 DoF hand model, that consists of a 3D mesh of
medium resolution of Nm = 1317 vertices and a skeleton connected to the model
using the standard skinning technique [12]. The hand pose is defined by 20
joint angles θfingers between the bones. The bone transformation is parametrized
using exponential mapping [13], which is typically used for model-based human
pose estimation [14]. Additionally, 6 parameters t, θω ∈ R3 encode position and
rotation of the hand. Here θω is the rotation by the angle θ around the axes ω.

4.1 Initialization step

For initialization, we detect finger tips using geodesic extrema (see [15]). Geodesic
extrema are computed by propagating distance from one point on the point cloud
to the other points and then taking the maximum. Note, that the detected points
are most likely not the positions of the actual finger tips (see Fig 2). We use these
points to determine an approximate hand rotation and scaling. Since we do not
know correspondences between the detected finger tips and those of the model
fingers, we check all possible matches. For each match, we find the correspond-
ing rotation and translation of the model, and evaluate the error between the
model and the detections as the average Euclidean distance between correspond-
ing points. We then select the match that delivers the smallest cost. An example
of initialization result is given in Fig 5.

4.2 Point cloud segmentation using region growing

For pose estimation, we use an ICP-based optimization technique [16]. It is well
known that such technique is prone to false matches. Therefore, we pre-segment
our point cloud to differentiate between fingers and palm parts.
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We use region growing based segmentation on the depth images: a pixel is
included into a current region if the two distance measures, (1) and (2), are
smaller then the corresponding thresholds. We define empirical thresholds at
the 10mm for the Euclidean distance (1) and 0.8750 for the scalar product (2)
between normals.

deucl(x,y) =

(
3∑
i=1

(xi − yi)2

) 1
2

, x,y ∈ R3 , (1)

dnorm(x,y) = 〈nx,ny〉 . (2)

Here nx and ny are the normals to the point cloud at the corresponding
points x and y. To compute the normals we use principal component analysis
(PCA) as in [17].

After initial segmentation we merge small regions and divide large regions.
The segmentation results are presented in Fig 4.

(a) (b) (c) (d)

Fig. 4: Segmentation results for the real data produced by Kinect (4a and 4b)
and the artificial dataset [18] (4c and 4d).

After the segmentation, we determine the palm region as the largest region,
and the rest of the points belong to the fingers. The point indices of the point
cloud, corresponding to the palm, are denoted by Ipalm, whereas the indices,
corresponding to the i-th finger, are denoted by Iifinger; the union of all non-palm
points is denoted by Ifingers.

4.3 Hand position and size refinement

As mentioned in Subsection 4.1, the initial hand pose and scaling estimation
can be inaccurate. Therefore, we firstly refine these parameters using an ICP
technique. The parameter vector has seven dimensions: (t, θω, s), where t and
θω define hand position and rotation, and s defines scaling.

We then optimize the functional:

E(t, θω, s) = Epalm + αEfingers + βE2D . (3)

Here Epalm is the error term responsible for the distance between the point
cloud region, identified as palm, and the palm of the model.



6 A. Kuznetsova, B. Rosenhahn

Epalm =
1

|Ipalm|
∑

i∈Ipalm

(ppc
i − p

m
n(i))

2, ppc
i ,p

m
n(i) ∈ R3 . (4)

Here, for each point ppc
i of the point cloud we search for the nearest palm

point pmn(i) in the hand model. We pre-build a kd-tree [19] on the data points to
accelerate point search.

The Efingers term is responsible for the distance between non-palm points in
the point cloud and non-palm points of the model:

Efingers =
1

|Ifingers|
∑

i∈Ifingers

(ppc
i − p

m
n(i))

2, ppc
i ,p

m
n(i) ∈ R3 . (5)

Here pmn(i) is the nearest non-palm point from the model. Finally, the E2D

term defines the distance between the 2D silhouette of the hand, and the pro-
jection of the model:

E2D =
1

Nsill

∑
i

(psill
i − Pr(pm)n(i))

2 +
1

Nm

∑
j

(psill
n(j) − Pr(pm)j)

2, (6)

psill
i ,Pr(pm)j ∈ R2 . (7)

Here psill
i is a 2D point of the silhouette with Nsill points, Pr(pm)n(i) is

the nearest projected model point, where Pr(p) is the perspective projection
operator with the default Kinect calibration parameters.

Since the whole functional can be represented as a sum of squares, we use
the trust region approach for non-linear optimization (see, for example, [20]).
Of course, the minimum found is not garanteed to be the global minimum, and
therefore the fit is not perfect. We fix the weight from (3) α = 0.1 and β = 1.3
for the real data. After this stage, we get a much better fit between the hand
model and the point cloud (see Fig 5).

(a) (b) (c) (d)

Fig. 5: Hand fitting initialization (5a and 5b) and refined hand pose and size (5c
and 5d). The final hand pose estimation follows in the last step.

4.4 Final hand pose estimation

In this stage, we do the final hand pose estimation. On the previous step, we
estimated hand pose and size, but the fingers parameters θfingers are still un-
known. The two steps are separated because otherwise dependencies between
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the parameters and the error functional become more complex. Moreover, ini-
tialization described in Subsection 4.1 is not good enough to avoid false matches.
We now use a variation of a non-rigid ICP algorithm to fit the pose of our model
to the point cloud and the silhouette.

As mentioned above, every ICP algorithm is prone to false matching. It
is especially hard problem for such a highly articulated object as the hand,
since fingers tend to be matched incorrectly. Therefore, prior to optimization,
we match different parts of the model to different parts of the point cloud. For
matching each part of the point cloud to a part of the model, we define a cost
for each match as Euclidean distance between the centers of two segments. Each
model segment can only be matched to zero or one point cloud segment. The
problem can be mathematically written as follows:

µ = argminµ
∑
i

deucl(c
pc
i , c

m
µ(i)), µ(i) ∈ {1, . . . , 5} . (8)

where cpc
i is the center of the i-th region of the point cloud and cmµ(i) is the center

of the µ(i)-th region of the model. Note, that palm region is already known, so
it is excluded from the matching procedure. The solution µ is found using brute
force search, since the number of possible combinations is low.

The full pose of the hand is parametrized by 26 parameters: (θfingers, t, θω),
where t, θω are defined in the previous section, and θfingers is a 20-dimensional
vector of joint angles defining fingers’ position. We also add natural constraints
on the θfingers parameters.

To find the parameter values, we optimize the following functional:

E(θfingers, t, θω) = Epalm +

(∑
i

Eifingers

)
+ ζE2D . (9)

The first and the last term have exactly the same meaning as in the previous
step. The additional term can be described as follows:

Eifingers =
1

|Iifinger|
∑

j∈Iifinger

(ppc
j − p

m
n(j,µ(i)))

2 . (10)

Here n(j, µ(i)) is the closest model point to the point j, coming from µ(i)
region of the model and |Iifinger| is the number of indices in the set Iifinger. In
this way, smaller finger regions gain more weight and have more influence in the
optimization.

The last 2D term is weighted with the weight ζ = 1 for the real data, which
determines the importance of the silhouette.

We use the same algorithm for constrained non-linear optimization, as in the
previous section. The solution of the optimization problem delivers the full pose
and size estimation of the hand.
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5 Evaluation

We evaluate our results both on the real data and the synthetic data (consisting
of depth data and the corresponding silhouette).

Experiments with the synthetic data. We evaluated our algorithm on the
synthetic data used for evaluation in [18]. Since we are not doing tracking, it
would be unfair to compare the results we achieved directly with the numbers
provided in [18]. Note, that the model used to produce synthetic data in this
case differs significantly from our model in shape and proportions.

Since for synthetic data joint positions are known, we measured the distance
between the joint positions of the fitted model and the ground truth joint posi-
tions. We evaluate the error after each step of our method to show its impact.

In Fig 6, mean error for each hand part is represented. One can see, that
after the hand position and scale refinement, fingers error becomes larger. The
explanation for this is simple — the position refinement gives more weight to
the palm, and therefore finger error can actually become greater. As expected,
after the final fit the error is the smallest then on the two previous steps.

Note, that our estimation accuracy is close to the one reported in [20] (in
74% the estimated pose deviation 40mm or less from the ground truth), even
though we estimate the pose from a single frame instead of tracking and the
model we use differs from the one used for creating the articial data signicantly.

Fig. 6: Mean error of the six hand parts: palm, thumb, and four fingers; error bars
show standard deviation; α = 0.1, β = 1.3, ζ = 2; the palm error is measured as
the mean error of metacarpophalangeal joints and palm origin; the finger error
is measured as the mean error of all joints of the finger.

In general, we could observe that the changes of the parameters α ∈ [0.1, 2]
and ζ ∈ [0.1, 2] in the corresponding intervals do not affect the average results
significantly. However, changes in β have significant influence on the results. For
example, in case of β = 5 for the artificial data, there is almost no difference in
error between the initial and the final fit. We attribute it to the fact, that the β
parameter is crucial for determining the correct hand scaling.

Experiments with the real data. For these experiments, we used the data
recorded by the Kinect sensor. In Fig 7, the results of the full fitting procedure
are shown. In general, the pose of the hand is fitted correctly. Such estimation
is enough for gesture recognition and also for tracking initialization. But one
can see that the match is not perfect. We attribute it to several factors. Firstly,
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there is a mismatch between hand form and proportions, and the real hand.
Secondly, the scaling parameter is critical for the following pose estimations, so
small mistakes in the scaling parameter directly lead to errors during fitting.

Fig. 7: Several model fitting results on the images from the database; the upper
row shows color image with fitting results; the bottom row shows point cloud to
model fit in 3D; the weights used are α = 0.1, β = 5, ζ = 1

Our algorithm performs good in case of an open hand and a partially closed
hand (see Fig 7). However, we observed that in case of a fully closed hand
our algorithm fails to estimate hand pose correctly, unless provided with initial
pose, that is close to the pose on the image. We believe, that this problem can
be potentially solved by learning an approximate pose from an image prior to
optimization.

6 Conclusion and future work

We presented an approach for model-based hand tracking, based on the classical
non-rigid ICP algorithm for combined RGB-D data. We evaluated our approach
both on the synthetic and the real-world data and showed, that it is capable of
producing plausible hand pose estimations. Our approach can be used both for
one-shot hand pose estimation and extended for tracking. Our approach allows
to partially overcome the problem of missing data.

In future, we will focus on improving the speed and also on providing a
more stable initialization. As we use local optimization methods, our approach
is prone to get stuck in a local minima, so we would like to extend it to usage
of global optimization methods. Another possible direction could be to couple it
with machine learning or template-based matching, since they are proven to be
helpful for hand pose recognition.
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