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Abstract We present a feature-based framework that combines spatial
feature clustering, guided sampling for pose generation, and model up-
dating for 3D object recognition and pose estimation. Existing methods
fails in case of repeated patterns or multiple instances of the same object,
as they rely only on feature discriminability for matching and on the es-
timator capabilities for outlier rejection. We propose to spatially separate
the features before matching to create smaller clusters containing the ob-
ject. Then, hypothesis generation is guided by exploiting cues collected
off- and on-line, such as feature repeatability, 3D geometric constraints,
and feature occurrence frequency. Finally, while previous methods over-
load the model with synthetic features for wide baseline matching, we
claim that continuously updating the model representation is a lighter yet
reliable strategy. The evaluation of our algorithm on challenging video
sequences shows the improvement provided by our contribution.

1 Introduction

3D object recognition is a well established field of research in computer vision,
and feature-based approaches have become increasingly popular due to their ro-
bustness to clutter, occlusions, changes in scale, rotation and illumination. In the
feature-based paradigm, as pioneered in [10,18], a 3D sparse point cloud repres-
enting the target object is reconstructed by applying Structure from Motion to
features tracked over a set of training images. Once the model is obtained off-
line, on-line recognition and pose estimation is performed by matching the image
features against the model features and solving the Perspective-n-Point problem
for the 2D-3D correspondences. Given a set of correct matches, pose estimation
is a well-solved problem, and various solutions have been devised [13,6].

Feature-based methods can be grouped on the basis of the feature used,
e.g., edges [7], shape [5], patches [17], interest points [10,18]. We share the same
approach of the latter, as we use SIFT features as interest points [15]. Our choice
is motivated by SIFT high discriminability and invariance towards rotation, scale
and illumination changes, as evaluated in [16].

Recent approaches based on this paradigm rely on feature discriminability
for correct matches and on the robust estimator capabilities for outlier rejection
[2,11,12]. However, this presents numerous critical issues:
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Figure 1. Performance of our method for challenging scenes with 5 objects (left) and
6 instances of the same object (right). (Figure best viewed in color)

1. Local patterns, although strongly discriminative per se, often appear in sym-
metric and repeated fashion. Feature descriptors at those locations are very
similar and thus, the typical image-to-model discriminative matching em-
ployed by previous approaches rejects many correct matches. In a domino
effect fashion, robust estimators work poorly when the inlier ratio drops,
often providing wrong hypotheses if the number of trials is small.

2. Robust estimators, like RANSAC [8], generate pose hypotheses without ex-
ploiting any information contained in the model, thus making hypothesis
generation prone to the potential inconsistency of the matches. In [11], a
simple guided sampling based on co-visibility among correspondences is used,
without investigating on other cues. In [14], priority is used in the match-
ing stage by considering only the most recurring features. However, pose
estimation still fails if these features cover just a small region of the object.

3. Since features are not perspectively invariant, object recognition fails in case
of wide baseline matching. Many approaches handle this by adding synthetic
features the training images [12,11]. However, this makes feature matching
ambiguous as the number of features grows.

Our contribution is a fully automatic method that individually solves these
drawbacks by combining inverse feature matching and spatial feature clustering
with multiple instances detection (1), prioritized hypothesis generation (2) and
model updating (3). By doing so, our system is able to reliably detect multiple
objects and multiple instances of the same object, as shown in Figure 1.

1.1 Our Contribution

We present our contribution by correspondingly addressing the drawbacks given
in the previous section.

1. To cope with repeated patterns and image-to-model discriminative matching,
we propose to introduce an inverse matching paradigm, i.e., to match the
model against the image. Since this approach is still prone to fail when
multiple instances of the same object are in the scene, we introduce a spatial
feature clustering with multiple instances detection (Sec. 3).
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2. As robust estimators rely on a completely random sampling, we propose
a consistent guided sampling named Multi-Prioritized RANSAC (Sec. 4).
It exploits individual and grouping cues in a probabilistic framework, in
contrast to [4], in which samples are simply sorted on the basis of their
matching score. In particular, we exploit off- and on-line information on the
number of occurrences of each sample, 3D co-visibility among samples and
temporal occurrence frequency.

3. To handle wide baseline matching, our solution is to continuously update
the model description to adapt it to its on-line appearance (Sec. 5).

In Section 2, an overview of the off-line and on-line stages is given. In the
following sections, the contributions outlined above are individually detailed.
After experimental evaluation, we give a conclusion.

2 Overview

Off-line Stage Firstly, SIFT features are detected from a set of training images
covering the object. Each view provides a set of features, Svi = {f1, . . . , fNi},
where vi is the view index. By tracking each feature over the entire set of views,
multi-view correspondences are created and input to a Structure from Motion
algorithm. The output is a 3D point cloud M. Each point in M is augmented
to take the form of the following 3D feature descriptor

X = {(x, y, z),F ,V, lf}, (1)

where (x, y, z) are the 3D coordinates of the point; F = {f1, f2, . . . , fn} is the
set of 2D feature descriptors located at the 2D positions to which the 3D point
projects; V = {v1, v2, . . . , vn} is the set of view indices where the 2D feature is
visible. lf is the index of the last frame where the 3D feature was detected as inlier
during on-line operation; it is initially set to 0. Since 3D feature descriptors are
highly redundant in case of long tracks, the point cloud appearance is compressed
by using mean-shift clustering in the high-dimensional feature space. The 3D
descriptor X now takes the following compressed form

X = {(x, y, z), f̃ ,V, lf}, (2)

where f̃ is the cluster representative.

On-line Stage Once the model database is assembled, 3D object recogni-
tion can be performed. For each frame t, image features are first detected and
clustered on the basis of their location in the image. Each cluster is then verified
for the presence of multiple instances of the same object, and possibly split in
further clusters (Sec. 3). Then, for each database model Mj , correspondences
between its 3D descriptors and each cluster are established by applying SIFT
matching. An inverse matching approach, i.e., the model is matched against the
cluster, is adopted. Once 3D-2D matches are obtained, pose estimation is per-
formed with our novel Multi-Prioritized RANSAC approach (Sec. 4). In case of
detection, the model appearance is updated by using the information recovered
in the last frames (Sec. 5).
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3 Spatial Feature Clustering

Using inverse matching against the whole set of image features S is disadvant-
ageous as many false matches arise due to the low inlier ratio. Furthermore, when
this strategy is used, multiple instances of the same object interfere with each
other’s recognition, preventing the system to detect some or even any instance.

The solution we propose is to cluster the image features before matching.
Since features tend to naturally group over objects, individual objects can be
isolated before matching. We use mean-shift clustering as there is no information
on how many objects are in the scene. Therefore, S is spatially split into several
clusters S1, . . . , Sq. Thereby, the inlier ratio increases for the clusters containing
target objects, and decreases otherwise. If several instances of the same object are
spatially distant in the scene, they are effectively assigned to different clusters.

Nevertheless two drawbacks exist. Firstly, different objects can belong to the
same cluster. In this case, the cluster is reconsidered for matching if the number
of inliers is too small. Secondly, multiple instances that are spatially close in
the image can belong to the same cluster. Our contribution treats the latter as
follows.

3.1 Intra-cluster Detection of Multiple Instances

If multiple instances of the same object are grouped together, matching the
model against that cluster fails. We propose to detect the instances by treating
them as different views of the same object under epipolar geometry constraints.

For each feature, multiple correspondences within the same cluster are cre-
ated by thresholding on their normalized scalar product. Each match shall
identify two instances of the object. Let the matches set be X = {mi}Ni=1 where
mi = (mi1 ,mi2). Given a set of putative hypothesis F1, . . . ,FM , where Fj is a
fundamental matrix, we define a residual vector for each match and hypothesis
as

ri =
[
ri1 r

i
2 . . . r

i
M

]
, where rij = mT

i1Fjmi2 and i = 1, . . . , N. (3)

Let r̃i be ri sorted in ascending order, it is possible to rank the M hypothesis
according to the preference of each match, as described by [3]. Inliers for the same
pair of instances are likely to share many common hypotheses at the top of their
sorted residual vectors. To quantify the similarity between correspondences, the
following measure is used

w(mi,mj) =
1

h
[r̃i1:h ∩ r̃j1:h], (4)

where w is the normalized number of hypotheses shared in the first h positions.
To choose a minimal subset of size n, the first sample s1 is randomly selected.
Then, to select the k-th sample, the remaining samples are first weighted as
follows,

wk(mp) =

k−1∏
i=1

w(mp, si), where k = 2, . . . , n. (5)
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Then, the k-th sample is chosen according to Pk(mp) > Pk(mq) if wk(mp) >
wk(mq), where Pk(mp) is the probability of mp being selected as the k-th sample.
Each minimal subset feeds a RANSAC loop and the inlier set is retained if the
consensus is large enough.

As a result, the multiple instances can now be isolated by splitting the fea-
ture cluster. K-means clustering is used here because the number of instances,
provided by the number of inlier sets without repetition, is now known.

4 Object Recognition and Pose Estimation

Once feature clusters are established, object recognition and pose estimation can
be performed. Firstly, the 3D descriptors of the model are matched against each
feature cluster to produce a set of 3D-2D matches (Xi,xi). A projection matrix
P̃ is computed in order to minimize the sum of the reprojection errors between
the 3D points {Xi} and the 2D points {xi} in the image. Due to the presence of
outliers among the putative matches, a robust approach as RANSAC is needed.
However, in the basic RANSAC, hypotheses are generated from a minimal subset
of randomly selected samples. No additional information regarding the import-
ance of each sample and the relations among the samples is taken into account.
We show that exploiting additional information can be highly beneficial.

4.1 Multi-Prioritized RANSAC

As a second contribution, we propose to exploit the information contained in our
3D feature descriptor to drive the minimal subset selection. Firstly, each sample
s = (X,x), i.e., a 3D-2D match, receives a weight w1 based on the number of
training views n in which the 3D descriptor was visible,

w1(s) = n. (6)

The motivation is that 3D descriptors appearing in many views represent more
reliable information on the object appearance.

Secondly, geometrical inconsistency can affect the sample subset if the selec-
ted samples belong to 3D points that are not simultaneously visible. This can
occur if objects have similar patterns on opposite sides. To avoid this, after the
first sample s1 is chosen, each remaining sample si is further weighted as follows

w2(si, s1) =
|V1
⋂
Vi|

|Vi|
, (7)

where the numerator is the number of views shared by the current sample and
the first sample, and the denominator is its total number of views. In other
words, the co-visibility consistency of the samples is examined, assigning a null
weight to samples that do not share any view in common with the first one.

A third weight is given by considering the temporal distance between the
current frame t and the last frame lf where the 3D descriptor was an inlier,
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w3(t, s) =
1

t− lf
. (8)

Selecting samples which were inliers in frames close in time to the current one
shall increase the inlier ratio of the minimal subset. Thus, minimal sampling is
guided by the probability P (s) ∝ w(s), where w = w1w2w3, i.e.,

w(si) ≥ w(sj)⇒ P (si) ≥ P (sj). (9)

Given the minimal subset, a pose estimation via EPnP [13] and an eventual
non-linear minimization is performed in a sample-and-test framework to estimate
the pose P̃ that best fits the matches. In Table 1, each weight is evaluated in
terms of the average number of iterations needed to find, for the first time, at
least 75% of the inliers and it is averaged over 1000 runs per frame on a sample
sequence. Whereas in [11] only w2 is used, we prove that w1 is a stronger cue
and their combination exceeds both. The best performance is obtained by far
with the complete guided sampling, reducing the number of iterations by up to
ten times as the inlier ratio decreases. Thus, our method is highly beneficial in
applications where the permitted number of iterations is small.

Table 1. Mean and std. deviation of the number of iterations for several inlier ratios.

Inlier ratio No weight w1 w2 w1w2 w1w2w3

60% 39.9 ± 40.6 9.8 ± 9.8 11.9 ± 13.9 6.2 ± 6.77 5.8± 6.2
50% 110.5 ± 113.3 19.2 ± 21.0 28.3 ± 30.4 12.9 ± 13.5 9.4± 12.6
40% 309.0 ± 286.7 46.7 ± 53.9 89.4 ± 101.4 28.3 ± 30.2 17.4± 19.9
30% 627.4 ± 515.0 113.2 ± 128.9 272.6 ± 276.7 71.5 ± 71.5 19.0± 27.6
20% 1428.5 ± 1294.6 411.4 ± 395.2 1047.7± 899.8 302.0 ± 317.9 29.1± 56.1

5 Model Updating

To improve recognition performance, our solution is a model updating step where
its description is adapted to the current appearance. Given a successful detec-
tion, all the inliers mi = (Xi,xi) are considered. Each 2D feature xi is added
to the descriptor set Fi of Xi. Then, each descriptor set is clustered as in the
off-line stage, considering both the training view descriptors and the 2D fea-
tures collected within the last k frames. By retaining the training views, drift is
avoided.

The motivation for this contribution is twofold. Firstly, detection success is
dependent on the current object pose as SIFT features are not perspectively in-
variant. Invariance is indeed rather limited, as its repeatability drops under 80%
for an angular difference greater than 20◦[15]. Therefore, object detection fails
in case of wide baseline matching. Secondly, by updating the model description
the model size remains constant, and it is more efficient than the brute force ap-
proach of adding features recovered from synthetic views [12,11]. In the latter,
the increase in size and the many wrong matches generated by synthetic views
having similar appearance, respectively, need additional countermeasures.
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6 Experimental Results

3D object databases are usually composed by small objects on monotone back-
ground [9]. When challenging situations are envisaged [11], only recognition
methods for still images can be tested. Since our system is designed for videos,
we created several 200-frame-long sequences to evaluate the performance of our
method. To raise the bar, we assembled a database of 10 household objects,
comprising complex items like shoes or toy planes, reflection-prone objects like
cups and objects with repetitive structures like milk boxes. The database and
the sequences are available at [1]. The experiments focus first on the recogni-
tion of a single object in terms of pose accuracy and stability, and then on the
recognition of multiple objects and multiple instances of the same object.

6.1 Pose Accuracy and Stability

For each object, we created three frame sequences by freely moving a calibrated
camera around the object in challenging scenarios, envisaging occlusion, clutter
and a combination of both. Four systems are compared in their performance: the
paradigm system proposed in [10] (G&L), where only image-to-model matching
and RANSAC is employed, and our system by sequentially adding spatial feature
clustering (S.C.), Multi-Prioritized RANSAC (MP-R), and model updating.

The quantitative evaluation is given in terms of the Jaccard index:

J =
A ∩Agt

A ∪Agt
, (10)

where Agt is the ground-truth area in the current frame and A is the area of the
hull determined by the 3D descriptors re-projected with the recovered pose. We
avoided using the mean reprojection error as it can be non-meaningful. Firstly,
because arbitrarily small errors can be obtained in RANSAC-like frameworks
by tuning the reprojection error and the inlier thresholds. Secondly, because
it is not robust to inconsistent poses due to ambiguous configurations. Tab. 2
shows the mean value and the standard deviation of the Jaccard index, as µ±σ,
evaluated over the 200 frames of each sequence. The mean value µ is considered
as a measure for pose accuracy and the standard deviation σ for pose stability.

With respect to the state of the art, the combination of feature clustering
and MP-RANSAC improves pose accuracy by 20% in terms of correct over-
lapping. Furthermore, it allows for successful detections over all frames, where
the standard method fails in the more complex ”Clutter+Occlusion” scenario.
Updating the model provides improvement to pose accuracy mostly in the “Clut-
ter+Occlusion” scenario. But its real benefit comes into play for stability, as it
is increased by a factor of 2 in all scenarios. To show how pose stability benefits
from updating the model, J is shown in Fig. 2 on a frame-by-frame basis for the
object “Hexa Tea” in the “Occlusion” scenario. While pose accuracy is slightly
improved, pose stability is significantly increased. A comprehensive set of sample
pictures regarding the experiments is given in the supplemental material.
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Table 2. J as µ± σ in the “Occlusion”, “Clutter”, “Occlusion+Clutter” scenarios

Object G & L Spat. Clust. S.C. + MP-RANSAC S.C. + MP-R + Updating

Hexa Tea 0.47 ± 0.15 0.63 ± 0.15 0.87 ± 0.13 0.93± 0.02
Cube Tea 0.68 ± 0.19 0.81 ± 0.12 0.91 ± 0.10 0.93± 0.03
Coffee 0.73 ± 0.19 0.86 ± 0.09 0.95± 0.02 0.95± 0.02
Flower Cup 0.67 ± 0.18 0.75 ± 0.16 0.78 ± 0.11 0.87± 0.06
Bear Cup 0.74 ± 0.21 0.76 ± 0.14 0.88 ± 0.07 0.94± 0.03
City Cup 0.66 ± 0.21 0.79 ± 0.13 0.94 ± 0.05 0.97± 0.02
Toy Plane 0.47 ± 0.16 0.67 ± 0.19 0.70 ± 0.16 0.83± 0.08
Milk 0.63 ± 0.17 0.69 ± 0.16 0.79 ± 0.18 0.87± 0.09
Calippo 0.52 ± 0.19 0.63 ± 0.21 0.75 ± 0.18 0.85± 0.14
Slipper 0.75 ± 0.16 0.78 ± 0.13 0.86 ± 0.11 0.90± 0.04

Average 0.63 ± 0.18 0.74 ± 0.15 0.84 ± 0.11 0.90± 0.05

Object G & L Spat. Clust. S.C. + MP-RANSAC S.C. + MP-R + Updating

Hexa Tea 0.61 ± 0.23 0.72 ± 0.15 0.92 ± 0.04 0.93± 0.02
Cube Tea 0.79 ± 0.16 0.83 ± 0.13 0.87 ± 0.12 0.92± 0.05
Coffee 0.53 ± 0.25 0.64 ± 0.19 0.83 ± 0.19 0.91± 0.03
Flower Cup 0.63 ± 0.18 0.69 ± 0.14 0.80 ± 0.14 0.87± 0.06
Bear Cup 0.62 ± 0.35 0.71 ± 0.25 0.88 ± 0.13 0.93± 0.03
City Cup 0.64 ± 0.27 0.79 ± 0.16 0.90 ± 0.11 0.95± 0.04
Toy Plane 0.58 ± 0.14 0.55 ± 0.18 0.62 ± 0.21 0.79± 0.12
Milk 0.67 ± 0.24 0.70 ± 0.19 0.88 ± 0.16 0.90± 0.08
Calippo 0.59 ± 0.29 0.77 ± 0.11 0.85 ± 0.06 0.90± 0.04
Slipper 0.72 ± 0.20 0.76 ± 0.17 0.90 ± 0.06 0.92± 0.03

Average 0.58 ± 0.23 0.72 ± 0.17 0.84 ± 0.12 0.90± 0.05

Object G & L Spat. Clust. S.C. + MP-RANSAC S.C. + MP-R + Updating

Hexa Tea // // 0.57 ± 0.29 0.91± 0.08
Cube Tea // 0.47 ± 0.35 0.70 ± 0.26 0.91± 0.15
Coffee // 0.65 ± 0.21 0.83 ± 0.16 0.87± 0.12
Flower Cup // 0.58 ± 0.23 0.78 ± 0.13 0.81± 0.06
Bear Cup // 0.61 ± 0.35 0.78 ± 0.26 0.89± 0.09
City Cup // 0.53 ± 0.27 0.77 ± 0.22 0.89± 0.07
Toy Plane // // 0.58 ± 0.18 0.76± 0.10
Milk // 0.51 ± 0.31 0.70 ± 0.22 0.84± 0.13
Calippo // 0.55 ± 0.27 0.77 ± 0.17 0.88± 0.06
Slipper // 0.74 ± 0.21 0.87 ± 0.16 0.91± 0.10

Average // 0.58 ± 0.28 0.73 ± 0.18 0.87± 0.09
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Figure 2. Frame-by-frame plot of J showing the stability improvement given by the
model updating. (Figure best viewed in color)

6.2 Multiple Object Recognition

To test the performance of our system in recognizing multiple objects and mul-
tiple instances of the same object, we have created two different sequences. A cal-
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ibrated camera moves freely in two scenarios: multiple objects with and without
repetition. To evaluate the performance of our system, a recognition is deemed
valid if J > 0.5, as proposed in [19]. In the first scenario, five different objects
are present in the scene, while the second scenario envisages four instances of the
same object and two other objects. The performance of our system is shown in
Fig. 3 with respect to the ground truth. Sample frames are given in Fig. 4, while
a more comprehensive set of sample pictures is given in the supplemental mater-
ial. The performance regarding false positive and false negatives is remarkable,
as no false negatives and very few false positives were found in both sequences.
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Figure 3. Multiple Objects (left): Our system is able to detect all the objects in the
scene in 169/200 frames. Multiple Instances (right): All objects are detected in 135/200
frames. Missed detections are due to heavy blur and occlusion.

Figure 4. Three frames of the multiple objects (top) and of the multiple instances
sequence (bottom). Objects are correctly recognized even in case of heavy clutter and
occlusions. (Figure best viewed in color)

7 Conclusions

We showed that for feature-based methods clustering the features before match-
ing makes the system robust in case of multiple patterns. Additionally, multiple
object instances belonging to the same cluster can be detected and separated
by ordering the features on the basis of their consistency to motion hypotheses.
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We also proved that our usage of off- and on-line cues for guided sampling, like
feature repeatability and temporal occurrence, is highly beneficial for applica-
tions with temporal constraints, as it drastically reduces the number of iterations
needed to find a consistent pose. In addition, we showed that combining these
two techniques and model updating improves the performance in terms of pose
accuracy, from 60% to 90% overlap, and stability, by a factor of two. As a conclu-
sion, by testing our method in challenging sequences [1], we proved that object
recognition and pose estimation, irrespectively of the number of objects or object
instances present in the scene, is significantly improved by our contribution.
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