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Abstract

Multiple people tracking consists in detecting the sub-
jects at each frame and matching these detections to obtain
full trajectories. In semi-crowded environments, pedestri-
ans often occlude each other, making tracking a challeng-
ing task. Most tracking methods make the assumption that
each pedestrian’s motion is independent, thereby ignoring
the complex and important interaction between subjects.

In this paper, we present an approach which includes
the interaction between pedestrians in two ways: first, con-
sidering social and grouping behavior, and second, using
a global optimization scheme to solve the data associa-
tion problem. Results on three challenging publicly avail-
able datasets show our method outperforms state-of-the-art
tracking systems.

1. Introduction
Multiple people tracking is a key problem for many com-

puter vision tasks, such as surveillance, animation or activ-
ity recognition. In crowded environments occlusions and
false detections are common, and although there have been
substantial advances in the last years, tracking is still a chal-
lenging task. Tracking is often divided in two steps: de-
tection and data association. Researchers have presented
improvements on the object detector [5, 26] as well as on
the optimization techniques [14,16] and even specific algo-
rithms have been developed for tracking in crowded scenes
[1]. Though each object can be tracked separately, recent
works have proven that tracking objects jointly and taking
into consideration their interaction can give much better re-
sults in complex scenes. Current research is mainly focused
on two aspects to exploit the interaction between pedestri-
ans: the use of a global optimization strategy [4, 28] and
a social motion model [22, 27]. The focus of this paper is
to marry the concepts of global optimization and social and
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Figure 1: Including social and grouping behavior to the net-
work flow graph. (a) Constant velocity assumption. (b)
Avoidance forces. (c) Group attraction forces.

grouping behavior to obtain a robust tracker able to work in
crowded scenarios.

1.1. Related work

The optimization strategy deals with the data association
problem, which is usually solved on a frame-by-frame ba-
sis or one track at a time. Several methods can be used such
as Markov Chain Monte Carlo (MCMC) [15] or inference
in Bayesian networks [20]. In [3] an efficient approxima-
tive Dynamic Programming (DP) scheme is presented, in
which trajectories are estimated one after the other, which
obviously does not guarantee a global optimum for all tra-
jectories. Recent works show that global optimization can
be more reliable in crowded scenes as it solves the matching
problem jointly for all tracks. The multiple object tracking
problem is defined as a linear constrained optimization flow
problem and Linear Programming (LP) is commonly used
to find the global optimum. The idea was first used for peo-
ple tracking in [12], although this method needs to know a
priori the number of targets to track, which limits its appli-
cation in real tracking situations. Other works formulate the
tracking problem as a maximum flow [4] or a minimum cost
problem [24, 28], both efficiently solved using LP and with
a far superior performance when compared with DP [3].

Most tracking systems work with the assumption that the
motion model for each target is independent. This simplify-
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ing assumption is especially problematic in crowded scenes.
In order to avoid collisions and reach the chosen destination
at the same time, a pedestrian follows a series of social rules
or social forces. These have been defined in what is called
the Social Force Model (SFM) [11], which has been used
for abnormal crowd behavior detection [19], crowd simu-
lation [21] and has only recently been applied to multiple
people tracking: in [25], an energy minimization approach
is used to predict the future position of each pedestrian con-
sidering all the terms of the social force model. In [22]
and [17], the social forces are included in the motion model
of the Kalman or Extended Kalman filter. In [10] a method
is presented to detect small groups of people in a crowd,
but it is only recently that grouping behavior has been in-
cluded in a tracking framework [7, 23, 27]. In [23] groups
are included in a graphical model which contains cycles
and, therefore, Dual-Decomposition is needed to find the
solution, which obviously is computationally much more
expensive than using Linear Programming. Moreover, the
results presented in [23] are only for short time windows.
On the other hand, the formulations of [7,27] are predictive
by nature and therefore too local and unable to deal with
trajectory changes (e.g. when people meet and stop to talk).

Social behavior models have only been introduced
within a predictive framework, which are suboptimal due
to the recursive nature of filtering. Therefore, in contrast to
previous works, we propose to include social and grouping
models into a global optimization framework which allows
us to better estimate the true maximum a-posteriori proba-
bility of the trajectories.

1.2. Contributions

We present a novel approach for multiple people tracking
which takes into account the interaction between pedestri-
ans in two ways: first, using global optimization for data
association and second, including social as well as group-
ing behavior. The key insight is that people plan their
trajectories in advance in order to avoid collisions, there-
fore, a graph model which takes into account future and
past frames is the perfect framework to include social and
grouping behavior. We formulate multiple object tracking
as a minimum-cost network flow problem, and present a
new graph model which yields to better results than exist-
ing global optimization approaches. The social force model
(SFM) and grouping behavior (GR) are included in an ef-
ficient way without altering the linearity of the problem.
Results on several challenging public datasets show the im-
provement of the tracking results in crowded environments.

2. Multiple people tracking
Tracking is commonly divided in two steps: object de-

tection and data association. First, the objects are detected
in each frame of the sequence and second, the detections

are matched to form complete trajectories. In this section
we define the data association problem and describe how to
convert it to a minimum-cost network flow problem, which
can be efficiently solved using Linear Programming.

The idea is to build a graph in which the nodes represent
the pedestrian detections. These nodes are fully connected
to past and future observations by edges, which determine
the relation between two observations with a cost. Thereby,
the matching problem is equivalent to a minimum-cost net-
work flow problem: finding the optimal set of trajectories is
equivalent to sending flow through the graph so as to mini-
mize the cost.

2.1. Problem statement

Let O = {oi} be a set of object detections with oi =
(pi, ti), where pi = (x, y, z) is the 3D position and ti is
the time stamp. A trajectory is defined as a list of ordered
object detections Tk = {ok1

,ok2
, · · · ,okN }, and the goal

of multiple object tracking is to find the set of trajectories
T ∗ = {Tk} that best explains the detections. This is equiv-
alent to maximizing the a-posteriori probability of T given
the set of detectionsO. Assuming detections are condition-
ally independent, the objective function is expressed as:

T ∗ = argmax
T

∏
i

P (oi|T )P (T ) (1)

P (oi|T ) is the likelihood of the detection. In order to re-
duce the space of T , we make the assumption that the trajec-
tories cannot overlap (i.e., a detection cannot belong to two
trajectories), but unlike [28], we do not define the motion
of each subject to be independent, therefore, we deal with a
much larger search space. We extend this space by includ-
ing the following dependencies for each trajectory Tk:

• Constant velocity assumption: the observation oi ∈ Tk
depends on past observations [oi−1,oi−2]

• Grouping behavior: If Tk belongs to a group, the set of
members of the group Tk,GR has an influence on Tk

• Avoidance term: Tk is affected by the set of trajectories
Tk,SFM which are close to Tk at some point in time and
do not belong to the same group as Tk

The first and third dependencies are grouped into the
SFM term. The sets Tk,SFM and Tk,GR are disjoint, i.e., a
pedestrian can have an attractive effect or a repulsive effect
on another pedestrian, but not both. Therefore, we decom-
pose P (T ) as:

P (T ) =
∏
Tk∈T

P (Tk ∩ Tk,SFM ∩ Tk,GR) (2)

=
∏
Tk∈T

P (Tk,SFM|Tk)P (Tk,GR|Tk)P (Tk)



where the trajectories are represented by a Markov chain:

P (T ) =
∏

Tk∈T
Pin(ok1) . . . P (oki |oki−1) (3)

Pk,SFM(ok,SFM|oki ,oki−1
)Pk,GR(ok,GR|oki ,oki−1

)

. . . Pout(okN )

where Pk,SFM evaluates how well the social rules are kept
if oki is matched to oki−1 , and Pk,GR describes how well the
structure of the group is kept.

2.2. Tracking with Linear Programming

We linearize the objective function by defining a set of
flow flags fi,j = {0, 1} which indicate if an edge (i, j) is
in the path of a trajectory or not. In a minimum cost net-
work flow problem, the objective is to find the values of the
variables that minimize the total cost of the flows over the
network. Defining the costs as negative log-likelihoods, and
combining Equations (1), (2) and (3), the following objec-
tive function is obtained:

T ∗ = argmin
T

∑
Tk∈T

− logP (Tk)− logP (TSFM|Tk)

− logP (TGR|Tk) +
∑
i

− logP (oi|T )

= argmin
T

∑
i

Cin,ifin,i +
∑
i

Ci,outfi,out

+
∑
i,j

(Ci,j + CSFM,i,j + CGR,i,j)fi,j +
∑
i

Cifi

subject to the following constraints:

• Edge capacities: we assume that each detection can
only correspond to one trajectory, therefore, the edge
capacities have an upper bound of uij ≤ 1 and:

fin,i + fi ≤ 1 fi,out + fi ≤ 1 (4)

• Flow conservation at the nodes:

fin,i + fi =
∑
j fi,j

∑
j fj,i = fi,out + fi (5)

To map this formulation into a cost-flow network, we de-
fine G = (N,E) to be a directed network with a cost Ci,j
and a capacity uij associated with every edge (i, j) ∈ E.
An example of such a network is shown in Figure 2; it con-
tains two special nodes, the source s and the sink t; all flow
that goes through the graph starts at the s node and ends
at the t node. Thereby, each flow represents a trajectory Tk
and the path that each flow follows indicates which observa-
tions belong to each of the trajectories. Each observation oi
is represented with two nodes, the beginning node bi ∈ N
and the end node ei ∈ N (see Figure 2). A detection edge
connects bi and ei.
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Figure 2: Example of a graph with the special source s
and sink t nodes, 6 detections which are represented by two
nodes each: the beginning bi and the end ei.

Below we detail the three types of edges present in the
graphical model and the cost for each type:

Link edges. The edges (ei, bj) connect the end
nodes ei with the beginning nodes bj in following
frames, with cost Ci,j and flow fi,j , which is 1 if
oi and oj belong to Tk and ∆f ≤ Fmax, and 0 otherwise.
∆f is the frame number difference between nodes j and i
and Fmax is the maximum allowed frame gap.

The costs of the link edges represent the spatial relation
between different subjects. Assuming that a subject cannot
move a lot from one frame to the next, we define the costs to
be a decreasing function of the distance between detections
is successive frames. The time gap between observations is
also taken into account in order to be able to work at any
frame rate, therefore velocity measures are used instead of
distances. The velocities are mapped to probabilities with a
Gauss error function as shown in Equation (6), assuming the
pedestrians cannot exceed a maximum velocity Vmax. The
choice of parameter Vmax is detailed in Section 4.

E(Vt, Vmax) = 1
2 + 1

2 erf
(
−Vt+

Vmax
2

Vmax
4

)
(6)

The advantage of using Equation (6) over a linear func-
tion is that the probability of lower velocities decreases
more slowly, while the probability for higher velocities de-
creases more rapidly. This is consistent with the probability
distribution of speed learned from training data.



Therefore, the cost of a link edge is defined as:

Ci,j = − log (P (oj |oi)) + C(∆f)

= − logE
(
‖pj−pi)‖

∆t , Vmax

)
+ C(∆f)

where C(∆f) = − log
(
B∆f−1
j

)
is the cost depending

on the frame difference between detections.

Detection edges. The edges (bi, ei) connect the beginning
node bi and end node ei, with cost Ci and flow fi, which is
1 if oi belongs to Tk, and 0 otherwise.

Ci = log (1− Pdet(oi)) + log
(

BBmin
‖pBB−pi)‖

)
If all the costs of the edges are positive, the solution

to the minimum-cost problem is the trivial null flow.
Consequently, we represent each observation with two
nodes and a detection edge with negative cost. The higher
the likelihood of a detection Pdet(oi) the more negative the
cost of the detection edge, hence, confident detections are
likely to be in the path of the flow in order to minimize the
total cost. If a map of the scene is available, we can also
include this information in the detection cost. If a detection
is far away from a possible entry/exit point, we add an
extra negative cost to the detection edge, in order to favor
that observation to be matched. The added cost depends on
the distance to the closest entry/exit point pBB, and is only
computed for distances higher than BBmin = 1.5m.

Entrance and exit edges. The edges (s, ei) connect the
source s with all the end nodes ei, with cost Cin,i and flow
fin,i, which is 1 if Tk starts at oi and 0 otherwise. Similarly,
(bi, t) connects the end node bi with sink t, with cost Ci,out
and flow fi,out, which is 1 if Tk ends at oi, and 0 otherwise.

By connecting the s node with the end nodes (or t to be-
gin nodes), we make sure that when a track starts (or ends)
it does not benefit from the negative cost of the detection
edge. Therefore, we define Cin = Cout = 0 and the flow
constraints of Eqs. (4) and (5). In [28], the authors propose
to create the opposite edges (s, bi) and (ei, t). The advan-
tage of our formulation is that it does not depend on Pin
and Pout, which are data dependent terms that need to be
calculated during optimization.

3. Modeling social behavior
If a pedestrian does not encounter any obstacles, the nat-

ural path to follow is a straight line. But what happens when
the space gets more and more crowded and the pedestrian
can no longer follow the straight path? Social interaction
between pedestrians is especially important when the en-
vironment is crowded. In this section we consider how to
include the social behavior, which we divide into the Social

Force Model (SFM) and the Group behavior (GR), into our
minimum-cost network flow problem.

3.1. Social Force Model

The social force model states that the motion of a
pedestrian can be described as if they were subject to
”social forces”. There are three main terms that need to be
considered: the desire of a pedestrian to maintain a certain
speed, the desire to keep a comfortable distance from other
pedestrians and the desire to reach a destination. Since we
cannot know a priori the destination of the pedestrian in a
real tracking system, we focus on the first two terms.

Constant velocity assumption. The pedestrian tries to
keep a certain speed and direction, therefore we assume
that in t + ∆t we have the same speed as in t and predict
the pedestrian’s position in t+ ∆t accordingly.

Avoidance term. The pedestrian also tries to avoid colli-
sions and keep a comfortable distance from other pedestri-
ans. We model this term as a repulsion field with an expo-
nential distance-decay function with value α learned from
training data.

at+∆t
i =

∑
gm 6=gi

exp
(
−‖p̃

t+∆t
i −p̃t+∆t

m ‖
α∆t

)
The only pedestrians that have this repulsion effect on

subject i are the ones which do not belong to the same group
as i and ‖p̃t+∆t

i − p̃t+∆t
m ‖ ≤ 1m. The different avoidance

terms are combined linearly.
Now the prediction of the pedestrian’s next position is

also influenced by the avoidance term from all pedestrians:

p̃t+∆t
i = pti + (vti + at+∆t

i ∆t)∆t (7)

The distance between prediction and real measurements
is used to compute the cost:

CSFM,i,j = − logE

(
‖p̃t+∆t

i −pt+∆t
j ‖

∆t , Vmax

)
In Figure 3 we plot the probability distribution computed

using different terms. Note, this is just for visualization
purposes, since we do not compute the probability for each
point on the scene, but only for the positions where the de-
tector has fired. There are 4 pedestrians in the scene, the
purple one and 3 green ones walking in a group. As shown
in 3(b), if we only use the predicted positions (yellow heads)
given the previous speeds, there is a collision between the
purple pedestrian and the green marked with a 1 collide.
The avoidance term shifts the probability mode to a more
plausible position.



50 100 150 200 250

50

100

150

200

250

(a)

50 100 150 200 250

50

100

150

200

250

1 

(b)

50 100 150 200 250

50

100

150

200

250

(c)

50 100 150 200 250

50

100

150

200

250

(d)

X: 172
Y: 219

50 100 150 200 250

50

100

150

200

250

(e)

Figure 3: Three green pedestrians walk in a group, the predicted positions in the next frame are marked by yellow heads. The
purple pedestrian’s linearly predicted position (yellow head) clearly interferes with the trajectory of the group. Representation
of the probability (blue is 0 red is 1) distribution for the purple’s next position using: 3(a) only distances, 3(b) only SFM
(constant velocity assumption and avoidance term), 3(c) only GR (considering the purple pedestrian belongs to the group),
3(d) distances+SFM and 3(e) distances+SFM+GR.

3.2. Group Model

The social behavior [11] also includes an attraction force
which occurs when a pedestrian is attracted to a friend,
shop, etc. We model the attraction between members of
a group. Before modeling group behavior we determine
which tracks form each group and at which frame the group
begins and ends (to deal with splitting and formation of
groups). The idea is that if two pedestrians are close to each
other over a reasonable period of time, they are likely to be-
long to the same group. From the training sequence in [22],
we learn the distance and speed probability distributions of
the members of a group Pg vs. individual pedestrians Pi. If
m and n are two trajectories which appear on the scene at
t = [0, N ], we compute the flag Gm,n that indicates if m
and n belong to the same group.

Gm,n =

1,
N∑
t=0

Pg(m,n) >
N∑
t=0

Pi(m,n)

0, otherwise

For every observation oi, we define a group label gi
which indicates to which group the observation belongs to,
if any. If several pedestrians form a group, they tend to keep
a similar speed, therefore, if i belongs to a group, we can use
the mean speed of all the other members of the group to pre-
dict the next position for i using Equation (7). The distance
between this predicted position and the real measurements
is used in (6) to obtain the probability for the grouping term.

An example is shown in Figure 3(c), where we can see
that the maximum probability provided by the group term
keeps the group configuration. In Figure 3(d) we show the
combined probability of the distance and SFM information,
which narrows the space of probable positions. Finally, 3(e)
represents the combined probability of DIST, SFM and GR.

4. Implementation details
To compute the SFM and grouping costs, we need to

have information about the velocities of the pedestrians,

which can only be obtained if we already have the trajec-
tories. We solve this chicken-and-egg problem iteratively;
on the first iteration, the trajectories are estimated only with
the information defined in Section 2.2. The minimum cost
solution is found using the Simplex algorithm [8], with the
implementation given in [18]. To reduce the computational
cost, we prune the graph using the physical constraints rep-
resented by the edge costs. If any of the costs Cij , CSFM,i,j
orCGR,i,j is infinite the edge (i, j) is erased from the graphi-
cal model. For long sequences, we divide the video into sev-
eral batches and optimize for each batch. For temporal con-
sistency, the batches have an overlap of Fmax = 10 frames.
With our non-optimized code, the runtime for a sequence of
800 frames (114 seconds), 4837 detections, batches of 100
frames and 6 iterations is 30 seconds on a 3GHz machine.
All parameters defined in the previous sections are learned
from training data; in our case we use one sequence of the
publicly available dataset [22]. The parameter to penalize
for the frame difference is Bj = 0.3, the avoidance term
α = 0.5. Our approach works well for a wide range of Vmax
and Fmax. Values between 5 and 25 were tested for both pa-
rameters, and the difference between worst and best track-
ing accuracy obtained was 1%. For all experiments shown
in the following sections, we use Vmax = 7 and Fmax = 10.

5. Experimental results

In this section we show the tracking results of our
method on three publicly available datasets and compare
with existing state-of-the-art tracking approaches using the
CLEAR metrics [13], DA (detection accuracy), TA (track-
ing accuracy), DP (detection precision) and TP (tracking
precision).

5.1. Evaluation with missing data, noise and outliers

We evaluate the impact of every component of the pro-
posed approach with one of the sequences of the dataset
[22], which contains images from a crowded public place,
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Figure 4: Experiments are repeated 50 times and average result, maximum and minimum are plotted. Blue star = results
with DIST, Green diamond = results with SFM, Red square = results with SFM+GR. From left to right: Experiment with
simulated missing data, with outliers, and with random noise.
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Figure 5: Top row: Tracking results with only DIST. Bottom row: Tracking results with SFM+GR. Green = correct trajecto-
ries, Blue = observation missing from the set, Red = wrong match. 5(a) Wrong match with DIST, corrected with SFM. 5(b)
Missing detections cause the matches to shift due the global optimization; correct result with SFM. 5(c) Missed detection for
subject 3 on two consecutive frames. With SFM, subject 2 in the first frame (yellow arrow) is matched to subject 3 in the last
frame (yellow arrow), creating an identity switch; correct result with grouping information.

with several groups as well as walking and standing pedes-
trians.

Using the ground truth (GT) pedestrian positions as the
baseline for our experiments, we perform three types of
tests, missing data, outliers and noise, and compare the re-
sults obtained with:

• DIST: proposed network model with velocities

• SFM: adding the Social Force Model (Section 3.1)

• SFM+GR: adding SFM and grouping behavior (Sec-
tion 3.2)

Missing data. This experiment shows the robustness of our
approach given missed detections. This is evaluated by ran-
domly erasing a certain percentage of detections from the
GT set. The percentages evaluated are [0, 4, 8, 12, 16, 20]
from the total number of detections over the whole se-
quence. As we can see in Figure 4, both SFM and SFM+GR
increase the tracking accuracy when compared to DIST.

Outliers. With an initial set of detections of GT with 2%
missing data, tests are performed with [0, 10, 20, 30, 40, 50]
percentage of outliers added in random positions over the
ground plane. In Figure 4, the results show that the SFM
is especially important when the tracker is dealing with
outliers. With 50% of outliers, the identity switches with
SFM+GR are reduced 70% w.r.t the DIST results.

Noise. This test is used to determine the performance
of our approach given noisy detections, which are very
common mainly due to small errors in the 2D-3D mapping.
From the GT set with 2% missing data, random noise is
added to every detection. The variances of the noise tested
are [0, 0.002, 0.004, 0.006, 0.008, 0.01] of the size of the
scene observed. As expected, group information is the
most robust to noise; if the position of pedestrian A is not
correctly estimated, other pedestrians in the group will
contribute to the estimation of the true trajectory of A.

These results corroborate that having good behavioral



models becomes more important as the observations dete-
riorate. In Figure 5 we plot the tracking results of a se-
quence with 12% simulated missing data. Only using dis-
tance information can see identity switches as shown in Fig-
ure 5(a). In Figure 5(b) we can see how missing data affects
the matching results. The matches are shifted, this chain
reaction is due to the global optimization. In both cases,
the use of SFM allows the tracker to interpolate the neces-
sary detections and find the correct trajectories. Finally, in
Figure 5(c) we plot the wrong result which occurs because
track 3 has two consecutive missing detections. Even with
SFM, track 2 is switched for 3, since the switch does not
create extreme changes in velocity. In this case, the group-
ing information is key to obtaining good tracking results.
More results are shown in Figure 7, first row.

5.2. Tracking results

We evaluate the proposed algorithm on two publicly
available datasets: a crowded town center [2] and the well-
known PETS2009 dataset [9]. We compare results with
(1) [2] using the results provided by the authors; (2) [28],
a tracking algorithm based on network flows, for which
we use our own implementation of the algorithm; (3) [22],
which includes social behavior, using the code provided by
the authors; (4) [27], which includes social and grouping
behavior, using our own implementation. For a fair compar-
ison, we do not use appearance information for any method.

5.2.1 Town Center dataset

We perform tracking experiments on a video of a crowded
town center [2]. To show the importance of social behavior
and the robustness of our algorithm at low frame rates, we
track at 2.5fps (taking one every tenth frame).

DA TA DP TP IDsw
HOG Detections 63.1 − 71.9 − −
Benfold et al. [2] 64.9 64.8 80.5 80.4 259
Zhang et al. [28] 66.1 65.7 71.5 71.5 114
Pellegrini et al. [22] 64.1 63.4 70.8 70.7 183
Yamaguchi et al. [27] 64.0 63.3 71.1 70.9 196
Proposed 67.6 67.3 71.6 71.5 86

Table 1: Town Center sequence.

Note, the precision reported in [2] is about 9% higher
than the input detections precision; this is because the au-
thors use the motion estimation obtained with a KLT fea-
ture tracker to improve the exact position of the detections,
while we use the raw detections. Still, our algorithm reports
64% less ID switches. As shown in Table 1, our algorithm
outperforms [22], which includes social behavior, and [27],
which includes also grouping information, by almost 4% in
accuracy and with 50% less ID switches. In Figure 6 we can
see an example where [22, 27] fail. The errors are created

in the greedy phase of predictive approaches, where people
fight for detections. The red false detection in the first frame
takes the detection in the second frame that should belong
to the green trajectory (which ends in the first frame). In the
third frame, the red trajectory overtakes the yellow trajec-
tory and a new blue trajectory starts where the green should
have been. None of the resulting trajectories violate the
SFM and GR conditions. On the other hand, our global op-
timization framework takes full advantage of the SFM and
GR information and correctly recovers all the trajectories.
More results of the proposed algorithm can be seen in Fig-
ure 7, last row.
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Figure 6: Predictive approaches [22, 27] (first row) vs. Pro-
posed method (second row)

5.2.2 Results on the PETS2009 dataset

In addition, we perform monocular tracking on the
PETS2009 sequence L1, View 1 and obtain the detections
using the Mixture of Gaussians (MOG) background sub-
traction method. We obtain a tracking accuracy of 67%
compared to 64.5% for Pellegrini et al. [22].

This dataset is very challenging from a social behavior
point of view, because the subjects often change direction
and groups form and split frequently. Since our approach
is based on a probabilistic framework, it is better suited
for unexpected behavior changes (like destination changes),
where other predictive approaches fail [22, 27].

6. Conclusions
In this paper we argued for integrating pedestrian be-

havioral models in a linear programming framework. Our
algorithm finds the MAP estimate of the trajectories to-
tal posterior including social and grouping models using a
minimum-cost network flow with an improved novel graph
structure that outperforms existing approaches. People in-
teraction is persistent rather than transient, hence the pro-
posed probabilistic formulation fully exploits the power of
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Figure 7: First row: Results on the BIWI dataset (Section 5.1). The scene is heavily crowded, social and grouping behavior
are key to obtaining good tracking results. Last row: Results on the Town Center dataset (Section 5.2.1).

behavioral models as opposed to standard predictive and re-
cursive approaches such as Kalman filtering.

Experiments on three public datasets reveal the impor-
tance of using social interaction models for tracking in dif-
ficult conditions such as in crowded scenes with the pres-
ence of missed detections, false alarms and noise. Results
show that our approach is superior to state-of-the-art multi-
ple people trackers. As future work, we plan on extending
our approach to even more crowded scenarios where indi-
viduals cannot be detected and therefore features might be
used as in [6].
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