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Abstract. We present a feature-based surveillance pipeline which, in
contrast to traditional image-based methods, allows to learn a detailed
description of the observed background as well as of foreground objects.
The pipeline consists of motion segmentation of feature trajectories and
subsequent tracking-by-recognition with updates. Furthermore, 3D ob-
ject representations are learned in order to extract the 3D object pose
of a later object recognition. Finally, we show how such sufficiently re-
liable information is inputted into a reasoning system comparing actual
and nominal condition of an airport apron. By this, automatic situation
assessment becomes possible in a manageable and reliable way.

1 Introduction

Video surveillance is a field in which manual interpretation of camera images
dominates. Although it is known that the human assessment of video material
is a fatiguing task with a short attention span of approximately 20 minutes [19],
computer assistance for operators is still at a very basic level: The usual assis-
tance is activity detection and convenient access to video material of multiple
cameras and time instances. Even though there are continuous advances in this
field, most approaches still suffer from high false positive rates or they are very
specific to certain setups, e.g. abandoned bag detection [2] or traffic analysis [6].
Furthermore, recent advances in object tracking, crowd analysis, face recogni-
tion, and unusual event detection are not integrated into commercial systems
since they are too complex to handle or compute, or since their output is too
noisy for an automatic situation assessment.

Summing up, computer vision approaches in surveillance allow remarkably-
well results in certain disciplines, but the high-level classification “is everything
alright?” has not been tackled yet. Besides the problem of imprecise knowledge
about the actual condition of the scene, the nominal condition (the background
knowledge) is also not present. This is crucial for detecting unusual events and
surveillance in general, since critical events cannot be trained by example.
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Fig. 1: System overview for a feature-based situation analysis system. For sim-
plicity, the 3D tracking-by-recognition pipeline of only one camera is displayed.
In a complete system, multiple tracking-by-recognition systems from different
cameras are connected to one inference system.

In this paper we propose a solution to both problems. As displayed in Fig-
ure 1, we extract scene knowledge by the tracking by recognition approach. Since
such a feature-based surveillance system is sufficiently reliable, we can use its
output as facts in a reasoning system. Here, the actual condition is compared
with a nominal condition. If both states differ in a critical way, a warning is
generated in order to steer the operator’s attention. Such reasoning systems are
widely used in medical applications and are thus manageable and reliable at the
same time.

Our approach targets the automatic situation assessment for event-based
video surveillance (ASEV) on airport aprons. However, since the methods used
are quite general, they can be transferred easily to other scenarios. In the apron
scenario, the conflict between privacy and safety is very high since ramp staff
is monitored all the time and safety concerns are big. Since the whole approach
can be applied without knowing the original images, we believe that privacy as
well as safety can be enhanced.

This paper is organized as follows: In Section 2, we show how the image-based
pipeline in object tracking can be replaced by a feature-based which enables
learning object features by motion segmentation. By this, tracking by recognition
can be used which is very robust and allows to deal with long-time occlusions. In
Section 3, we show that on top of this, the 3D feature point cloud of an object can
be learned, which is used for 3D tracking by recognition. In Section 4, we describe
our reasoning system. In Section 5, we demonstrate how to create background
masks for privacy protection and to direct the attention of the operators. Finally,
a conclusion is given in Section 6.
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2 Feature-based vs. Image-based Surveillance

2.1 Image-based Surveillance

Traditional image-based approaches reason on a stream of camera images It(x),
where x is a coordinate of a pixel in image It which may contain intensity, color,
and depth information. To detect and track objects in a scene, the change in
multiple images It is analyzed. A comprehensive survey can be found in [31]. In
surveillance scenarios, two approaches are commonly used: background removal
and optical flow.

In background removal, a binary foreground mask F (x) is defined for every
x by learning the probabilistic distribution pb of the background

F (x) =

{
1 pb(I(x)|x) < τi

0 otherwise .
(1)

In early approaches [41], pb was modeled by a pixel-wise GaussianN (µ(x), C(x))
containing the two parameters standard deviation µ(x), which denotes an av-
erage background image, and variance, or covariance matrix respectively, C(x),
which describes the variability of pixel x over time. More recent approaches use
multivariate Gaussian distributions [39], non-linear colorspaces [34], and hier-
archical modeling instead of pixel-wise [10]. In a post-processing step, obvious
errors in F like very small or very elongated objects are deleted. Furthermore,
special methods for shadow and reflection handling like [37] are applied. Since
the background model itself is learned and updated using F , drifting occurs if
the background is hidden by foreground objects for a long time or if foreground
is falsely classified as background3. An example for this is if a foreground ob-
ject is looking similar to the background (cf. Figure 2). On the other side, if
the background is classified as foreground, it is not updated and the modeling
becomes worse (cf. Figure 3). The main idea to circumvent this is to learn the
background model from long time spans (one day or more) which has a very
high computational complexity and which is not responsive if the background
changes. In terms of artificial intelligence, the approaches suffer from the adap-
tivity vs. plasticity dilemma [8].

Optical flow approaches analyze the spatial difference between two consecu-
tive images It−1 and It, to find the discrete displacement field D(x) by

arg min
D
‖It−1(x)− It(x−D(x))‖2 . (2)

3 These approaches are recursive as the learning is performed on previous classifica-
tions. There also exist non-recursive background models which estimate pb on the
basis of Nt previous images, e.g. by computing the pixel-wise median [7]. Such ap-
proaches are not taken into account since Nt must be much larger than the amount
of frames a foreground object may rest still. By this, the computational complexity
becomes too high and the model looses responsiveness since an update would take
Nt frames.
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Fig. 2: Background removal using a multivariate background probability. Dis-
played are input image It, the average background µ, and the foreground mask
F . It can be observed, that the shirt of the left person is only partially detected
as foreground since it looks similar to the background. Furthermore, shadows on
the floor are detected as foreground.

(a) Original view at time t0. (b) Illumination changes
and reflections at t0 + 10s.

(c) Foreground from the
background model of (b).

Fig. 3: Diverged Gaussian mixture background model caused by illumination
changing faster than the model adapted.

By assuming a static camera, the foreground F can be found from D by

F (x) =

{
1 ‖D(x)‖ > τf

0 otherwise .
(3)

However, determining the optical flow in (2) is complex and since foreground
objects do not necessarily move (e.g. a car waiting before traffic lights), this
method can only be used as a prior for (1).

To recapitulate: In image-based methods only the background is described,
as, in contrast to the foreground, it can be learned over a long time. However, the
performance of the various approaches is still not sufficient for many real-world
applications and high gains are still to be achieved [30]. A stable prior for motion
segmentation is the optical flow which is very complex even for two consecutive
images, but for reliable detection motion has to be analyzed over longer time
spans. In the following section we propose to adapt the methods of image-based
surveillance to feature-based. This has the advantage, that background as well
as foreground can be learned and that motion can be analyzed over longer time
spans.
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Fig. 4: A feature-camera (blue frame) captures images, computes local features
and only exports the features.

2.2 Tracking in Feature-based Surveillance

In the past decade, the combination of interest point detectors like SIFT [24]
and Harris-affine [26] with local descriptor like SIFT, GLOH [27] and MSER
[25] has been successfully applied in a high number of computer vision prob-
lems. The main reason for that is the fact, that establishing local image corre-
spondences, which is one of the main computer vision problems, can be solved
by inexpensive descriptor matching. Since local image descriptors are used to
establish correspondences, such feature-based approaches are able to cope with
partial occlusions and clutter. The descriptors are intentionally built such that
changes in illumination as well as scaling and rotation of the image plane leaves
them mostly unchanged. Thus, the main problem in modeling, namely that the
background changes due to illumination, is suppressed up to a high degree when
using local image descriptors. This can be observed in Figure 5, in which the illu-
mination changes, which caused a background model to diverge in Figure 3, are
still acceptable in order to establish correspondences between the two images.
This gives hope that we can describe the background by means of features.

In the case of video surveillance, privacy protection plays an important role.
Since for feature-based methods no original image data is needed, a feature cam-
era could be used. As depicted in Figure 4, the features are extracted inside the
camera such that no image data leaves the camera. By this, unauthorized access
to the camera images becomes by far harder4.

2.3 Learning Object Features by Motion Segmentation

In this section we demonstrate that by using local features, the background can
be described even if the camera moves. Furthermore, we can also describe fore-
ground objects and by this learn their local features. In contrast to image-based
modeling, our feature-based approach distinguishes objects by their motions,
not their appearance. Thus, we extract the foreground by motion segmentation
instead of building a pixel-wise foreground mask.

4 Recently, methods to reconstruct images from local image features were proposed
[40]. By this, the global scene layout could be recovered remarkably well. However,
details cannot be not recovered with this method since they are mainly hallucinated.
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Fig. 5: SIFT correspondences (top), and complementary NF feature [11] corre-
spondences (bottom) between the views in Figures 3(a) and (b) which caused
the image-based background model to diverge. From the point-of-view of illumi-
nation invariant features, the images are similar since the correspondences cover
wide areas.

In the field of motion segmentation, feature trajectories Ti are clustered into
groups of common motion. In the surveillance context, the camera is far from
the object. By this, motion groups correspond to objects with different motions
and motion segmentation becomes equivalent to object segmentation (cf. Fig-
ure 6). Motion segmentation approaches can be differentiated into subspace- and
affinity-based approaches. Subspace-based approaches like [9, 12, 13, 42] assume
complete trajectories Ti which are inserted into a data matrix W . Since rigid
object trajectories form linear subspaces in W , different object motions can be
segmented by analysis of these subspaces. However, since we cannot provide com-
plete data, we use an affinity-based approach like [5, 17]. Here, the square affinity
matrix A is computed which consists of pair-wise affinity measures ai,j between
trajectories Ti and Tj . In these measures, the spatial distance between Ti and
Tj as well as their similarity in motion is included. In a final spectral clustering
[28] step, the association of the trajectories to motion clusters is found.



Feature-Based Situation Assessment 7

(a) Foreground object (b) Background

Fig. 6: Motion segmentation of SIFT features. Although the airplane performs
a turning operation in which perspective effects are non-negligible, motion seg-
mentation corresponds to object segmentation.

Motion segmentation is applied to trajectories found from subsequent feature
correspondences. In order to achieve longer trajectories, we apply the trajectory
repair idea from [38]. The problem is computationally tractable since only a win-
dow over a time range sufficient for motion segmentation needs to be analyzed,
here 5 s. Furthermore, the here-used independently-detected features allow sat-
isfactory results when matching over a time span of 0.5 s, which is much longer
than tracked features like KLT [36]. Thus, we analyze windows of N = 10 frames
taken at 2 Hz. By this, we can reliably segment motion if it is noticeably fast
during the given window size and if the motion consists of enough features.
The first constraint could be weakened by enlarging the window size. Regard-
ing the second constraint, we deal with this by using high image resolution (up
to 1.5 Mpel) or by using pan-tilt-zoom (PTZ) cameras scanning the scene with
high zoom until they detect motion. To our experience, objects need to own
approximately 10 to 15 detected features in order to reliably get detected (cf.
Figure 7).

Motion segmentation extracts sets of local features Mi(t), corresponding
to different motions i at frame t. We store these sets in the object feature
database O = {M1(t1),M2(t1), . . . ,M1(t2), . . .} in order to compare the fea-
tures with later input data. In contrast to image-based approaches, the back-
ground is treated as a regular object. As demonstrated in Figure 8, this allows
using non-static cameras like PTZ cameras performing camera motion in the
analyzed frames. Since the objects are described by their features and their ge-
ometric alignment, illumination changes as well as shadows and reflections do
not pose major problems.
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Fig. 7: Motion segmentation of small objects. Compared to the image resolution
of 1440×1080 pel2, the objects are quite small with approximately 110×70 pel2

(left) and 100 × 100 pel2 (right). Similarly, the number of features (18 and 15,
respectively) is only a fraction of the global scene (966 and 891, respectively).

Fig. 8: Motion segmentation under panning and tilting. The four images are taken
during a time span of 2 s. As it can be observed, that although the segmented
airplane is moving slowly compared to the panning, it is segmented correctly.
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Fig. 9: Four views automatically learned from motion-segmented feature trajec-
tories of the foreground object in Figure 6(a).

3 3D Object Learning and Recognition

The results of motion segmentation as described in Section 2.3 could be used
for multiple instance learning (cf. Figure 9). However for critical applications
such as airport surveillance, 2D object recognition is usually not sufficient for a
fully-informed operation as it merely permits to find the 2D camera coordinates
of the object location. In contrast, 3D tracking allows to recover complete 3D
information, such as object location, pose and motion direction, expressing them
with respect to a world coordinate frame. In these coordinates, safety rules of
an airport apron can easily be expressed (cf. Section 4), e.g. the rule “only the
scheduled airplanes may enter the taxi ways”.

One of the possible choices for the detection and tracking framework is the
model-based approach pioneered in [18, 32], where SIFT features [24] are used to
reconstruct in an off-line fashion a 3D point cloud representing the target object.
Once the model database has been assembled, on-line recognition and tracking
can be performed by establishing putative correspondences between 3D model
and current frame features and then estimating the 3D object pose.
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M
Z = (X,F)

v1 v2 v3

X

f1 f2 f3 Appearance
Information

Fig. 10: 3D feature Z built from views v1, v2, and v3. The 3D descriptor F is
established from the corresponding 2D descriptors f1, f2, and f3, respectively.

3.1 3D Object Learning

The tracking-by-recognition approach requires first to build a set of 3D object
models in an off-line stage. Here we start from a set of training views which are
automatically found from motion-segmented trajectories Ti = (xi,1, . . . ,xi,n)
(cf. Section 2.3 and Figure 6). So like in similar approaches [3, 20, 21, 23, 29], we
detect and track SIFT features over visually close training views. The trajectories
are input to a Structure from Motion (SfM) algorithm that outputs a 3D point
cloud that represents the object structure. The feature descriptors fi,j , observed
at the respective 2D positions xi,j to which a corresponding 3D pointXi projects,
are provided together with the 3D point coordinates. By doing so, it is possible
to implement a 3D-2D feature matching at the recognition and tracking stage.

Since the set of descriptors can be highly redundant, particularly in case of
long tracks, many of the above methods employ a feature quantization step.
In [20], a hierarchical quantization is used for preserving matching ambiguities
until the pose estimation step, where incoherent matches are dropped. Feature
quantization can also be motivated by dimensionality reduction, as the 3D model
size is usually too large to keep the system operating in real-time. This approach
is shared by [3] and [21], where feature quantization is applied for outdoor scene
reconstruction and image registration, respectively.

In order to form a 3D feature Z, for each 3D point X we compute a 3D
feature descriptor F containing appearance information from multiple views by
applying a high-dimensional mean-shift clustering to the set of corresponding
features:

Z = (X,F). (4)

In Figure 10, an example of building of a 3D feature Z is shown. In this case, F
contains the matching 2D descriptors f1,f2,f3 from views v1,v2,v3.
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3.2 3D Object Recognition

Once the model database has been assembled, the general on-line operation
envisages the creation of 2D-3D correspondences between frame features and
model features, and the estimation of the pose by solving the projection problem.

A set of features is extracted in each frame and it is matched against the
model feature set by using one of the following matching strategies. The most
straightforward approach is to match the entire set of detected features against
the model feature set by using a matching strategy based on the second-nearest-
neighbor (2nn) distance ratio, as proposed by [24]. That is, a match (f,fnn)
between a feature f and its nearest-neighbor feature fnn is considered to be
correct if

d(f,fnn) < d(f,f2nn) · τ, (5)

where d(·,·) is an appropriate distance metric, f2nn is the second nearest neighbor
for f in the d(·,·) metric, and τ is a threshold, given as 0.7 in the original
paper [24]. Since the 2nn distance ratio strategy was conceived in order to reject
false matches due to background clutter, it may remove many true positives
if repetitive patterns or texture symmetries occur on the object surface. In [20]
countermeasures are proposed based on dropping the 2nn strategy and employing
hierarchical feature quantization and pose estimation constraints. Matches are
created by thresholding their normalized cross correlation and stored along with
their 3D location. Potentially spatial incoherent matches are kept until a pose
estimation step, where geometric constraints will single out the true matches
and discard the others. On the contrary, the 2nn approach can be maintained
if difficult feature arrangements are handled by spatially clustering the original
image feature set, e.g., by using mean shift clustering. Since features tend to
cluster over the object surface, individual objects can be isolated before the
matching step and thus, ambiguities can be avoided.5 A visual example of the
usefulness of spatial feature clustering is given in Figure 11.

Once feature clusters are established, object recognition and pose estima-
tion is performed on the clusters, as represented in the block diagram given in
Figure 12. Attention has to be payed as clustering may split or merge objects,
visible in Figure 11.

After the matching, putative correspondences are established. Given a set of
N 2D-3D correspondences (xi,Xi), a projection matrix P is to be computed
such that

P = arg min
P̃

N∑
i=1

D(xi, P̃Xi)
2 . (6)

Thus, P minimizes the sum of the squared re-projection errors D over all cor-
respondences. Since the putative matches set contains outliers, a statistically
robust approach is typically used in order to estimate the mathematical model

5 Of course the motion segmentation methods from Section 2.3 could be applied here,
too. However this clustering method only works if an object is currently moving.
Thus, the tracking-by-recognition paradigm would be dismissed.
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Fig. 11: By spatial feature clustering, the objects in the scene are segmented into
five different clusters. This increases the inlier-outlier ratio for each cluster, and
permits to avoid mismatches due to objects having a similar appearance, as in
the case of the three airplanes.

underlying the samples. One of the most used algorithms is Random Sample
Consensus (RANSAC) [14], in which a minimal subset of samples is iteratively
used to estimate the model parameters, and the rest of the samples ranks the
model consensus and can eventually be used to refine the parameters themselves.

If the minimal subset is created by randomly selecting the samples, no ad-
ditional information regarding the importance of each sample and the relations
among the samples themselves is used. Several approaches have been proposed
in the literature in order to guide the RANSAC sampling by exploiting prop-
erties or constraints among the samples. E.g., in [20], a geometrical constraint
based on the co-visibility of the 3D points in the sample set is used. After the
first sample has been chosen, the part of the remaining samples that do not
share any common view in the training images is discarded. This concept can
be easily extended by giving the samples a weight-based priority computed from
additional 3D information. For each feature, we compute weights on the basis
on their frequency in the training images and of their co-visibility with other
samples. These weights guide RANSAC towards a better selection, thus improv-
ing the final robustness and accuracy of the estimated pose. [23] only exploits
feature priority in the matching step for the purpose of speeding up the process.
Instead of using all model features for matching, they propose to use a subset
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Spatial
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Feature
Matching

Pose Estimation
with

RANSAC

Fig. 12: On-line stage. SIFT features are detected and spatially clustered. Each
cluster is matched against a database object and its pose is estimated using
RANSAC. The model cloud is reprojected in orange to show the precision of the
estimated pose.

of features selected on the basis of priorities representing feature frequency and
co-frequency.

In Table 1, an overview of the contribution of the guided sampling in terms
of average iteration count for different inlier ratios is given until at least 75% of
the inliers are found. The results are averaged over 1000 runs per frame for a
short video sequence. It can be observed that our method is highly beneficial in
real-time applications where the permitted number of iterations is small.

Table 1: Mean and standard deviation of the number of iterations for different
inlier ratios.

Inlier ratio No weight Guided Sampling

60% 39.9± 40.6 5.8± 6.2
50% 110.5± 113.3 9.4± 12.6
40% 309.0± 286.7 17.4± 19.9
30% 627.4± 515.0 19.0± 27.6
20% 1428.5± 1294.6 29.1± 56.1

After the minimal subset is determined, a method for estimating the pose
P given in Eq. (6) that best fits the 2D-3D point pairs is used. This is called
the Perspective-n-Point (PnP) problem. The algorithms for estimating the pose
presented in the literature are countless, e.g., DLT, clamped DLT, POSIT, P4P,
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etc., and therefore the choice depends mainly on the complexity and time con-
straints given by the application considered. In case of real-time applications,
like the one at hand, the Enhanced PnP (EPnP) method is a very common
choice. It guarantees speed, as its complexity is only O(n), and accuracy at the
same time, as shown in detail in [22]. Finally, the estimated pose that holds the
maximum consensus among the entire set of correspondences is returned and
thus, the object is considered detected.

3.3 3D Object Tracking

Regarding object tracking, different strategies are typically presented in the lit-
erature, as, e.g., tracking-by-recognition. Advantages of the later method are the
absence of error drift and the fact that tracking failures do not affect successive
frames as each frame is treated separately.

However, the appearance between the object model and its current projec-
tion on the image plane may vary too much. This can be due to the fact that
the model was created off-line from a finite and small number of views and that
SIFT features do not offer enough invariance. Therefore, it proves to be a hard
problem if the object pose is far from the training images. In order to cope with
this, [20] and [21] have proposed adding synthetic features created by deforming
the training images in an affine way and extracting the features out of them. A
clear disadvantage of this approach is the increase in size of the model, which
can enlarge by more than one order of magnitude. Further, the distinctivity
is lowered. A possible alternative is to use a model updating stage, where the
model description is augmented after it has been detected. As a matter of fact, a
matching image descriptor provides a reasonable approximation of the appear-
ance of the same 3D point in the following frame. By this, the detection rate is
boosted without a loss in precision. Some further images showing the tracking
performance of our system are given in Figure 13.

4 Reasoning on Streams of Object Recognitions and
Detections

The aim of the ASEV (automatic situation assessment for event-based video
surveillance) system is to detect potentially safety-critical situations based on
the image analysis results. To achieve this goal, the detected status is continually
checked against safety rules, and violations are displayed as warnings to video
surveillance operators. This section explains the challenges involved into this
task, and how they were solved.

The reasoning component uses Semantic Web standards to represent the rel-
evant expert knowledge. The airport domain is modeled using the Web Ontology
Language (OWL Lite, [1]), including types and properties of objects found on the
airport ramp, in particular the different vehicle types (cf. Figure 14). Safety rules
cannot be expressed in OWL Lite, therefore this knowledge is captured as classi-
cal logical rules, represented in the Rule Interchange Format (RIF, [4]). Figure 15
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Fig. 13: Example of the 3D tracking of a toy plane. Different situations are pre-
sented: blank background, clutter and a combination of clutter and occlusion.
The model cloud is reprojected in orange to show the preciseness of the estimated
pose.
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shows as example a distance rule between moving planes and any other vehicle.
These static expert knowledge is taken from official safety procedures, e.g. [15],
from airport-internal guidelines, from work plans and flight schedules. During
runtime, the facts describing the current situation are added to the knowledge
base. These facts are generated by the object recognition algorithms described
in Section 3.

Fig. 14: Part of the airport ontology.

Usual reasoning systems rely on the assumption that the knowledge based is
rather static, while users pose a variety of queries over time. These systems are
optimized to index and preprocess the facts and rules such that any arbitrary
query can be processed efficiently. However, an update of the knowledge base
invalidates intermediate results and requires a complete recomputation [33]. For
the airport surveillance context, this assumption does not hold. New facts arrive
every second, while only one query is ever posed to the system, i.e., “is there
a safety critical situation?” In addition, the majority of incoming facts are not
new, but fact updates concerning the position, orientation, and speed of planes
and vehicles on the ramp. Therefore, existing reasoning engines could not be
used to process the incoming object detection event stream efficiently.

Instead, we implemented a novel reasoning system, based on the Rete al-
gorithm [16]. This algorithm works as follows: In an offline step, the domain
knowledge captured in rules is converted into a directed graph, consisting of two
types of nodes, α- and β-nodes. α-nodes represent conditions expressed in one of
the rules, and β-nodes join these conditions. The leafs of this graph are produc-
tions which generate additional facts derived through the rule network. Figure 16
shows a part of the Rete network for the distance rules from Figure 15. Arriving
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# Rule1: any vehicle with speed ¿ 0 is moving
If And( rdf:type(?v asev:Vehicle) asev:speed(?v ?s) numeric-greater-than(?s, 0.0) )
Then Assert( asev:moving(?v) )

# Rule2: any aircraft with active anti-collision beacon is moving
If And( rdf:type(?a asev:Aircraft) asev:hasBeacon(?a ?acb) asev:active(?acb ”true”) )
Then Assert( asev:moving(?a) )

# Rule3: create warning if vehicle distance to moving aircraft is too low
If And(

rdf:type(?a asev:Aircraft) asev:moving(?a)
rdf:type(?b asev:Vehicle) asev:distance(?d ?a ?b)
numeric-less-than(?d, asev:MinDistanceMoving) )

Then
Assert(rdf:type(?w asev:DistanceWarning))
Assert(rdfs:member(asev:warnings ?w))
Assert(asev:participant(?w ?a))
Assert(asev:participant(?w ?b))

Fig. 15: Distance rule between moving aircraft and vehicles, modeled in RIF.

type(?v, asev:Vehicle) 

Alpha-Network 

Alpha memory node 

greater-than(?s, 0.0) 

matches for  

Vehicle with speed > 0 

speed(?v, ?s) 

matches for 

Aircraft with active beacon 

join for rule2 

type(?v, asev:Aircraft) 

Beta join node 

Beta memory node 

moving(?v) 

Production node 

Facts 

join for rule3 

matches for 

Rule3 

Warning 

… 

… 

Fig. 16: Sample Rete network for distance rules from Figure 15.



18 Dragon, Fenzi, Siberski, Rosenhahn, Ostermann

facts are forwarded to all α-nodes, which act as filters (shown on the top right).
Matching facts are stored in the corresponding α memory nodes. For example,
the top α memory node maintains a list of all objects of type asev:Vehicle. If
a fact satisfies the constraint represented by an α-node, it is forwarded to all
β-nodes which rely on it. These nodes now perform a look-up in their β memory
to check if there is a join possible. For example, the leftmost β join node matches
objects which are vehicles and have a speed greater than 0. If a match could be
found, the result is forwarded to its successors. A successful join at a leaf node
triggers a production, which creates a derived fact. These facts are fed back into
the Rete-network to possibly derive further facts.

In the original Rete algorithm, nodes hold references to related facts. To
optimize this approach for fact updates, we introduce an additional reverse index,
which allows a lookup of all α- and β-nodes maintaining this fact in their memory.
When an update for a fact arrives, this enables very efficient updating of the
respective node memories, to take the new value into account.

The reasoning engine is connected to the video analysis component via an
XML event stream. The tracking-by-recognition component sends high-level ob-
ject attributes such as type, position, speed, etc., and updates their values based
on the analysis of each frame. If a safety-critical situation is detected, the rea-
soning engine sends a warning message to the video operator application.

5 Logging and Controlling Access to Surveillance Data

Let us imagine a feature-based system like the one presented here reports a crit-
ical event. An operator would then like to have a view on the scene before he
takes further steps. If pure feature-cameras (cf. Figure 4) are used, this is not
possible since no image signal leaves the camera. However, by introducing a sys-
tem which controls access to images and logs this access, the use of surveillance
image data becomes transparent. The following access rules are self-explaining:

– Since the scene content is known, it is logged which operator observes which
object. Thus, mis-use by stalking is documented. Furthermore, regions with
irrelevant information can masked out (cf. Figure 17). In order to provide
context to an operator, such regions may instead be faded out or blurred.

– An operator is allowed to get access to image data only if a critical event is
detected. Overriding this is possible, but it is logged.

In order to quickly mask parts of the image, we use a method similar to the
feature-based background removal from [35]. Given a set of features X+ and X−
which should be visible or not, respectively, we search for a binary segmentation
s(x), which is determined using spatial background and foreground probabilities
p:

s(x) =

{
1 p(x|X+) > p(x|X−)

0 otherwise.
(7)
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Fig. 17: Dense segmentation from SIFT feature density of the moving airplane
and the resting fueling vehicle from the sequence displayed in Figure 9.

The spatial probabilities are estimated from kernel density estimation of X =
{x1, . . . ,xn} as

p(x|X ) =
1

n

n∑
i=1

N (x|xi, Ci) (8)

using the normal kernel N with adaptive bandwidth Ci, estimated from the
covariance of the nearest 10% neighbors of xi.

By this, the attention of operators can be directed to important objects and
unimportant image parts can be masked out. Furthermore, security and privacy
is enhanced at the same time.

6 Conclusion

In this paper, we have shown the concepts of the feature-based surveillance sys-
tem ASEV (automatic situation assessment for event-driven video surveillance).
It consists of a 3D tracking-by-detection system which inputs 3D information
about visible objects into a reasoning system. By this, the current condition can
be compared with a nominal condition which is specified by a rule set. Further-
more we have shown how to learn 3D models from motion and how foreground
masks can be created from sets of foreground and background features.

Compared to traditional image-based surveillance, feature-based surveillance
has the advantage that it is much more robust towards changes in illumination or
background motion. Furthermore, our ASEV system allows to describe the fore-
ground as well, which in turn enables tracking through long-time occlusions. The
reasoning system facilitates comprehensive and reliable output event messages
to operators. Since the scene interpretation can be used to mask out non-related
scene content, the attention of surveillance operators is directed and privacy is
enhanced at the same time.
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