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Abstract

The paper deals with projective shape and motion

reconstruction by subspace iterations. A prerequisite of

factorization-style algorithms is that all feature points

need be observed in all images, a condition which is

hardly realistic in real videos. We therefore address the

problem of estimating structure and motion considering

missing features. The proposed algorithm does not require

initialization and uniformly handles all available data. The

computed solution is global in the sense that it does not

merge partial solutions incrementally or hierarchically. The

global cost due to the factorization is further amended by

local constraints to regularize and stabilize the estimations.

It is shown how both costs can be jointly minimized in

the presence of unobserved points. By synthetic and

real image sequences with up to 60% missing data we

demonstrate that our algorithm is accurate and reliable.

1 Introduction

We consider the estimation of 3D structure and motion

of a rigid object from multiple images given only point

correspondences if both intrinsic and extrinsic parameters of

the cameras are unknown. This is referred to as the projective

structure-from-motion problem (SfM). Previous works on this

subject are discussed in 1.1.

Assuming an affine camera model, the so-called factorization

algorithm can solve the SfM-problem by a single singular value

decomposition. Mathematically equivalent is the problem of

fitting a linear subspace. In the following, the terms subspace

fitting and matrix factorization will both be used to refer to

affine SfM.

As the singular value decomposition cannot be computed if

some entries of the matrix are missing, algorithms to solve

this challenging task are briefly reviewed in 1.2. Please notice

that all algorithms for incomplete matrix factorization imply

an affine camera model. Assuming a projective camera model

significantly increases difficulty. The differences between both

tasks will be discussed in 1.2.

1.1 3D-Reconstruction

The epipolar constraint can be used for this purpose. However,

it only exists for two, three or four images. If there are more

than four images, the sequence can be split into pieces to

compute partial reconstructions for each piece. These partial

reconstructions then need be merged sequentially.

The most widely used method to compute structure and

motion for sequences of arbitrary length is bundle adjustment

[28, 30, 13]. Although bundle adjustment algorithms can

give accurate solutions, they are susceptible to local minima,

and need be initialized with a good solution. A popular

implementation of bundle adjustment is the Bundler-tool

[23] which jointly solves tracking, outlier rejection, and

Euclidean 3D-reconstruction. The latter is solved sequentially

by interleaving several heuristics. To increase convergence

probability, intrinsic parameters are retrieved from exif data of

photos. While this algorithm has been shown to reconstruct

even large-scale scenes, the complexity of the tool prohibits

modifications, e.g. to integrate further constraints, if the tool

fails. Furthermore, video sequences usually do not provide

information on intrinsic parameters.

An algorithm which estimates a globally optimal solution was

introduced by Tomasi and Kanade [29] for affine SFM. It uses

the constraint that trajectory vectors reside in a 4-dimensional

subspace. This method uniformly handles an arbitrary number

of images and points.

This subspace constraint also holds true for a projective

camera if the points are rescaled by scalar variables, called

projective depths. Christy and Horaud [6] iteratively estimated

the subspace by explicitly considering the error of an affine

camera model. Sturm and Triggs [24] used closure constraints

to estimate the projective depths. Tomita and Ueshiba [31]

proposed to nonlinearly optimize the projective depths such

that the subspace constraint is satisfied. Heyden et al. [10] and

Mahamud and Hebert [15] optimized for the rank constraint

by alternating subspace fitting and projective depth estimation.

Separating both steps allows to linearly solve each sub-

problem. It will be later shown that this is a variant of gradient

descent.

1.2 Factorization From Incomplete Data

Subspace approaches are based on the assumption that all

points can be observed in every image. This condition is often

incorrect for complex scenes in which parts of the objects are

occluded by other objects in some images. It can also be

violated if parts of the scene are behind a moving camera in

some images, or because of failure of the tracking software.

The necessity that all points are visible in all views seriously
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limits factorization approaches.

The earliest approaches for factorizing a partially known

matrix, i.e. affine SfM, stem from the mathematical community.

In the late 60s, a simple and fast algorithm was introduced

which alternates least squares estimation of left and right

subspaces [33]. It was later re-introduced to the computer

vision community in [3, 9]. In the 70s, Newton-, and

Gauss-Newton algorithms were developed [32, 21]. Shum et

al. [22] applied the algorithm in [32] to affine SfM. Buchanon

and Fitzgibbon [4] switched between alternating least squares

approaches and Newton variants. Recently, algorithms

from convex optimization were adopted to incomplete matrix

factorization [7, 5]. Unfortunately, such algorithms currently

do not guarantee that the solution satisfies the required rank

constraint, hence are not applicable for SfM.

The earliest approach to incomplete matrix factorization

developed by the computer vision community was done by

Tomasi and Kanade [29]. They proposed to obtain an initial

estimate of the subspace from a completely observed subset

of the trajectories, and use this solution to estimate unknown

parts of trajectories. The main disadvantage of this approach

is its dependency on the initial solution. Typically, complete

subsets correspond to some degenerate camera motion which

significantly simplifies tracking. According to our experience,

this algorithm works if the data is noise-free. Jacobs [11]

proposed to combine several subspace estimates, each of

them fitted to trajectories of sufficient number and length.

This idea is not supported by the geometry induced by the

problem. Sugaya and Kanatani [25] proposed an EM-style

algorithm. They choose only certain, reliable trajectories by a

statistical criterion in each iteration. Marques and Costeira [17]

regularized subspace estimation by exploiting orthogonality

constraints on individual projection matrices. Ackermann and

Rosenhahn [2] used epipolar geometry for regularizing missing

data estimation.

For the projective subspace method, only few solutions exist

which consider missing points. Methods for an affine camera

cannot be used directly as the projective depths are unknown.

Martinec and Pajdla [18] generalized [11] to the projective

case. They integrated their idea into the algorithm of Sturm

and Triggs [24]. In [19], the same authors propose a solution

how to conjoin piece-wise reconstructions. The solution is

used to initialize a bundle adjustment. Tang and Hung [27]

generalized the method of Berthilsson and Heyden [10] to

incomplete trajectories. Their estimation of the projective

depths requires nonlinear optimization. The algorithm is

evaluated with sequences consisting of not more than ten

images.

1.3 Contributions

Incremental algorithms based on the approach in [29] are

not very stable and easily converge to incorrect solutions.

Algorithms optimizing a global error term – alternating least

squares, Newton- and EM-style methods – are more robust.

Still, for a projective camera model, the only proposed method

[27] does not manage many missing data. Using a five image

sequence, this algorithm managed 40% unobserved 2D-points.

Generally, EM-style algorithms are unstable if the amount of

unobserved data is large as the number of unknowns grows with

the unobserved 2D-points: up to our experience they can cope

with up to 30% missing points for an affine camera, and up to

20% for a projective camera.

For an affine camera we demonstrated in [2] that the stability

of an EM-approach can be greatly improved by incorporating

further constraints derived from epipolar geometry. Since they

apply regularization to individual unobserved 2D-features, they

can be thought of as local constraints on the global factorization

error term. On the other hand, epipolar geometry does not

restrict the type of motion, i.e. priors such as smoothness of

motion or a particular type of motion are not applied.

The contributions made in this work can be summarized as

follows: our approach for affine structure-from-motion [2] is

(1) generalized to the projective camera model. As opposed

to the traditional geometrical derivation [10], we favor an

algebraic derivation which (2) reveals that it is a variation of

gradient descent. Using epipolar geometry usually implies

that particular images are selected. It will be shown that

(3) all epipolar constraints can be used simultaneously, and

jointly optimized with the global subspace constraint. It is

demonstrated that (4) the proposed algorithm converges with

up to 60% points being unobserved, and it is robust to noise

and varying initialization. Using epipolar geometry implies

that no constraints are imposed on the motion of the camera

except rigidity. If further prior-knowledge is available, it is

(6) not difficult to integrate it into the presented scheme. We

will further (7) make the source code available to the scientific

community.

Although not explicitly considered in this work, it is possible

to embed the proposed method into a RANSAC-scheme.

Since such “higher level algorithms” depend on the quality of

underlying SfM-methods, we think it worthwhile to improve

projective SfM. Furthermore, the solutions computed by this

algorithm can be used to initialize a bundle adjustment.

The paper has the following structure. In Sec. 2, we summarize

projective reconstruction by subspace iterations. Our solution

to missing data estimation using the subspace constraint is

derived in Sec. 3.1. The geometric constraints are presented

in Sec. 3.2. We evaluate our algorithm in Sec. 4 using

synthetic and real image sequences. The paper concludes with

a discussion in Sec. 5.

2 Projective Reconstruction

In this section, the projective reconstruction algorithms

introduced in [10, 15] are shortly summarized.

Suppose N rigidly moving points are tracked through M
images observed by a perspective camera with unknown and

possibly varying intrinsic parameters. The projection of the



αth point onto the κth image can be modeled by

λκαxκα = λκα





uκα

vκα

1



 = PκXα (1)

where uκα and vκα denote the measured x and y coordinates

in the image positions. For numerical stability [8], we scale the

vectors xκα with s0 = 1/600. The 3 × 4 camera matrices

Pκ consist of the intrinsic and extrinsic camera parameters

and define the projection into the κth image. The 4-vectors

Xα denote the homogeneous position of the αth 3D point.

The projective depths λκα are scalars due to the perspective

projection.

For the projections of all points into every image Eq. (1) may

be written as Let the 3M × N matrix W be

W 3M×N =






λ11x11 · · · λ1Nx1N

...
. . .

...

λM1xM1 · · · λMNxMN






=






P1

...

PM






[
X1 · · · XN

]
= PX. (2)

Equation (2) implies that the columns of W are constrained to

be in a 4-dimensional subspace spanned by the columns of P
if the projective depths λκα are correctly chosen.

Since the absolute scale of the projective depths is

indeterminate we impose the constraint that ‖λα‖ = 1 where

λα = (λ1α · · · λMα)⊤. If the observed features xκα are

normalized to unit length it can be seen that the column vectors

of W have length 1. Let Dα be the 3M ×M matrix consisting

of the unit length length features xiα, i = 1, . . . , M , on its

diagonal. Then we may write wα = Dαλα.

Utilizing X = P+W where (·)+ denotes the generalized

inverse it is possible to substitute X in Eq. (2)

0 =
(
I − PP+

)
W. (3)

Since (I − PP+) is the orthogonal projection onto the

orthogonal complement of the subspace defined by P , Eq. (3)

implies that the column vectors of W must be within P .

If P is orthonormal, and defining S⊥ =
(
I − PP⊤

)
, a

quadratic cost function is given by

f (S⊥, λκα) =
1

2
‖S⊥W‖2. (4)

For determining the variables S⊥ and all λκα, we need to

minimize the function defined by Eq. (4) with respect to the

two sets of variables by taking the partial derivatives

∂

∂λα

f = D⊤
α S⊥Dαλα and (5a)

∂

∂S⊥

f = WW⊤S⊥. (5b)

Here we used that S⊤
⊥

S⊥ = S⊥.

A necessary condition for minimizing Eq. (4) is that the partial

derivatives defined in Eqs. (5) equal zero. Fixing one set of

variables, it is possible to solve for the other by means of

a linear homogeneous linear equation system. Iterating both

steps gives the algorithms introduced in [10, 16].

To avoid computing the (3M −4)-dimensional nullspace of W
at each iteration, it is more efficient to maximize the dual cost

f (P, λκα) =
1

2
‖PP⊤W‖2. (6)

Its derivatives are given by

∂

∂λα

f = D⊤
α PP⊤Dαλα and (7a)

∂

∂P
f = WW⊤P. (7b)

Here, we used that P⊤P = I where I denotes the identity

matrix. The solution to Eq. (7a) is given by the right singular

vector corresponding to the smallest singular value of P⊤Dα,

while the solution to Eq. (7b) is given by the left singular

vectors corresponding to the four largest singular values of W .

3 Recovery of Partial Trajectories

The iterative subspace method presented in Sec. 2 computes a

single solution to the projective structure-from-motion problem

for any number of points and images. However, if some points

cannot be observed in every image, this method cannot be

used. That can happen if parts of the scene are occluded in

some images, the software for establishing the correspondences

fails, or if the scene parts of the scene appear or disappear. In

this section, an algorithm is described which generalizes the

projective subspace algorithm to the case of partially observed

trajectories.

In the first part we utilize the global subspace constraint, and

derive a formula for estimating missing points based on this

global constraint. The idea is that the missing points are chosen

such that each trajectory becomes as close to the subspace as

possible. We will show that this distance minimization problem

results in a simple formula which can be easily solved. In

the second part it is shown how additional constraints can be

integrated into this algorithm. Since it is readily available

and can be easily computed, we chose epipolar geometry to

locally regularize the global subspace constraint. The last

part of this Section explains how both types of constraints

can be combined into a single system of equations so that all

constraints are optimized simultaneously.

3.1 Subspace Constraint

If some entries in wα are unknown, the cost function defined

by Eq. (4) needs to include the unknown entries x̃κα in W as

variables

f (S⊥, x̃κα, λκα) =
1

2
‖S⊥W‖2, (8)



For the maximization of Eq. (8), these unknown entries have

to be considered, i.e. a third partial derivative
∂

∂x̃α

f need be

defined.

The idea is to choose the missing entries of one particular wα

so that the distance between wα and the subspace is minimized.

The unknown entries may be freely chosen, yet the known

entries must stay fixed. This implies that each point wα with

unknown entries induces an affine space. Its origin is given

by the vector consisting of the known entries of wα and being

zero elsewhere. The affine space is then spanned along the

dimensions of the unknown entries of wα. Estimating missing

points of one trajectory then amounts to simply minimizing the

distance between this affine space and the subspace.

The origin of this affine space is given by a 3M -dimensional

vector vα. Its entries are the vectors xκα in wα if they are

known. If a point xκα is unknown, the corresponding entries

in vα is zero. The basis of the affine space is defined by a

3M ×3k matrix A, where k denotes the number of unobserved

entries in wα. It consists of triples of basis vectors ei which

corresponds to one unknown observation xκα =
[
u v w

]⊤

in the vector wα. The first vector of each triple of basis vectors

equals 1 at the coordinate corresponding to the coordinate u of

xκα and is zero elsewhere, the second basis vector equals 1 at

the coordinate corresponding to v, and the third basis vector

equals 1 at the position of the third coordinate w.

Let Λα be the 3M × 3M matrix with the vectors
[
λiα λiα λiα

]⊤
, i = 1, . . . , M on its diagonal, and dα =

[
x⊤

1α · · · x⊤
Mα

]⊤
. Then we may write

wα = Λαdα = Λα (Aαyα + vα)
︸ ︷︷ ︸

affine space

. (9)

The vector yα consists of all the unknown points xκα. For

instance, consider a vector wα with its first entry known but

the second unknown. Then Eq. (9) is as follows

wα = Λα



























0 0 0

. . .

0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

...














yα +






x1α

03

...



















(10)

where 03 denotes a 3-vector with all its entries being 0.

The missing entries of dα are now chosen such that the distance

of wα to the subspace becomes 0, i.e. we want the distance

between wα and its orthogonal projection ŵα = PP+wα =
PP⊤wα onto P to become zero. Inserting Eq. (9) into Eq. (3),

we obtain

0 =
1

2
‖S⊥Λα (Aαyα + vα) ‖2. (11)

Differentiating it by the unknown observations yα yields the

partial derivative
∂

∂yα

f . Equation (8) can now be solved by

alternatingly estimating the three partial derivatives

∂

∂S⊥

f = WW⊤S⊥, (12a)

∂

∂yα

f = A⊤
α Λ⊤

α S⊥Λα (Ayα + vα) , and (12b)

∂

∂λα

f = D⊤
α S⊥Dαλα for α = 1, . . . , M. (12c)

for zero.

Although the unit length constraints on the vectors xκα seem to

render Eq. (12b) into a complicated nonlinear and non-convex

optimization problem, they can be ignored: any solution to xκα

with ‖xκα‖2 6= 1 is projectively invariant to the solution with

length 1. Therefore, the solution is given by

yα = − (S⊥ΛαAα)+ S⊥Λαvα (13)

if the computed vectors xκα are subsequently normalized to

length 1.

Note that instead of minimizing Eqs. (12a) and (12c), we

maximize Eqs. (7). Minimizing only Eq. (12b) allows to easily

include further constraints as will be seen in the following.

3.2 Including Epipolar Constraints

The iterative subspace estimation algorithm presented in the

previous section iteratively determines unknown points by

using estimates from the previous iteration. This causes this

approach to become unstable, if many points could not be

observed. To stabilize and regularize the algorithm introduced

in the previous section, further constraints are necessary.

While it is convenient to use knowledge on the motion,

such information is not generally available. On the other

hand, generally available constraints are provided by epipolar

geometry. They can be easily computed and assert a locally

stabilizing effect.

Utilizing epipolar geometry does not imply that any particular

images are selected. In general, it is difficult to analytically

determine the images which are best suited for epipolar

geometry, so we integrate all epipolar constraints we are able

to use. In the following, we derive how they can be integrated

into the proposed subspace algorithm.

Given two images i and j of the same rigid scene,

corresponding points xi =
[
u v w

]⊤

i
and xj =

[
u v w

]⊤

j
between the two images satisfy the epipolar

equation x⊤
j Fjixi = 0, The fundamental matrix F is a 3 × 3

matrix of rank 2 relating two points xj and xi in different

images i and j. If there are at least eight correspondences

between any two images, it is possible to compute the

fundamental matrix by a linear method.

If some point x could not be observed in image I ′ but it was

observed in other images I, we can compute the epipolar lines

lji = Fjixi, j ∈ I′, i ∈ I (14)



Figure 1: Epipolar lines corresponding to the same point

observed in different images intersect in the same point.

The camera centers are denoted by C1, C2 and C3. The

feature point observed in images 1 and 3 is denoted by x1

and x3, respectively. Here, l21 and l23 denote the epipolar

lines induced by planar homographies Π21 and Π23 between

images 1 and 2, and 3 and 2, respectively. The intersection

is the best estimation of the unobserved feature in image 2 in

terms of epipolar geometry.

of this point in image I ′ provided that we know the

fundamental matrices between the images.

In the absence of noise and assuming that the cameras are

in general positions, the epipolar lines corresponding to other

cameras which observed the feature point intersect in a single

point x, i.e.
∑

i∈I

l⊤i x = 0 (15)

(cf. Fig. 1). The solution to Eq. (15) is the best estimation of

the unobserved feature point x in terms of epipolar geometry.

In the presence of noise, the epipolar lines do not intersect in

a single point. However, as long as the noise in the observed

points of the images is not too large, the intersections will be

close to the true position.

Since we do not know which epipolar lines intersect closest

to the true position of the unobserved point, the unknown

position of xj in image I ′ may be determined by least-squares

minimization of all the Eqs. (15). Imagine a sequence of

five images. A particular feature point was not observed in

images one and two, and the fundamental matrices could not be

computed between images one and five. Denote by (u v w)
⊤

i

the feature in the first or second image, respectively. The joint

system of Eqs. (15) then is as follows









l⊤13
02×3

l⊤14

03×3

l
⊤

23

l⊤24
l⊤25









︸ ︷︷ ︸

L















u
v
w





1



u
v
w





2











= 0. (16)

Algorithm 1 Constrained Projective Reconstruction

1: Input: Data vectors xκα, the minimal reprojection

error ǫmin, and the minimum difference between two

consecutive reprojection error δǫmin

2: Output: Projection matrices Pκ and 3D points Xα.

3: Initialize the projective depths to λκα = 1, and the

unobserved points x̃κα to the centroid of all observed

points.

4: Compute all columns wα of matrix W .

5: Compute a basis P of the subspace L consisting of the

first four left singular vectors of W . The orthogonal

complement of the subspace is given by S⊥ = I − PP⊤.

6: Let ǫ be the reprojection error defined by Eq. (18) and δǫ be

the difference between two consecutive reprojection errors.

7: while ǫ > ǫmin or δǫ > δǫmin do

8: for α = 1 to N do

9: Determine the unknown measurements xκα by

solving the joint system defined by Eq. (17).

10: Create the matrix Dα.

11: Compute the projective depths λα by minimizing

Eq. (12c).

12: end for

13: Update the vectors wα in matrix W .

14: Compute the projection matrices Pκ given by the row-

triplets of P .

15: Compute the 3D positions Xα given by the columns of

X = P⊤W .

16: end while

Here, 0i×j denotes a i×j matrix solely consisting of zeros. The

upper right and lower left blocks of the matrix on the left side

are identically zero. Denote by Lα the matrix containing all

epipolar constraints corresponding to the αth trajectory on the

left side of Eq. (16). It is possible to simultaneously optimize

both the global subspace constraint and the local epipolar

constraints by stacking the left and right sides of Eq. (13) and

the ones due to the epipolar constraints:

(
S⊥ΛαAα

Lα

)

yα =

(
−S⊥Λαvα

0

)

. (17)

We solve Eq. (17) by means of normal equations followed by

normalization of each triple x̃κα in yα to unit length.

The complete algorithm is summarized in Algorithm 11 .

1The sources will be made available for download upon acceptance of this

work.



(a)

(b)

(c)

Figure 2: (a) Simulated image sequence of 200 points on a cylindrical surface through 20 frames (six images are shown

here). (b) 6 images of the same sequence with 60% unobserved points and normally distributed noise with standard deviation

σ = 3.0. (c) The 3D-reconstruction of the shape using the sequence shown in Fig. 2(b).

4 Experimental Results

In this Section we evaluate the algorithm introduced in this

paper. In Sect. 4.1 , the performance is measured using

synthetic image sequences. Let the reprojection error be

ǫ =
1

s0

√
√
√
√ 1

MN

M∑

κ=1

N∑

α=1

‖N [xκα] −N [PκXα]‖2
(18)

where N [·] denotes normalization of the third coordinate to 1.

The scale factor s0 = 1/600 which we applied to all observed

points xκα needs to be considered in Eq. (18).

In Sec. 4.1, the proposed method is evaluated using a synthetic

sequence. In Sec. 4.2, we present the results of our method

using different indoor and outdoor real image sequences.

4.1 Synthetic Sequence

We created a synthetic image sequence of 200 points on

a cylindrical surface shown in Fig. 2(a). The points were

projected into images of size 512 × 512 pixels by a generally

moving perspective camera with focal length 600 pixels. The

sequence consists of 20 images.

The fundamental matrices were computed offline using

RANSAC with the normalized 8-point algorithm [8].

Incomplete trajectories were simulated by randomly removing

a certain percentage of points. This simulates trajectories as

might be created using a SIFT tracker [14], where feature

points are missing in one frame, but may reappear in

subsequent images.

The accuracy of the algorithm was measured by computing the

reprojection error as defined by Eq. (18). For the synthetic

sequence, we computed the reprojection error for all points not

just the observed ones. The 3D-error is measured by computing

the homography which optimally projects the reconstructed

shape to the ground-truth shape. The average Euclidean

distance between the homography-projected 3D-points and the

ground truth shape was adopted as measure.

The proposed method is evaluated with and without epipolar

constraints. Utilizing only the rank-4 constraint makes this

method similar to the approach of Tang and Hung [27]2. The

results of this algorithm are compared with the those of the

algorithm proposed by Martinec and Pajdla [18, 26]3. Since the

proposed algorithm does not require an initial solution, we only

compare it with [18] which also satisfies this requirement. The

estimated solution can be used to initialize a bundle adjustment.

To measure the effect of missing data, the percentage of

missing points was gradually increased from 10% until 60% in

steps of 10%. We considered the algorithms to have converged

successfully if the reprojection error was lower than 10 pixels.

The results of the algorithm of Martinec and Pajdla and the

proposed method are shown in Fig. 3. The x-axis indicates

increasing amounts of missing points. Results are shown for

three different levels of normally distributed noise added to

the points with standard deviations σ equal to 1.0, 2.0, and

2The method of Tang and Hung [27] employs a row-space approach

whereas the proposed algorithm fits the subspace to the columns of W .
3The code is graciously provided by T. Svoboda in cmp.felk.cvut.

cz/˜svoboda [26].



Figure 3: (Leftmost two images) Reprojection errors for the proposed method (left plot) and the method of Martinec and

Pajdla [18] (right plot), respectively for three different noise levels with standard deviations σ = 1.0, 2.0, 3.0. For the right

plot, the solid blue lines denote the mean error of 10 trials and the dashed green lines the maximum error. For the right plot,

the solid blue line corresponds to the noise level σ = 1.0, the dashed green line to σ = 2.0, and the dash-dotted red line to

σ = 3.0. The algorithm of Martinec and Pajdla failed to converge for any trial if the amount of missing points was larger

than 30% and the noise σ ≥ 2.0.

(Rightmost two images) Average 3D errors for the proposed algorithm (left plot) and the one of Martinec and Pajdla [18]

(right plot). The solid blue lines indicate the noise level σ = 1.0, the dashed green line σ = 2.0, and the dash-dotted red line

σ = 3.0. The algorithm of Martinec and Pajdla failed to converge for any trial if the amount of missing points was larger

than 30% and the noise σ ≥ 2.0.

3.0 pixels. The left two images in Fig. 3 show the minimal

reprojection errors (in pixels). For our method (left plot), the

solid blue lines indicate the mean errors of ten trials, and the

dashed green lines the maximum errors. For the method of

Martinec and Pajdla [18], the solid blue lines indicates the

error corresponding to a noise level with σ = 1.0, the dashed

green line σ = 2.0, and the dash-dotted red line σ = 3.0.

Apparently, the proposed method achieves lower reprojection

errors for almost all levels of noise and amounts of unobserved

points (observe the different scales of the y-axes of the leftmost

two plots of Fig. 3). The reprojection error almost linearly

increases with noise, and our method is hardly affected by

missing points. The algorithm of Martinec and Pajdla fails

to converged for any of the ten trials if σ ≥ 2.0 and more

than 30% unobserved points, whereas the proposed method

successfully converges for all ten trials for each noise level

and amount of unobserved points. The right two images of

Fig. 3 show the average 3D errors for both methods (left and

right plots, respectively). The solid blue lines indicate the

errors corresponding to a noise level with σ = 1.0, the dashed

green lines σ = 2.0, and the dash-dotted red lines σ = 3.0.

The proposed method is much more accurate than the one of

Martinec and Pajdla (observe that the scales the y-axes in the

two plots are different).

The algorithm using only the rank-4 constraint achieves

approximately the same errors as the proposed algorithm.

However, it fails to converge increasingly often with increasing

noise and amount of unobserved points. Figure 4 shows how

frequently the algorithm using only the rank-4 constraint and

the one of Martinec and Pajdla converge for the three noise

levels and increasing amounts of unobserved points. The

proposed algorithm, i.e. factorization with epipolar constraints,

always converges.

An example how the synthetic sequence of Fig. 2(a) looks like

is shown in Fig. 2(b). Here, 60% of all points are not visible

and normally distributed noise with standard deviation σ = 3.0

was added. For this sequences it is very difficult to perceive

the structure of the object for a human observer. The 3D-

reconstruction of the shape using the sequence of Fig. 2(b) is

shown in Fig. 2(c). Apparently, the reconstructed shape looks

reasonable although many points are missing and the noise is

very strong.

Figure 4: The left plot shows how often (out of 10 trials) the

subspace method converged without epipolar constraints for

each sampling and noise level. The right plot shows how

often the algorithm of Martinec and Pajdla [18] converged.

We defined success if the reprojection error for all points (not

just the observed ones) was smaller than 10. If Factorization

is employed with epipolar constraints, the algorithm always

converges.

4.2 Real Image Sequences

The performance of the algorithm was evaluated using three

different real image sequences.

First, we used the sequence of the model of a tea box consisting

of 61 images of size 640 × 480 taken by the video mode of a

Canon PowerShot A530 photo camera. One of the images is

shown in the leftmost plot of Fig. 6(a). The publicly available

voodoo camera tracker4 was utilized for establishing a total

of 430 correspondences. The amount of unobserved points

4www.digilab.uni-hannover.de/docs/manual.html



is approximately 52%. The leftmost diagram in Fig. 5 shows

which feature was found in which image (white indicates that

the feature was observed). All feature points visible in at

least twenty images were utilized. A metric reconstruction

was obtained using the algorithm from [12]. The algorithm

converged to a reprojection error of 1.06 pixels. Three images

of the reconstructed shape are shown in the rightmost plot in

Fig. 6(a). We assigned each 3D point its color in the image

it was first observed. The overall quality of the shape is

satisfactory.

The second sequence shows an industrial dredger. A total of

564 points were tracked over 51 images of size 720 × 576 by

a Canon X1-1 video camera . The first image of the sequence

is shown in the leftmost plot of Fig. 6(b). The correspondences

were again established using the voodoo camera tracker. In

this sequence approximately 22% of the feature points were

not observed due to occlusion and lost trajectories. For the

recovery of the trajectories, we used all feature points tracked

over at least twenty frames. The observation matrix which

shows in which frames each feature could be observed is

shown in the middle plot of Fig. 5. The algorithm converged

to a reprojection error of 1.28 pixels. Three images of the

reconstructed 3D-shape using the self-calibration algorithm

from [12] are shown in the rightmost plots of Fig. 6(b). We

assigned each 3D point the average color over all images it

was observed in. As can be seen the reconstruction looks

reasonable.

Lastly, we used a sequence showing a Lego spaceship. It

consists of 90 images of size 720×576 taken by the Canon X1-

1. One of the images is shown in the leftmost plot of Fig. 6(c).

We used all of the provided correspondences which are visible

in at least twenty images resulting in 495 trajectories. The

unobserved correspondences amount to approximately 61%.

The bottom diagram in Fig. 5 shows which feature was found

in which image. The algorithm converged to a reprojection

error of 2.79 pixels. We assigned each 3D point its color in

the image it was first observed. The reconstructed 3D-shape

using the self-calibration algorithm from [12] is displayed in

the three rightmost plots of Fig. 6(c).

5 Summary

In this paper we deal with projective shape and motion

reconstruction using subspace iteration methods. For such

approaches it is a prerequisite that all feature points are

observable in all images, a condition which is unrealistic in

real videos.

We address this problem by using a geometrically meaningful

measure to estimate unknown correspondences. The proposed

algorithm uniformly utilizes all available data and finds a

global solution without merging piece-wise reconstructions.

Additionally to a global constraint – based on a subspace –

we propose local constraints – based on epipolar geometries

– to regularize and stabilize the estimations. We show that

both types of constraints can be optimized simultaneously and

allow for scene reconstruction in presence of strong noise and

missing data. The proposed algorithm does not require any

particular initialization.

Not many methods manage to perform a projective 3D-

reconstruction without initialization. Algorithms known to

us ([18, 27]) are based on the factorization approach. These

methods fail on long sequences shown in Sec. 4.2. Neither

does affine 3D-reconstruction ([2]) succeed on such scenes as

the depth variation is large.

Other constraints, for instance homographies of a plane, can

be easily included as well. The solution of this algorithm can

be further used to initialize a statistical optimization technique

such as bundle adjustment. It is possible to integrate our

method into a RANSAC approach. The source code is available

at [1].
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sequence of a Lego model consisting of 495 trajectories. The reconstructed 3D-shape is shown in the rightmost three plots.
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