ANALYSIS OF CODING TOOLS AND IMPROVEMENT **OF TEXT READABILITY FOR SCREEN CONTENT**

Holger Meuel

Julia Schmidt

Marco Munderloh

Jörn Ostermann

Coding of Text in Video Coding

- Neglection of high frequencies in state-of-the-art video coding
- Lots of high frequencies contained in text
- Therefore degradation of text

Properties of Screen Content (SC)

Application scenarios

- Office applications (e.g. text/spreadsheet processing)
- Text insertions into natural video (news tickers etc.)
- Streaming services, online gaming, video conferencing

Properties of letters and symbols

- Sharp edges introduced by letters and symbols
- Translational movement during scrolling and window movement

Ref.= Ref.= Ref.=1 Ref.=3

Existing Coding Tools in AVC & their Appropriateness for Screen Content Coding (SCC)

 Data rate ratios I/P & I/B: for natural video: 20–1000 (I/P), 50–2000 (I/B) for screen content: 500–10000 (I/P), 500–100000 (I/B) Smaller movement in sequence higher ratio 	50 45 80 40
 Distance of Ref. Frames: SC sequences typically contain very slow movements Spreading reference slices over time as wide as possible is beneficial for high coding efficiency 	30 25 10
 Hierarch. B slices: Little difference between frames for slowly changing content No additional information in hierarchical B slices Recommendation to dismiss reference B Slices for SCC 	Coding 55
 Number of B slices: Larger temporal distance between reference slices Increasing of residuals of P slices Optimal results with 3 B Slices Disable B slices completely for small movements 	80 45 40 35 30
 Adaptive Quantisation Parameters (QPs): QP changes are expensive Fixed QP coding often better 	Coding

Resolution of Motion Vectors (MV): Same as for natural video

- Spatial and Temporal Direct Mode (DM):
- Use of Spatial/Temporal Direct Mode stays same in SC/camera captured sequences 95–98% of DM coded blocks are better coded spatially

Improvement of Text Readability

- Requirements for text detection in SCC:
 - Runtime efficient separation of text/background
 - ► High detection rate → Canny Edge Detector No adequate quality evaluation possible for SCC
 - with PSNR (>45dB)
 Subjective evaluation

Institut für

Informationsverarbeitung

- Advantage: Usage of standard coder with externally provided QP map
- Experimental results on the right

Block diagram of the coding concept

Transform based coding of text content (left: lossy, right: lossless)

Three Laws of Robotics

From Wildenia the free encodopedia

The Time Laws of Robotics (often snortened to The Three Laws or Three Laws) are a set of rules devised although they water functional in a few safet atoma. The Three Laws are:

) 500 Data rate in kbit/s erformance for different number of reference slices (RD)

1500 Data rate in kbit/s performance for different numbers of B slices (RD diagram)