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Abstract. In this paper, we propose to enhance particle-based stochas-
tic optimization methods (SO) by using Principal Component Analysis
(PCA) to build an approximation of the cost function in a neighborhood
of particles during optimization. Then we use it to shift the samples
in the direction of maximum cost change. We provide theoretical ba-
sis and experimental results showing that such enhancement improves
the performance of existing SO methods significantly. In particular, we
demonstrate the usefulness of our method when combined with standard
Random Sampling, Simulated Annealing and Particle Filter.

1 Introduction

A large number of computer vision problems requires to optimize a cost func-
tion that depends on a high number of parameters. When the cost function is
convex, the global optimum can be found reliably. Unfortunately, many prob-
lems are hard or even impossible to formulate in convex form. It is well known
that in such cases typical gradient-based local optimization methods easily get
trapped in local minima and therefore stochastic optimization algorithms must
be employed. In general terms, stochastic optimization algorithms consist of gen-
erating random proposals, or particles, to find regions of parameter space with
low costs. However, the number of particles needed to reach the global mini-
mum with high probability grows exponentially with the dimension of parame-
ter space. To improve sampling efficiency in high-dimensional spaces a common
strategy is to follow the cost function gradient of good samples. Unfortunately,
this has two major limitations. Firstly, for many cost functions used in com-
puter vision there is no analytic expression for the gradient and approximating
it by finite differences is computationally expensive. Secondly, the gradient is a
very local measure of the cost function landscape that ignores the underlying
global shape. Hence, this approach is susceptible to get the particles trapped in
local minimum. Inspired by methods based on Hamiltonian Monte Carlo (HMC)
[14], we introduce PCA-based Stochastic Optimization (PCA-SO). We propose
to improve the particles in terms of cost function based on the landscape ge-
ometry, constructed from already computed neighboring samples. In that sense,
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Fig. 1: Shift directions: (a) Ackley function with many local minimum, (b) di-
rections of maximal function decrease - oppositely directed to the gradient of
the function, (c) shift direction computed from a small neighborhood and (d)
shift direction computed from a bigger neighborhood. As it can be observed,
for small neighborhoods (c) our method computes directions that are parallel
to the local gradients and for bigger neighborhoods (d) the computed directions
capture more global properties of landscape.

our method is related to particle swarm optimization methods [10]. Specifically,
we approximate the cost function in a neighborhood by a hyperplane, efficiently
computed using PCA. This results in the direction of the maximum cost func-
tion variance in a bigger neighborhood, while for a small enough neighborhood
this direction coincides with the local gradient. Then, the step size is chosen in
the direction of the maximal cost function change in the parameter space. In
several experiments, we show that this modified stochastic search scheme results
in faster convergence and reduced variance of final solution.

2 Previous work

Perhaps one of the most widely used stochastic inference methods in vision is
the Particle Filter (PF) [9], which can be seen as one instance of importance
sampling. For many applications however, the dimension of parameter space is
too high and a huge number of samples are needed to approximate the poste-
rior or even to find a good maximum a posteriori (MAP) approximation. An
example of such application, for instance, is human pose estimation from video
in which the number of parameters to estimate ranges from 20 to 60. One way
to make the search more efficient is to use annealing schemes. The traditional
Simulated Annealing (SA) [11] starts from a set of hypotheses and decides to
move the system to a new state with an acceptance probability that depends on
the optimization gain and the temperature T of the system. During the selection
of random neighboring states, the temperature is gradually decreased during the
iterations. The idea is that the choice between the previous and current solu-
tion is almost random (at the beginning) when T is large, but it increasingly
selects closer located ”downhill” samples as T approaches zero [5, 6]. Although
in principle such schemes explore the search space more efficiently, very often
all samples concentrate around a single local optimum. Another commonly used
strategy is to follow the gradient of good samples during stochastic search [3,
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16, 2], this has been shown to reduce the effect of volume wastage which oc-
curs when a large number of particles are rejected. When the gradient cannot
be computed covariance matrix adaptation can be very effective [8, 7]. Closely
related are HMC methods [14, 4]. The basic idea behind HMC is to construct a
Hamiltonian in which the potential energy is proportional to the cost function
and the position corresponds to the variables of interest. Then a momentum is
added artificially to the particles. Intuitively, this can speed up convergence and
increase robustness to local minimum because the momentum of the particles
allows them to go downhill faster and continue when they encounter uprising
slopes. In HMC methods the momentum is calculated independently for every
particle and is closely related to following the gradient direction [4]. By contrast,
we compute the particle shift based on local neighborhood of a particle. This
allows to better capture the underlying landscape of the cost function, smooth-
ing out local irregularities. Other approaches combining PCA and Stochastic
optimization perform sampling in PCA space instead of performing sampling in
the original space [12], which is completely different to our approach.

2.1 Contributions

In this work, we propose a simple but very effective modification for stochastic
optimization that adds robustness to local minimum and speeds up convergence.
One of the main advantages of the proposed method is that it can be easily
integrated to any stochastic optimization technique. We demonstrate the benefits
of PCA-SO in three different methods, namely plain Random Sampling (RS),
Simulated Annealing (SA) and Particle Filter (PF), applied to typical vision
problems, such as image registration and tracking.

3 Stochastic optimization

In this section we briefly describe the basic ingredients of a global stochastic op-
timization algorithm. Most stochastic search algorithms consist of three steps,
namely weighting, selection and mutation. In the weighting step, the cost func-
tion is evaluated and the particles are given a proportional weight. This is usually
the most time consuming step. In the selection step, the weighted particles are
accepted or rejected with some probability that can depend on their weight,
optimization gain and temperature, if an annealing schedule is used. In the mu-
tation step new candidate locations are generated from the current particles.
A commonly used heuristic is that particles give offspring proportional to their
current weights so that more computational resources are allocated for promis-
ing candidate locations. One of the main advantages of PCA-SO is that it can be
easily integrated in the mutation step of any stochastic optimization algorithm.

4 PCA-based Stochastic Optimization

Let f : Rd 7→ R be a multivariate cost function where d is the dimension of
the parameter space. Optimization entails finding the parameter vector x =
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(x1, . . . , xd) that minimizes the function f :

x∗ = arg minx1,...xd
f(x1, . . . , xd). (1)

The function f defines a hyper-surface in S ⊂ Rd+1, whose points are y =
(x1, . . . , xd, z) with z = f(x1, . . . , xd). Equivalently, we can represent the points
in the hyper-surface as the zero level-set of the function F (x1, . . . , xd, z) =
f(x1, . . . , xd) − z . The gradient of F is trivially related to the gradient of the
original cost function f gradient by

∇yF =

(
∂F

∂x1
, . . . ,

∂F

∂xd
,
∂F

∂z

)
= (∇xf,−1) . (2)

Obviously, since the gradient must be orthogonal to the level sets of the function
F (x1, . . . , xd, z) = 0, ∇yF is perpendicular to the hyper-surface defined by f(x).
The gradient of the cost function ∇xf provides the direction of local maximum
increase of the cost function f . In principle, this direction can be used to shift
the particles which can speed up convergence in many situations. However, this
approach is susceptible to get the particles trapped in local minima, because
particles falling into local minima will not be shifted since the gradient vanishes
at those points.
Therefore, we propose to compute the direction of maximum increase (or de-
crease, depending on the optimization direction) of the cost function in a bigger
neighborhood. Specifically, for every particle yi = (xi, zi) we take all the samples
inside a ball of radius r, Ni[y

i] ≜ {y ∈ S | d(xi,x) ≤ r}. PCA provides means
to compute the orthogonal directions in which the variance of the sample set
is maximized. Conceptually, it is desirable to shift the particle in the direction
δx ∈ Rd of parameter space that maximizes the cost function change. Given
the center of the neighborhood µi = 1

N

∑
yn∈Ni

yn, the directions provided

by PCA are the eigenvectors (φi
1, . . . ,φ

i
d+1) of the sample covariance matrix

Σi = 1
N−1

∑
yn∈Ni

(yn − µi)(yn − µi)T with eigenvalues σi
1 > σi

2, . . . > σi
d+1

corresponding to the variance of the sample set, projected into the principal di-
rections. It can be shown that the direction φi

d+1 of the smallest variance for a
small enough neighborhood of a differentiable function is parallel to the normal
n̂i to the surface at the point yi:

n̂i =
∇yF

T

∥∇yF∥

∣∣∣∣
yi

= γ
φi

d+1

∥φi
d+1∥

, γ = ±1 (3)

Therefore, the linear space spanned by (φi
1, . . . ,φ

i
d) forms the tangential hyper-

plane to the surface S at the point yi, based on the neighborhood Ni[y
i].

Thereby, at the k-th iteration particle yi is shifted by δxi

xi
k+1 := xi

k − λδxi
k δxi

k :=
πd+1(φ

i
d+1)

∥πd+1(φi
d+1)∥

(4)

where π(·)j is the projection operator that drops the j-th component of a vector
and λ is a step size parameter. For a small enough neighborhood radius r δx
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is parallel to the cost function gradient ∇xf . Therefore, methods that combine
stochastic search with gradient descent [13, 3, 4, 16, 2] are special cases of PCA-
SO. As the ball radius r increases, Eq. 3 does not hold anymore and the shift
vector reflects the direction of maximum function change in a bigger neighbor-
hood. Notably, this provides a direction that is robust enough to make a particle
jump over spurious local minimum, see Fig 1.
To summarize, the PCA-SO algorithm consists of the following steps:

1. Sample an initial set of particles randomly and evaluate the cost function.
2. Sample one or more new particles, find already evaluated particles in their

neighborhood, compute shift directions and shift steps (see (4)), using al-
ready evaluated particles.

3. Shift the particles in the found directions and evaluate the cost function at
the new locations.

4. Accept the particles with improved cost function values and add to the initial
set of particles

5. Go to step 2.

A time-consuming step of our approach can be finding the neighborhood of every
particle. If necessary, K-D trees can be used [1], since they allow finding neighbors
in log(N) time. Since shift direction and step varies smoothly for neighboring
particles, a more efficient alternative is to cluster the particles and give the same
shift to every particle within the same cluster.

5 Experiments

In this section, we show the benefits of PCA-SO integrated in three different
stochastic optimization/sampling methods, namely random sampling (RS), sim-
ulated annealing (SA) and particle filtering (PF). We apply our technique to two
different vision applications: image registration and target tracking. To evaluate
the effectiveness of a given optimization method we report two measures: (i) the
number of iterations needed to reach a good approximation of the solution, and
(ii) the value of the cost function after a fixed number of iterations.

5.1 Image registration using random sampling

We tested our approach for image registration using random sampling (RS). In
Fig. 2a the images used for registration are presented. They are histology images
of heart tissue cross-sections that need to be registered to generate 3D models.
Assuming an affine transformation between images

T =

 sx cos(θ) sx sin(θ) tx
−sy sin(θ) sy cos(θ) ty

0 0 1

 , (5)

we need to estimate rotation angle θ, scaling sx, sy and translation tx, ty param-
eters. Let I(p) denote the target image value at point p and It(p) denote the
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Target image

Template

(a) (b) (c)

Fig. 2: Image registration results: (a) target image and template; (b) standard
RS registration; (c) PCA-SO RS registration

template image value at point p. Rectangle R defines the region to be matched.
Here |R| denotes the number of pixels in the rectangle. The cost function J(It, I)
is defined as following:

J(It, I) =
1

|R|
∑
p∈R

(I(p)− It(Tp))2 (6)

As can be seen, no analytical expression for derivatives of J exists. Integration
of our enhancement is straightforward: sample small number of particles; for
each new sample use already evaluated particles to build local neighborhood
and improve it with respect to the cost function; accept it if the cost function
value improved. As it can be seen in Table 1, PCA-SO reduces both the number
of required iterations to reach a good fit and the quality of the fit after the fixed
number of iterations.

Table 1: Comparison between standard random sampling and its enhancement
using PCA-SO; cost function values are in [9.50, 20.30]; results are aggregated
from 50 independent runs of optimization till the termination criteria

termination criteria without PCA (mean, ± std) with PCA (mean, ± std)

number of iterations

value reached (J ≤ 13) 22± 15 17± 11
value reached (J ≤ 12) 43± 13 37.66± 15

minimum cost function value

# of iteration (N = 10) 13.04± 0.83 12.88± 0.81
# of iteration (N = 200) 11.53± 0.56 10.92± 0.40

In Fig. 2b,2c we show the registration results of 5 different runs of the algo-
rithm, with 200 particles sampled during each run. As it can be observed, the
quality of the RS result, shown in Fig. 2b, heavily depends on the particular
run of the method in contrast to PCA-SO (results are shown in Fig. 2c), that
consistently converges to the same solution.
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Fig. 3: (a) standard SA experiment (b) SA experiment enhanced by PCA-SO; as
can be seen, much less samples are needed to achieve desired function value

5.2 PCA-enhanced Simulated Annealing

To show the flexibility of PCA enhancement we integrate it in another SO tech-
nique - Simulated Annealing (SA). Here, we optimize the famous non convex
six-hump camelback function f(x); for analyzing the proposed algorithm and
used the open source implementation of SA available at [17]. Our method is ap-
plied as following: for each new simulated particle, PCA tangential hyperplane
is build based on (already evaluated) particles that are in the neighborhood of
the new particle; particle is shifted in the direction of the cost function improve-
ment; then the particle is processed as in standard SA method. The results for
50 independent optimization runs of SA and SA+PCA-SO with random initial-
ization are shown in Table 2. It can be observed that the number of iterations
required by SA to reach a good approximation of the global optimum is several
orders of magnitude larger compared to PCA-SO. Notably, to reach a cost func-
tion value lower than −0.4 the average number of iterations needed by PCA-SO
is only 22 ± 15 which is a remarkable improvement compared to the iterations
needed by SA alone: 115±54. Fig 3 illustrates results of one optimization run of
each method and shows significant difference in the number of particle needed to
reach the value, close to minimum. We attribute such good performance to the
fact that PCA-SO shifts the particles in the direction of the minimum, allowing
them to travel longer distances and therefore reduce random walk behavior.

5.3 Tracking with particle filter

In the last experiment, we also used our approach to improve object tracking
accuracy with a Particle Filter (PF). Here, we used an open source tracking
algorithm [15]. The PF aims to approximate a distribution and can be used
to obtain minimum cost function value by taking the particle with the highest
weight. For this purpose,a fixed number of particlesN is sampled from a specified
distribution and evaluated. A color histogram sampled in a region, which is
bounded by an ellipse with parameters x = (x, y, a, b, θ)T , represent the object
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Table 2: Comparison between standard simulated annealing and its enhance-
ment; minimum function value is −1.03

termination criteria without PCA-SO with PCA-SO

number of iterations

value reached (f ≤ −0.4) 115± 54 22± 15
value reached (f ≤ −1) 492± 2291 55± 28

minimum cost function value

# of iteration (N = 200) −0.66± 0.43 −1.00± 0.03
# of iteration (N = 1000) −0.96± 0.13 −1.00± 0.02

appearance. Here (x, y) is the center of the ellipse, (a, b) are the lengths of
principal axis and θ is the rotation angle. For every particle, the color histogram
Qi is then compared to a target color histogram P of the helicopter obtained
in the first frame of the sequence. The Bhattacharyya coefficient ρ(P,Q) [15]
is used to measure similarity between the two histograms. As it is usual for
tracking, a first order Markov Chain with linear dynamics is assumed. The full
state vector is given by s = [x, y, ẋ, ẏ, a, b, θ]T , where (ẋ, ẏ) is the velocity of
the center of the ellipse. The Bhattacharyya coefficients, i.e. the cost function
values, are mapped to probabilities wi

t using the exponential function:

wi
t =

ŵi
t∑N

i=1 ŵ
i
t

, ŵi
t = exp

(
−1− ρ(Qi

t,P)

2σ2

)
(7)

After weighting, the particles are resampled (selection) and propagated over
time with the linear dynamical model: St+1 = ASt + ε (mutation) where ε is
noise, A is a constant motion matrix defined in [15], St = [s1t . . . s

N
t ] ∈ Rd×N . We

apply our enhancemnent directly after the dynamic step. In PF, several particles
are created at the same time; we optimize only those particles, that have high
weights, since optimization of all the particles will lead to the degradation of
weight distribution due to normalization; for these particles, we, as usual, build
a hyper-plane based on the particles generated in the current time step; note,
that the cost function f(x) = ρ(P,Q(x)) depends only on the ellipse parameters
x and therefore PCA space is build for the part of the state vector s; improved
particles are then resampled according to their weights.

To compare the two methods, we use the standard Euclidean distance be-
tween the ground truth object coordinates and the results produced by the given
tracking algorithm as an error measure. Fig. 4 shows once more, that PCA-SO
reduces the mean tracking error as well as the variance. PCA-SO can track the
object after a heavy occlusion occurring between frames 270 and 310 in con-
trast to standard PF that looses track of the object; this can be observed both
quantitatively, see Fig. 4, and qualitatively, see Fig. 5. It should be noted that
a sufficient number of samples, e.g. more than 70 − 80, are needed in order for
PCA-SO to work well, because the PCA-based approximation is more reliable
with denser neighborhood samples.
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Fig. 4: Comparison of the tracking error for the standard Particle Filter (blue)
and the improved PCA-SO Particle Filter (red); solid lines show mean tracking
error over 30 independent runs; dotted lines show tracking error variance.

(a) Frame: 270 (b) Frame: 280 (c) Frame: 290 (d) Frame: 300 (e) Frame: 310

(f) Frame: 270 (g) Frame: 280 (h) Frame: 290 (i) Frame: 300 (j) Frame: 310

Fig. 5: Tracking results obtained with PF (top row) with proposed PCA-SO
(bottom row). The PF method loses track of the object due to occlusions (the
ellipse becomes red), while the proposed method is able to correctly follow the
object after the occlusion (the ellipse stays green).

6 Conclusions

In this paper, we presented PCA-SO, a method to improve global stochastic
optimization algorithms by improving the samples. The direction is given by
the PCA component with smallest eigenvalue computed in a local neighborhood
around the sample. We have shown that this yields the gradient of the cost func-
tion for small neighborhoods; on the other hand, for larger neighborhoods the
direction reflects more global properties of the cost function landscape. There-
fore, methods that combine stochastic search with local methods are a special
case of our algorithm. The main advantages of PCA-SO methodology are its
effectiveness and easy integration into stochastic optimization methods. In sev-
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eral experiments, we have shown improvement in both accuracy and convergence
rates using Random Sampling, Simulated Annealing and Particle Filter.
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