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Abstract. We present an approach for motion segmentation using inde-
pendently detected keypoints instead of commonly used tracklets or tra-
jectories. This allows us to establish correspondences over non-consecutive
frames, thus we are able to handle multiple object occlusions consistently.
On a frame-to-frame level, we extend the classical split-and-merge al-
gorithm for fast and precise motion segmentation. Globally, we cluster
multiple of these segmentations of different time scales with an accurate
estimation of the number of motions. On the standard benchmarks, our
approach performs best in comparison to all algorithms which are able
to handle unconstrained missing data. We further show that it works on
benchmark data with more than 98% of the input data missing. Finally,
the performance is evaluated on a mobile-phone-recorded sequence with
multiple objects occluded at the same time.

1 Introduction

Motion is a key element for image understanding. Many animals can easily get
fooled by prey standing still for long times. In computer vision, the most-known
exploit of motion is to learn 3D shapes of rigid objects by structure-from-motion.
Furthermore, recent image segmentation approaches [1–3] make use of long-time
motion observation as prior for image segmentation. To determine motion, tra-
jectories are established, e.g. from dense optical flow [4] or from tracking feature
points like KLT. The trajectories are compared and classified according to their
motion, which may be generic 2D or 3D motion or specialized motion templates
as used in [5]. For higher discriminativity, it is of advantage to observe long-
time trajectories like [6]. However in many real-world applications, trajectories
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Fig. 1. Results of our multi-scale motion segmentation with automatic class number
assignment using SIFT correspondences between pairs of images as input.
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are not only incomplete (data is missing at the beginning and at the end) but
split by one or several gaps into different parts. Repairing trajectories [7, 8] is
only tractable as long as the gap is small and it bears the risk of introducing
falsely-connected trajectories.

In our approach, we use correspondences from keypoints like SIFT [9] as in-
put for motion segmentation which, e.g., allows learning object appearance from
motion. In contrast to tracked features, keypoints are detected independently
in different frames. On the one hand, comparing keypoint descriptors allows es-
tablishing correspondences over missing trajectory elements. On the other hand,
although the redetection rate for keypoints in similar images is quite high, it is
still far lower than for tracked features. So by gaining the possibility of match-
ing over multiple frames, we loose trajectory length. In this paper, we show
that by building a bottom-up frame-to-frame motion segmentation framework
on multiple time scales, we can have the advantages of both tracked features
and keypoints. Due to this, we are able to accurately segment motions of ob-
jects which are temporarily or spatially not visible, for example as they are
occluded or leave the field of view. Furthermore, our approach is robust to out-
liers which are explicitly taken into account during the frame-to-frame motion
segmentation. Our contributions are

– the motion-split-and-merge (MSAM) algorithm1 with keypoint correspon-
dences as input, performing fast motion segmentation on a frame-to-frame
basis,

– the multi-scale motion clustering (MSMC) approach1, which combines frame-
to-frame-results of multiple frames and scales,

– and a metric to robustly and accurately determine the number of motion
classes even under very high missing data percentages.

Related Work Motion segmentation approaches can be characterized using
the terms subspace- and affinity-based. In both methods, a certain time window
is observed and trajectories of points are assigned to one of several objects.

In subspace-based methods, all trajectory points are combined in a data ma-
trix W. Under the affine camera model, trajectories from rigid objects form lin-
ear subspaces in W, which can be extracted using algebraic transformations and
rank constraints. [10] shows a closed form solution. However, most approaches
cannot handle missing data (e.g. [10–12] with good results besides this). To allow
incomplete trajectories, the following subspace techniques have been proposed:
In [13] the power factorization, which allows the decomposition of matrices with
missing data, is used for matrix decomposition of the generalized PCA (GPCA)
of W. The agglomerative lossy compression (ALC) approach [14] tries to seg-
ment W by minimizing the number of bits needed to represent W. However
reconstructing missing data is only possible as long as at least one complete
trajectory is available. As it can be seen in Fig. 4, such an assumption does not
hold here since no object is visible throughout the whole sequence.

1 Code available on www.tnt.uni-hannover.de/staff/dragon .
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Our approach belongs to affinity-based methods. Here, pair-wise affinities
between trajectories are computed. They form the affinity matrix A which is
analyzed during a final clustering step. In contrast to subspace-based methods,
the affinity metric does not depend on complete data. [4] use spectral clustering
[15] with affinities from spatial trajectory distances combined with their simi-
larity of translational motion. [16] propose affine motion similarity as basis for
affinities which are clustered by J-linkage [17]. Both approaches build A from
motions of consecutive frames only. Thus, slowly-drifting motions still have high
affinity. This effect is solved by spatial terms in A, but only if the trajectory
density is homogeneous and if the trajectories have high overlap. In [7] the tra-
jectory features speed and direction are decomposed using non-negative matrix
factorization. The resulting weights are used as affinities for spectral clustering.
However, the factorization cannot handle noisy data or outliers.

Outstanding results were received by combining both subspace- and affinity-
based methods: In [18], a sparse representation is estimated from W and used
as affinity for spectral clustering. However, justification for handling missing
data is only given as long as there is at least one trajectory with complete
data. Despite this, the computational complexity for the sparse representation
does not allow a high number of trajectories (> 6000 in Section 4.3). In our
approach, we also combine the advantages of affinity-based methods with a
long-term optimization like in subspace-methods. But our multi-scale motion
clustering has low complexity and no constraints how the missing data is formed.

The rest of this paper is structured as follows: In Section 2, we explain our
frame-to-frame motion-split-and-merge algorithm (MSAM). In Section 3, we
derive our multi-scale motion clustering (MSMC) approach which combines
frame-to-frame segmentations of multiple frames and scales. Section 4 shows
experimental results and in Section 5, we give a conclusion.

2 Frame-to-Frame Motion Segmentation

A set {y1,y2, . . .} of given point correspondences yi between two frames is to
be partitioned into n subsets Fk, called segments here, s.t. Fk and underlying
motion coincide. Furthermore, the number of segments n is to be estimated. Let

yi = (x
(1)ᵀ

i ,x
(2)ᵀ

i )ᵀ be the data vector consisting of the corresponding points

x
(1)
i and x

(2)
i . The motion of Fk is parametrized by the vector pk, in this paper

the 8 parameters of a homography.
Since block-wise segmentation for video coding or motion segmentation of

dense optical flow denote different problems, there is only [19] as application
tackling a similar problem. It consists of J-linkage and many post-processing
steps preventing fast runtimes. Since the segmentation is carried out very often
in our global framework, we introduce MSAM as fast and precise approach.

2.1 Motion-Split-And-Merge (MSAM)

The inspiration of our approach is the classical top-down split and merge algo-
rithm [20, pp 96–104] for image segmentation, where image segments are split
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until they are consistent and then merged with neighboring segments until con-
vergence. Consistency in our case means that all correspondences yi from a
segment Fk are inlier according to

d2(yi | pk) < ε2 , (1)

where d2(yi | pk) is the model distance metric for the data yi using the model
parameters pk of Fk, here the symmetric squared error. ε2 is a threshold in this
metric. However, motion parameters pk have to be estimated from Fk which is
problematic if Fk consists of multiple underlying models. Furthermore, combin-
ing neighboring segments in terms of similar parameters will not work if one of
the segments is too small for the estimation step. Thus, we formulate motion-
split-and-merge in a way we avoid too much splitting. It consists of advanced
split and merge operations and explicit outlier handling.

Initially, we assume all correspondences to be in one segment. At each itera-
tion, the following operations are performed:

1. Split segments: For each segment Fk, RANSAC [21] estimates parameters
pk. Outliers according to Eq. (1) are assigned to an outlier segment. If how-
ever the inlier ratio is smaller than θs, we believe that RANSAC could not
estimate a valid motion because of too much perturbation from outliers or
from multiple models inside the segment. Thus, we split the segment into
two by the approach explained in Section 2.3.

2. Merge segments: For each pair of segments (Fk,Fl), the inlier ratio τ of the
smaller segment Fl is determined using parameters pk. The intention is that
the parameters of the bigger segment are more stable and accurate. Besides,
the inliers of the smaller segment can be computed faster. Like in regular
split-and-merge, the segments are merged if τ is bigger than a threshold θm.

3. Split outlier segment: All outliers are put into one segment which is split like
in step 1. If one of both parts contains enough inliers, it is added as a new
segment.

4. Merge outlier segment: Each correspondence yi from the outlier segment is
assigned to a segment Fk if it is inlier according to its parameters pk.

The algorithm ends if no operation was performed during an iteration. Please
note that by the outlier handling, we cannot guarantee convergence but to our
experience, MSAM converges quickly if the underlying motions are parameteri-
zable under the given ε. If not, MSAM is stopped after a cutoff iteration count
experimentally found in Section 4.1. In order to disallow repeated splits and
merges, a neccessary constraint for θs and θm is

1 + θm ≥ 2 · θs . (2)

A high θs allows RANSAC with only few samplings in step 1 (cf. Eq. (7)), but on
the other hand may result in too small segments from many splits and few merges
by θm being too high. Thus, optimal thresholds depend on outlier percentages
and the desired granularity of the segmentation. Since an over-segmentation will
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not harm the on-top multi-frame motion clustering, we empirically found

θm = 0.9, θs = 0.95 (3)

as biggest parameters usable for SIFT and KLT correspondences.

2.2 J-Linkage

As the splitting step from Section 2.3 is based on concepts used in J-linkage
[17], we briefly repeat it using our notation. J-linkage belongs to the field of
model selection, where data vectors y (not necessarily correspondences) are to
be assigned to one of several underlying segments having different parameters
pk. J-linkage consists of a sampling and a clustering step. In the sampling step,
M model parameter vectors p are estimated from M varying randomly-selected
minimal data sets. To increase the probability of drawing samples with the same
underlying parameters, samples with similar y are drawn with higher probability.

After the sampling, for each correspondence yi the set of its preferred pa-
rameters P(yi), or short Pi, is found containing all parameter vectors p to which
it is inlier (cf. Eq. (1)):

p ∈ Pi ⇔ d(yi | p) < ε . (4)

In the clustering step segments are found using bottom-up agglomerative
clustering, starting with many segments Fk = {yk} each containing one data
vector. For further explanation, let the model preference set Mk of a segment
Fk contain the common preferred parameter vectors of all its data

Mk :=
⋂

yi∈Fk

P(yi) . (5)

In J-linkage, iteratively the two segments Fk and Fl with lowest Jaccard distance
J(Mk,Ml) between their model preference sets are combined. The Jaccard dis-
tance for two sets A and B is defined as

J(A,B) =

{
|A∪B|−|A∩B|
|A∪B| A ∪B 6= ∅

1 otherwise .
(6)

The second case may occur if both Fk and Fl have empty preference sets since
they are outliers to all estimated parameter vectors. The clustering ends if all
pairs (Fk,Fl) have disjoint Mk and Ml and thus J(Mk,Ml) = 1. Last, small
clusters are combined to an outlier segment.

Although the clustering stop criterion sounds reasonable, the agglomerative
clustering suffers from local optima by combining wrong segments (e.g. of am-
biguous correspondences or outliers). This leads to over-segmentation as these
partitions cannot be merged because the model preference sets Mk become too
sparse. Furthermore, the parameters for the clustering are inaccurate as they
have always been found from local minimal sampling sets. These problems could
be overcome (cf. Fig. 2) by a motion validation which is performed by our MSAM
approach. Thus the idea is to use a simplified and sped up version of J-linkage
in step 1 of MSAM which is described in the following.
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Fig. 2. The segmentation of a turning airplane using (upper row) our MSAM approach
after 1, 2, 4 and 6 of 6 iterations, and using (lower row) J-linkage [17] with optimized
parameters and 2500, 5000, 7500 and 10000 samplings. The motion model and the
outlier threshold from Eq. (4) are the same. Using MSAM, the airplane is correctly
segmented after 6 iterations. Motion class 3 is split in iterations 2 and 4. One of
the split parts gets merged with the background such that the outliers (class 0) are
increasingly detected. After convergence, all 23 outliers were detected correctly and
the airplane as well as the background class are motion consistent. Using J-linkage,
the correspondences are still oversegmented and not all outliers are detected. More
iterations seem not to give better results.

2.3 MSAM Split Operation

The goal of this operation is to split the correspondences of a non-consistent
segment Fk into motion consistent partitions. As further splits as well as merges
may follow this operation, we may assume that we have to split Fk into two
parts. This allows sampling preferred parameters Pi using a far lower number of
parameter estimation sets M as in J-linkage. Here we chose M = 10. Further-
more, we enhance the parameter vector p in inlier count and precision by using
the best RANSAC result of r samplings. r is chosen such that the parameters
are estimated from true inliers with more than p = 50%, assuming we have at
least w = 50% model inliers. From [21], we know that

r ≥ log(1− p)
log(1− ws)

≈ 11 , (7)

where s = 4 is the size of a minimal sampling set.
After this sampling step, the Jaccard distance J(Pi,Pj) is computed accord-

ing to Eq. (6), in contrast to J-linkage between the preferred parameter sets of
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all pairs of correspondences yi,yj ∈ Fk. In order to include spatial constraints,
we combine the Jaccard distance with the Mahalanobis distance Mk:

Mk(xi,xj) =

√
(xi − xj)ᵀC

−1
x (xi − xj) ∧ x ∈ Fk , (8)

where x is wlog. the destination point of correspondence y and Cx is the co-
variance matrix of x. To combine J and Mk, the affinity matrix A is defined:

Ai,j = 1− J(Pi,Pj) ·min{Mk(xi,xj), 1.0} . (9)

The distances J and Mk are combined multiplicatively in order to cluster cor-
respondences which are spatially or by common model parameters near to each
other. To give both the same weight, M is saturated to the value range [0, 1].
By this, clustering of isolated correspondences randomly moving together is in-
hibited while elongated or discontinuous clusters remain possible. Finally, the
columns of A and by this Fk is split into two segments using k-Means.

2.4 Runtime and Precision Considerations

Comparing our motion segmentation with J-linkage as strongest other approach,
there are three main reasons for speedups and three for enhanced precision which
justify using MSAM for frame-to-frame motion segmentation: In total, we have
to perform less samplings for parameter estimation, most samplings are used
for splitting classes containing only a fraction of all correspondences, and the
clustering method may be simpler since further parameter validations are possi-
ble. On our equipment (cf. Section 4), the segmentations of 631 correspondences
in Fig. 2 took 0.7 s for MSAM, where J-linkage with just 2500 samplings took
20.1 s (just the clustering took 16.6 s), both on compiler-optimized C code.

Since MSAM’s parameters are estimated using all correspondences from a
segment (and not minimal sampling sets), they are more precise. Second, be-
cause J-linkage draws samples spatially close to each other, its parameters be-
come prone to imprecise feature localization, while MSAM incorporates spatial
knowledge during the clustering when parameters are already estimated. Fur-
thermore, because of the explicit outlier handling, all segments are motion con-
sistent if MSAM terminates regularly. As it is displayed in Fig. 2, MSAM finds
the true solution whereas J-linkage with the same outlier distance and optimized
parameters performs an over-segmentation containing outliers in all classes.

3 Global Multi-Scale Optimization

3.1 Global Motion Segmentation using Successive Frames

To combine the results from multiple frame-to-frame motion segmentations in

a time-consistent way, linked frame-to-frame inlier correspondences (x
(1)
i , x

(2)
i ),

(x
(2)
i ,x

(3)
i ), . . . are assigned to trajectories Ti. In contrast to the clustering in
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Fig. 3. Left: Preferred motion parameters pt,k of trajectory Ti, clustered by motions
S1 (yellow) and S2 (red). White denotes inliers, black outliers and green missing data
(no observation of Ti at frame t). Right: Corresponding affinity matrix A of the affinity
between trajectories Ti and Tj .

Section 2, we now cluster the set of all Ti according to multiple frame-to-frame
motions. Let Ft,k be a segment of a frame-to-frame segmentation of correspon-
dences y(t) = (x(t)ᵀ ,x(t+1)ᵀ)ᵀ, and accordingly let pt,k be its parameter vector.

Similar to Eq. (4), we define the preferred parameter set H(Ti), or short
Hi, of trajectory Ti containing the parameters pt,k from different frames t and
different motions k, to which Ti is inlier (cf. Fig. 3):

pt,k ∈ Hi ⇔ y
(t)
i ∈ Ti ∧ d(y

(t)
i | pt,k) < ε . (10)

To segment all trajectories into n spatio-temporal motion clusters Su, we use
spectral clustering [15]. Its affinity matrix A which contains pairwise affinities
Ai,j between two trajectories Ti and Tj , is defined using Eq. (10):

Ai,j = 1− J(Hi,Hj) . (11)

By this, we allow clustering trajectories with missing data without any con-
straints how the missing data is formed.

3.2 Multi-Scale Motion Clustering (MSMC)

In contrast to the approaches of [4, 16], our presented trajectory clustering al-
lows combining independent frame-to-frame segmentations over arbitrary time
scales h∆. By this, slow or randomly coinciding motions can be segmented. To
combine the results of different scales, linked inlier correspondences are merged
and treated as part of the same trajectory. The indices t, k from Section 3.1
become t,∆, k denoting motion k from frame t to frame t+∆. Eq. (10) becomes
the definition of the preferred motion parameter set H′(Ti) over multiple scales:

pt,∆,k ∈ H′i ⇔ y
(t,∆)
i ∈ Ti ∧ d(y

(t,∆)
i | pt,∆,k) < ε , (12)

where y
(t,∆)
i = (x

(t)ᵀ

i ,x
(t+∆)ᵀ

i )ᵀ. Using H′i instead of Hi for the affinities of the
spectral clustering of trajectories Ti in Eq. (11), correspondences over all scales
and all frames are clustered in one step (cf. Fig. 4).
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Fig. 4. Preferred motion parameters pt,∆,k of 6795 trajectories and 768 frame-to-frame
motions from the bookstack sequence (Section 4.3). Several objects are occluded at the
same time. White denotes inliers, black outliers and green missing data (98.5%), e.g.
due to occlusion. S2 corresponds to the lowest book and S3 to the topmost (cf. Fig. 8).

3.3 Estimation of the Number of Motion Classes

In the following we present a simple yet powerful method to determine the
number of motions n by comparing the results of clusterings having different
motion counts ξ. For each ξ, the ξ×ξ class similarity matrix B(ξ) is established.
Element Bu,v(ξ) contains the sum of affinities of all trajectories Ti ∈ Su and
Tj ∈ Sv, normalized by the total overlap between Su and Sv:

Bu,v =

∑
Ti∈Su

∑
Tj∈Sv (1− J(H′(Ti),H′(Tj) ))∑

Ti∈Su
∑
Tj∈Sv |H

′(Ti) ∩H′(Tj)|
. (13)

If there is no overlap between trajectories from Su and Sv, we set Bu,v = 0.
Since different motions Su 6= Sv should have a low similarity Bu,v and the

self-similarity Bu,u should be high, we find the optimal number of classes n by
a worst case minimization:

n = arg min
ξ

(
max
u6=v

Bu,v(ξ)−min
u
Bu,u(ξ)

)
. (14)

Minimizing only the first Bu,v- or the second Bu,u-term results in an under- or
oversegmentation, respectively. As we will show in the experiments, the combi-
nation of both terms result in a quite accurate and robust estimation of n.

4 Experiments

4.1 Complete Data

We start analyzing the segmentation performance using complete trajectories
from the Hopkins 155 benchmark [22]. We use the non-synthetic Articulated and
the Traffic data set, each separated into two- and three-motion sequences. In all
experiments, we use three scales h1 (frame-to-frame tracking), h5 (to close gaps)
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Approach ALC[14] GPCA[22] NNMF[7] VLS[16] MSMC

Articulated, 2 motions, 11 sequences

Error 10.70% 2.88% 10.00% 5.38% 6.03%
Recall 1 1 1 1 0.963

Articulated, 3 motions, 2 sequences

Error 21.08% 16.85% 15.00% 20.41% 8.27%
Recall 1 1 1 1 0.974

Traffic, 2 motions, 31 sequences

Error 1.75% 1.41% 0.10% 1.92% 0.66%
Recall 1 1 1 1 0.979

Traffic, 3 motions, 7 sequences

Error 8.86% 19.83% 0.10% 4.89% 0.17%
Recall 1 1 1 1 0.987

All 51 sequences

Error 5.41% 4.86% 2.82% 3.80% 2.05%
Recall 1 1 1 1 0.977
CPU time/sequence 261.3s 0.3s 3.0s 5.7s 13.8s

Table 1. Classification error rates and recall in the Hopkins data set without missing
data. The CPU times are collected from different papers with comparable systems.

and h25 (long-time motion analysis). To demonstrate MSAM converges even
under very small outlier thresholds ε (cf. Eq. (4)), it was set to ε = 0.5 pel. First,
we use the provided number of classes for the segmentation. Since RANSAC and
k-Means introduce a fluctuation of the results, we average over 10 repetitions.

The convergence of MSAM over all sequences and repetitions is displayed
in Fig. 7 (b): More than 90% of all segmentations converge with less than 10,
and 99% with less than 20 iterations. The rest is likely to contain motions not
parameterizable by homographies, so we terminate MSAM after 20 iterations.

Next we compare our MSMC to all existing approaches which can han-
dle missing data without completeness constraints (which [14, 18] have, cf. Sec-
tion 1): subspace-based GPCA ([13], results from [22]), and the affinity-based
approaches from [7] (NNMF) and [16] (various life span – VLS). We further
add ALC [14] since we will refer to it in Section 4.2. Traditionally, all trajectory
elements are assigned to motion segments and classification errors are reported.
As our approach may not only result in such true (tp) and false positives (fp),
but also in false negatives (fn), we evaluate

precision = tp/tp+fp, and recall = tp/tp+fn . (15)

error = 1− precision equals the usual benchmark performance metric [22].
The results in terms of average error rate and recall are displayed in Table 1.

It can be observed that we receive the best overall error rate at a recall very
close to 1 and reasonable runtime on a 3.0 GHz quadcore standard desktop PC.
Using the metric from Section 3.3, the number of motions could be estimated
with an accuracy of 78.4%, which is the best result reported so far: [23] received
an accuracy of 63.4% and [24] 74.8% (including the synthetic sequences).
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Fig. 5. Simulation how removed data affects missing data. The three binary images
are examples of the result of one trajectory getting split because of gaps from 10%,
20%, and 30% removed data. The images show if data is known (white) or missing
(black) for different resulting trajectories (columns) over time (rows).

4.2 Missing Data

Starting with the complete data, we randomly remove data from the trajec-
tories as it occurs when features are not detected. By such gaps, trajectories
become separated. For realistic evaluation, a trajectory with a gap is treated
as two different disjoint trajectories, one ending before the gap and one start-
ing after it. We use the term removed data for the amount of gaps introduced
and missing data for the amount of resulting missing trajectory data given to
the algorithm. When trajectory points are only removed at the ends as in [7],
both terms coincide. However if, e.g., one trajectory element is removed in the
middle of f frames, the removed data ratio is 1/f whereas the missing data
ratio is ρ = 0.5 + 2/f for the two resulting trajectories (cf. Fig. 5). By this, the
clustering of trajectories becomes much more complex. Our approach reduces
the complexity by merging trajectories on different scales as long as the motion
segmentation does not fail (e.g. because of too little available data). Using this
procedure, we randomly remove up to 30% data, which results in up to 98, 5%
missing data. As a comparison: In the trajectory recovery of [14] (ALC), by
removing complete trajectories, up to 80% data was missing which corresponds
to ρ ≈ 2% removed data here. The masks used to simulate missing data in [7]
(NNMF) contained 25%-35% missing data at beginning and ends of trajectories
corresponding to ρ < 1% (cf. Fig. 5). We evaluate precision, recall and accuracy
of class number estimations over removed data using the setup from Section 4.1.

Fig. 6 displays the results with [7] as comparison. It can be observed that
our approach is very robust with respect to missing data in terms of precision,
recall and class estimation accuracy. The outcomes are reasonable even if more
than 20% of the data is removed, corresponding more than 98% missing data.
This justifies that we can use MSMC with keypoint correspondences as input.

4.3 Multi-Scale SIFT Motion Clustering

In this experiment, keypoint correspondences from SIFT features [9] are used
for motion segmentation. For fast computation of features and correspondences,
we use the GPU approach from [25]. We demonstrate our multi-scale approach
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Fig. 6. Average precision, recall and class number estimation accuracy from Section 4.2
over the ratio of removed data. The precisions from ALC and NNMF are extracted
from [7].
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Fig. 7. (a) Histogram of the number of known trajectory elements for the bookstack
sequence (Section 4.3). (b) Histogram of MSAM iteration count of all frames, scales
and sequences of the experiment in Section 4.1.

on the bookstack video sequence (225 frames, 840× 480 pel2, Fig. 8) which was
taken with a regular mobile phone camera. Thus, the captured video contains
motion blur and artifacts from compression and rolling shutter. The books oc-
clude each other in the first half of the sequence and get uncovered later. The
background intentionally was left blank to give the algorithm no information
about the motion of the lowest book. We used three objects to demonstrate that
multiple objects may become occluded at the same time. If only one object is
occluded and the number of motions is given, an occlusion would be solved by
assigning disjoint classes the same motion. With the following exceptions, the
parameters remained the same as in previous experiments. To be able to segment
consistently through the long-time occlusion, we added scales h100 and h200. Fur-
ther, to reduce computational complexity because of too many frame-to-frame
motions segments, the outlier threshold from Eq. (4) was set to ε = 3 pel. As
baseline for comparison, we input the sequence into the approach of [4] which is
based on dense trajectories from optical flow.

The preferred parameter sets for 768 frame-to-frame motion segments and
6795 trajectories, containing 67103 SIFT inliers, is displayed in Fig. 4, the his-
togram of trajectory lengths in Fig. 7 (a), and images with classified features
are shown in Fig. 8. It can be observed that MSMC allows very high precision
under full occlusions, high image perturbation and very high missing trajectory
data rates (here 98.5%). The number of motions was correctly estimated as 3,
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corresponding to the three books. The precision, measured every 10 frames, is
at 98.2%. The baseline approach of course fails in re-assigning the books. But
even when taking only the stacking of the books into account, it results in se-
vere oversegmentation such that the precision is only 61.9%. Further, with a
frame rate of 4.1 s for motion segmentation plus 30.2 s for the optical flow, the
baseline approach is by far slower than MSMC with an overall rate (including
SIFT extraction and matching) of 1.1 s per frame. We think that by introducing
mechanisms to feed back the result of one frame-to-frame segmentation as ini-
tialization for others, realtime performance can be reached.

5 Conclusion

We presented a bottom-up approach for motion segmentation using correspon-
dences from multiple scales. On a frame-to-frame level, they are segmented into
different motions using our fast and precise motion-split-and-merge (MSAM) ap-
proach. These frame-to-frame correspondences of multiple frames and scales are
merged to trajectories. The motion of such trajectories with various lengths, time
spans and missing data is segmented by multi-scale motion clustering (MSMC),
a single spectral clustering step with Jaccard distances of preferred trajectory
motion parameter sets as input. Last, an accurate estimator of the number of
motions was presented.

Using complete trajectories from the Hopkins data set as input, the overall
error rate was better than any other current state-of-the-art motion segmentation
approach which is able to handle missing data without constraints. Furthermore,
we estimated the number of motion classes with best precision reported so far.
We showed that our approach allows more than 98% data of the input trajectories
missing. In a challenging real-world example with low-quality image data and
multi-object occlusions, we demonstrated that our algorithm allows fast and
accurate motion segmentation of SIFT correspondences on multiple scales.

Acknowledgement This work was funded by the German Federal Ministry of
Education and Research, BMBF project ASEV.
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Fig. 8. Images from the bookstack sequence with the segmentation result: The green-
labeled book becomes occluded by the blue-labeled book at t = 1 which in turn becomes
occluded by the red-labeled book at t = 2. The books are assigned consistently again.
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