
SlimCuts: GraphCuts for High Resolution
Images Using Graph Reduction ?

Björn Scheuermann and Bodo Rosenhahn

Leibniz Universität Hannover, Germany
{scheuermann,rosenhahn}@tnt.uni-hannover.de

Abstract. This paper proposes an algorithm for image segmentation us-
ing GraphCuts which can be used to efficiently solve labeling problems
on high resolution images or resource-limited systems. The basic idea
of the proposed algorithm is to simplify the original graph while main-
taining the maximum flow properties. The resulting Slim Graph can be
solved with standard maximum flow/minimum cut-algorithms. We prove
that the maximum flow/minimum cut of the Slim Graph corresponds to
the maximum flow/minimum cut of the original graph. Experiments on
image segmentation show that using our graph simplification leads to
significant speedup and memory reduction of the labeling problem. Thus
large-scale labeling problems can be solved in an efficient manner even
on resource-limited systems.

1 Introduction

Discrete optimization of energy minimization problems using maximum flow
algorithms have become very popular in the fields of computer vision [1]. This
has been driven by their ability to efficiently compute a global minimum of
the given optimization problem. Examples for computer vision problems include
segmentation, image restoration, dense stereo estimation and shape matching [2–
4]. We introduce a novel algorithm for maximum flow algorithms which improves
the performance of graph cut algorithms.

Parallel to the improvement of energy minimization algorithms [5–7], the
size of images and 3D volumes increased significantly in recent years. Standard
benchmark images still have an average size of approximately 120.000 pixels and
graph cut algorithms solve these problems very fast. In contrast, nowadays com-
mercial cameras are able to capture high quality images with up to 20 million
pixels. Solving segmentation problems using graph cuts on such data leads to
large scale optimization problems. These problems are computationally expen-
sive and require large amounts of memory. If the data of these problems do not
fit into the physical memory the given algorithms are not applicable [8].

? This work is partially funded by the German Research Foundation (RO 2497/6-1).

2 Björn Scheuermann, Bodo Rosenhahn

(a) (b) (c)

Fig. 1: Example segmentation using Apple’s iPhone. (a) image with user scrib-
bles; (b) label map defined by the proposed Slim Graph. White and grey pixels
denote fore- and background, black regions are unlabeled pixels; (c) final seg-
mentation.

1.1 Prior Work

Solving the maximum flow/minimum cut problem for applications in computer
vision can be divided into four types of approaches:

Augmenting paths: Due to the works of Boykov and Kolmogorov the BK
augmenting paths algorithm [9] is widely used for computer vision problems.
This is because of its computationally efficiency for moderately sized 2D and 3D
problems with low connectivity. A parallel implementation of the BK-algorithm
has been proposed in [10]. They iteratively solve subproblems on multiple cores
or multiple machines.

Push-relabel: Most parallelized maximum flow/minimum cut algorithms
have been focused on push-relabel algorithms [8]. These methods outperform the
traditional BK-algorithm for huge and highly connected grids [1]. An algorithm
that involves GPU processing is CUDA cuts, presented by Vineet and Narayanan
[11]. In contrast to these algorithms our novel method does not use special
hardware (multiple cores, GPU) to reduce the computational time.

Convex optimization: Formulating the maximum flow/minimum cut prob-
lem as a linear program is another promising approach to parallelize GraphCuts.
Assuming only bidirectional edges the maximum flow problem can be reformu-
lated as an l1 minimization problem [12]. In [13] Klodt et al. used GPU based
convex optimization to solve continuous versions of GraphCuts. However, the
speedup using a GPU is low compared to BK-algorithm and the advantage of
continuous cuts is to reduce metrication errors due to discretization.

Multi-Scale: Besides the approaches to parallelize the maximum flow/min-
imum cut problem to outperform existing algorithms, multi-scale processing is
an approach to reduce memory and computational requirements of optimization
algorithms. The idea to efficiently solve the optimization problem is to first

SlimCuts: GraphCuts for High Resolution Images Using Graph Reduction 3

solve the problem at low resolution using standard techniques [14]. The resulting
low resolution labeling is refined on the high resolution problem in a following
optimization step. Boundary banded algorithms [15, 16] are examples for multi-
scale image segmentation of high resolution images. Kohli et al. [17] proposed
an uncertainty driven multi-scale approach for energy minimization allowing to
compute solutions close to the globally optimum. However, both approaches
suffer from the problem that they are not able to efficiently recover from large
scale errors present in the low resolution result.

Graph sparsification: In the field of applied mathematics graph sparsifica-
tion and graph simplification is an important matter. Karger and Stein proposed
the Recursive Contraction Algorithm in [18]. The algorithm relies on the idea
that the minimum cut is a small set of edges and a randomly chosen edge is
unlikely to be in this set. They randomly contract edges and showed that the
minimum cut is found with high probability. However, it is not guaranteed that
the cut is optimal. Similarly Bencúr and Karger [19] and Spielman and Teng
[20] proposed algorithms based on random sampling to approximate the mini-
mum cut of a given graph. Since we are looking for the global minimum we are
not interested in an approximation. In [21], Chekuri, Goldberg et al. developed
heuristics to improve practical performance of minimum cut algorithms. They
propose to use the Padberg-Rinaldi heuristic [22] to contract edges that are not
in the minimum cut. Therefore they apply several so called PR tests to identify
those edges. In practice the PR tests are computationally too expensive for large
graphs. In [23] Hogstedt et al. proposed a number of heuristical graph algorithms
to simplify partitioning of distributed object applications. For the special case of
an s-t minimum cut (two machine nodes) their condition for graph simplification
preserves one minimum cut. In contrast our graph simplification guarantees that
all minimum cuts are preserved. To our knowledge the proposed condition have
not been used to simplify a graph in the computer vision community.

1.2 Contribution

To solve large scale labeling problems efficiently we propose to build a so called
Slim Graph by simplifying the original graph. Therefore we search nodes that are
connected by an edge (simple edge) which can be removed from the graph without
changing the value of the maximum flow and the corresponding minimum cut.
The nodes connected by a simple edge will have the same label in the final
segmentation and can be merged into a single node. Thus we simplify the original
graph to a Slim Graph without changing the energy-minimization problem and
the value of the global minimum. The proposed simplification can be applied to
each of the aforementioned algorithms. Thus our algorithm provides a general
speedup and memory reduction without suffering from the problem of large scale
errors or the use of special hardware, e.g. GPU or multiple processors.

Besides speedup and memory reduction, the merged nodes help the user
to set the parameter included in the minimization problem. Additionally, the
simplified graph reveals which areas of the image / graph cannot be assigned to

4 Björn Scheuermann, Bodo Rosenhahn

foreground or background. Even for large images, this provides a fast feedback
where further user strokes are necessary. To summarize, our contributions are:

– An algorithm based on edge contraction is used to generate a Slim Graph
from the original graph without changing the value of the minimum cut.

– A proof is given that the value of the maximum flow on the Slim Graph is
equal to the maximum flow of the original graph.

– Several experiments on small and large scale images, as well as on resource
limited systems demonstrate the general applicability of our method.

– For further evaluation we will provide C-Sources for generating Slim Graphs
to the scientific community1.

Our contribution is neither a parallelization of an existing algorithm nor a multi-
scale approach to speedup and reduce the amount of memory of graph cuts.
Hence our algorithm does not suffer from the problems of these methods. In
contrast to the works in the field of applied mathematics on graph sparsification
and graph simplification our method preserves the value of the minimum cut
instead of approximating it and the given condition to test whether an edge is
simple or not is computationally cheap and much faster.

Paper Organization
In Section 2 we continue with a short review of discrete energy minimization,
which is the basis for our segmentation framework. Section 3 introduces the
proposed graph simplification to build Slim Graphs and proofs the equality of
the maximum flow value. The simplified user interaction by visualizing joined
nodes is described in Section 4. Experimental results in Section 5 demonstrate the
advantages of the proposed method. The paper finishes with a short conclusion.

2 Segmentation by Discrete Energy Minimization

The discrete energy E : Ln → R for the problem of binary image labeling can
be written as the sum of unary ϕi and pairwise functions ϕi,j

E(x) =
∑
i∈V

ϕi(xi) +
∑

(i,j)∈E

ϕi,j(xi, xj) , (1)

where V correspond to the set of all image pixels and E is the set of all edges
between pixels in a defined neighborhood N e.g. 4 or 8 neighborhood. For the
problem of binary image segmentation, which is addressed in this paper, the
label set L consists of a foreground (fg) and a background (bg) label. The unary
function ϕi is given as the minus log likelihood using a standard GMM model
[7]. It is defined as

ϕi(xi) = − logPr(Ii | xi = S) , (2)

where S is either fg or bg. The pairwise function ϕi,j takes the form of a contrast
sensitive Ising model and is defined as

ϕi,j(xi, xj) = γ · dist(i, j)−1 · [xi 6= xj] · exp(−β‖Ii − Ij‖2) . (3)

1 http://www.tnt.uni-hannover.de/project/Segmentation

SlimCuts: GraphCuts for High Resolution Images Using Graph Reduction 5

Here Ii and Ij describe the feature vectors of pixels i and j. The parameter γ
specifies the impact of the pairwise function. A small γ leads to a strong unary
term whereas a large γ leads to a weak unary term. Using the defined unary and
pairwise functions, the energy (1) is submodular and can hence be represented
by a graph [9]. Represented as a graph, the global minimum of the energy can
be computed with standard maximum flow/minimum cut algorithms [1].

Solving the labeling problem using maximum flow algorithm the energy func-
tion need to be represented by a graph. This can be done analogously to [9] by
defining the graph G = (VG , EG) as follows:

The set of vertices is simply the set of pixels unified with two special ver-
tices: VG = V ∪ {S, T}, where S denotes the source and T the sink. The set of
edges consists of the set of all neighboring pixels plus an edge between each pixel
and the source and sink: EG = E ∪ {(p, S), (p, T) | p ∈ V}. The capacities c(e)
of each edge are defined analogously to Boykov et al. [9]. As noted earlier, to
speed up the algorithms solving the maximum flow/minimum cut problem, one
can parallelize existing algorithms or reduce the number of variables by a multi-
scale approach. While the multi-scale approaches, as an example for reducing
the number of variables, suffer from the problem that the minimum of the large
scale problem (1) is only approximated, the parallelizing approaches use special
hardware components. Instead, here we propose an algorithm that computes the
true global minimum of (1) in a fraction of time and memory required by the
original algorithm without using special hardware. The proposed edge contrac-
tion guarantees that the minimum cut is preserved, while the given condition is
computational cheap and applicable for large scale problems.

3 Constructing Slim Graphs

In this section we explain how to construct a so called Slim Graph by merging
nodes that are connected by simple edges. We start defining these special edges
and prove that these edges are not part of any minimum cut. This operation is
also called edge contraction. We can then simplify the original graph by merging
nodes by the given rules. Finally we prove that the minimum cut of a Slim
Graph corresponds to the minimum cut of the original graph and can be used
to minimize the large scale optimization problem.

Lemma 1 Let G = (VG , EG) be a graph, A,B ∈ VG, eA,B ∈ EG the edge from
node A to node B and C a minimum s-t-cut.
If

c(eA,B) >
∑

i:ei,A∈EG
i6=B

c(ei,A) or c(eA,B) >
∑

i:eB,i∈EG
i6=A

c(eB,i) (4)

then
eA,B /∈ C. (5)

Simply spoken: If the weight of one edge e of node A is bigger then the sum of
all edges adjacent to A, then the minimum cut does not contain the edge e.

6 Björn Scheuermann, Bodo Rosenhahn

S T

A B

1 Ni jh

sj ti

sA

sB tB

tA

eA,B

S T

1 Ni jh

sj ti

{A, B}

a1

a1

bN

bN

ai
bi

ai + bi

sA + sB tA + tB

(i)

(ii)

S T

A B

1 Ni jh

sj ti

sA

sB tB

tA

eA,B

S T

1 Ni jh

sj ti

{A, B}

a1

a1

bN

bN

ai
bi

ai + bi

sA + sB tA + tB

(i)

(ii)

Fig. 2: Example of building a Slim Graph (ii) out of the original graph (i) because
of a simple edge between nodes A and B. The given rules join nodes A and B
in a single node {A,B}, replace edges connected to one of the nodes and merge
edges that are connected to both nodes.

Proof: Following Shannon, the value of the maximum flow is equal to the value
of a minimum cut. The value of the maximum flow in G can be computed with
the augmenting path-algorithm of Ford-Fulkerson [24]. Following this algorithm
paths from s to t are searched and augmented, as long as there exists a path
from s to t. Because of equation (4) the edge eA,B will never become saturated,
which means that the edge is not part of the minimum cut C ⇒ eA,B /∈ C. �

Those edges eA,B ∈ EG fulfilling equation (4) are called simple edges.

A similar Lemma was also given in [23]. They define a so called dominant
edge, with a stronger condition. Having a dominant edge e, there exists a mini-
mum cut not containing this edge. In contrast, our condition results in a simple
edge e that is not contained in any minimum cut, that is all minimum cuts are
preserved.
With the following rules we simplify the graph and reduce the number of vari-
ables of the maximum flow/minimum cut problem:
Simplifying a graph:
Let G = (VG , EG) be a graph with a simple edge eA,B ∈ EG connecting nodes
A,B ∈ VG . W.l.o.g. let eA,B fullfill the left condition of Equation (4). Then we

can create the Slim Graph G̃ = (ṼG , ẼG) as follows:
Nodes: ṼG = VG \{A,B}∪{AB}. That means we merge nodes A and B by node
AB and reduce the number of nodes in the Graph by one.
Edges: For the edges we can distinguish the following two cases:

(i) for all nodes i ∈ VG connected to exactly one of the nodes A or B: W.l.o.g. let
ei,A be the edge connecting node i with node A (ei,B /∈ EG). Then we replace
the edge ei,A by a new edge ei,AB with c(ei,AB) = c(ei,A). This operation
does not change the number of edges.

(ii) for all nodes i ∈ VG connected to to both of the nodes A and B with edges
ei,A and ei,B or eA,i and eB,i. We merge the two edges in one new edge

SlimCuts: GraphCuts for High Resolution Images Using Graph Reduction 7

S

T

1 2 3

4 5 6

7 8 9

20

20

2 8
856

1 5
218

6 8

S,1

T,9

2 3

4 5 6

7 82

8

8
56

1 5
21

8

6
8

S,1,4

5

7

2

10

6

1

2

1

6
S,1,4,2,3,7

T,9,8,6,5T,9,8,6

2,3

6

(a)

S

T

1 2 3

4 5 6

7 8 9

20

20

2 8
856

1 5
218

6 8

S,1

T,9

2 3

4 5 6

7 82

8

8
56

1 5
21

8

6
8

S,1,4

5

7

2

10

6

1

2

1

6
S,1,4,2,3,7

T,9,8,6,5T,9,8,6

2,3

6

(b)

S

T

1 2 3

4 5 6

7 8 9

20

20

2 8
856

1 5
218

6 8

S,1

T,9

2 3

4 5 6

7 82

8

8
56

1 5
21

8

6
8

5

7

2

10

6

1

2

1

6
S,1,4,2,3,7

T,9,8,6,5T,9,8,6

2,3

6

S,1,4

(c)

S

T

1 2 3

4 5 6

7 8 9

20

20

2 8
856

1 5
218

6 8

S,1

T,9

2 3

4 5 6

7 82

8

8
56

1 5
21

8

6
8

5

7

2

10

6

1

2

1

6
S,1,4,2,3,7

T,9,8,6,5T,9,8,6

2,3

6

S,1,4

(d)

Fig. 3: Example of simplifying a graph. (a) original graph; (b) Nodes S and 1 and
nodes T and 9 are connected with a simple edge and joint in one node; (c) Nodes
S and 4, 2 and 3 and nodes T, 8 and 6 can be joint in one node respectively;
(d) shows the final Slim Graph. At each step the value of the maximum flow
remains the same and also the final segmentation stays the same.

ei,AB or eAB,i with the capacities c(ei,AB) = c(ei,A) + c(ei,B) or c(eAB,i) =
c(eA,i) + c(eB,i). This operation reduces the number of edges by one.

Figure 2 shows the construction of a Slim Graph. Assuming a simple edge eA,B

we can merge nodes A and B to a single node {A,B}. Edges connected to exactly
one of the nodes are replaced by new edge. In the given example, these nodes
are 1, . . . i− 1, j + 1, . . . N . The edges eA,1 . . . eA,i−1, eB,j+1, . . . eB,N connecting
the nodes to A or B are replaced by edges eAB,1 . . . eAB,i−1, eAB,j+1, . . . eAB,N

without changing the capacities ai, bj of these edges. Nodes that are connected
to both A and B in this example are i, . . . j. For these nodes we merge the two
edges eA,h and eB,h to one edge eAB,h with capacity ah + bh. The resulting Slim
Graph has 1 node and j − i edges less than the original graph.

Theorem 1 Let G = (VG , EG) be a graph, A,B ∈ VG, eA,B ∈ EG a simple edge
connecting nodes A and B and f the maximum flow in Graph G. Since eA,B

is a simple edge we can build the Slim Graph G̃ = (ṼG , ẼG). The value of the
maximum flow f̃ of graph G̃ is equal to the value of the maximum flow in the
original graph

|f | = |f̃ | . (6)

Proof: Following lemma 1 we know that eA,B /∈ C, where C is the minimum
cut of G. This implies that the simple edge never becomes saturated. Therefore
its capacity can be set to infinity without affecting the minimum cut or the
maximum flow. It follows that both nodes A and B are in the same partition
of G \ C. W.l.o.g. let both nodes be in the partition connected to S. Hence the
constructed node AB ∈ ṼG in the graph G̃ \ C is connected to S. To prove the
theorem we will now show that:

(i) the minimum cut C of graph G implies a cut C̃ ′ in G̃, with |C| = |C̃ ′|.

8 Björn Scheuermann, Bodo Rosenhahn

(ii) the maximum flow f leads to a flow f̃ ′ in G̃, with the same value |f | = |f̃ ′|

The first condition provides an upper bound for the value of the minimum cut
in G̃. On the other hand, the value of the flow |f̃ ′| in Graph G̃ provides a lower
bound for the minimum cut. Since they are equal, the value of the maximum
flow / minimum cut does not change in the Slim Graph.
Proof of (i): Let i ∈ V be nodes with a path to terminal node T ∈ G\C. Since
A and B are connected to S, all edges eA,i and eB,i are part of the minimum

cut C. Defining C̃ ′ as follows implies a cut in the Slim Graph G̃:

C̃ ′ ={ei,j | ei,j ∈ ẼG and ei,j ∈ C}
∪ {ei,AB | ei,A or ei,B ∈ C}

(7)

Due to the construction of the Slim Graph this definition leaves the value of the
cut unchanged. Hence it holds |C| = |C̃ ′|.
Proof of (ii): Let i ∈ V be a node and p = (S, . . . , A, i, . . . , T) a path from
S to T in G with flow f(p). Following the construction of the Slim Graph the
flow f(p) is preserved by the path p̃ = (S, . . . , AB, i, . . . , T) in G̃. Hence the
maximum flow of G implies a lower bound for the maximum flow in G̃. �

Figure 3 shows how a Slim Graph can be constructed. By merging nodes
that are connected by a simple edge the original graph (a) is simplified to the
Slim Graph (d). The value of the maximum flow and the minimum cut can be
computed more efficiently on the new graph and remains identical. The labeling
of the original graph is implicitly included in the labeling of the Slim Graph.

4 Slim Graphs for Simplified User Interaction

In this section we will show how the Slim Graph can be integrated into the
segmentation process to simplify user interactions. The visualization of the Slim
Graph is used to guide the user where to place additional strokes. Analyzing the
original graph shows, that simple edges exists most likely between pixel-nodes
and terminal-nodes. Every pixel p that has been marked by the user or fulfill

− logPr(Ii | xi = S) > γ ·
∑
j∈N

dist(i, j)−1 · [xi 6= xj] · exp(−β‖Ii − Ij‖2) , (8)

where S is either fg or bg, is connected to the corresponding terminal node by a
simple edge. Visualizing these pixels in a label map results in a partial labeling
with pixels labeled as foreground or background due to user marks or regional
properties and unlabeled pixel.
Figure 4 shows an example image with user strokes and the label map coming
from the Slim Graph. There are many pixels assigned to foreground or back-
ground due to their regional properties. Based on the given user input the final
segmentation will have two regions that are assigned a wrong label. To correct
the segmentation the user has to mark these two regions or even one of them as

SlimCuts: GraphCuts for High Resolution Images Using Graph Reduction 9

(a) (b) (c) (d) (e)

Fig. 4: Example of utilizing the Slim Graph to simplify user interaction. (a) the
original image with user scribbles; (b) the label map defined by the Slim Graph.
White and black pixels denote fore- and background, grey pixels are unlabeled.
(c) resulting segmentation using GraphCuts and possible additional user strokes
to refine the segmentation (green and red); (d) label map with one additional
user strokes (red); (e) final segmentation.

background. That means the user has three options to affect the segmentation,
shown in Figure 4c. In the label map coming from the Slim Graph there is ex-
actly one region assigned a wrong label. That implies that the user has to mark
this region as background to achieve a right label map. In an optimal situation
this user mark would also correct the labeling of the other region, leading to a
good segmentation result with only one additional user mark. This situation is
exemplarily shown in Figure 4d. Marking the wrong labeled region in the label
map, guide the user to the desired segmentation 4e.

Using the proposed label map as additional information hints the user to
place strokes in regions with high regional support. On the one hand this can
lead to less user interactions for the problem of image segmentation and on the
other hand, the label map can be computed very efficiently. That means, that it
is much faster to start refining the label map of a large scale image than refining
the segmentation.

5 Experiments

We present an evaluation of the proposed method on small scale images from
the database used by Blake et al. [2] as well as on large scale images with up
to 26 million pixels found on the web. The images, trimaps and ground truth
data is available online2,3. In the experiments we used the same energy function

2 http://research.microsoft.com/en-us/um/cambridge/projects/

visionimagevideoediting/segmentation/grabcut.htm
3 http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/

segbench/

10 Björn Scheuermann, Bodo Rosenhahn

0

100

200

300

400

500

image number
tim

e
in

 m
s

simplification
proposed method
BK algorithm

Fig. 5: Small scale images: Running time over 46 small scale images with image
sizes between 481x321 and 640x480 pixels. The average speedup of the proposed
method compared to BK-algorithm [1] on these small scale problems is 40%. The
maximum and minimum speedup is 70% and 14% respectively. The running time
of the proposed method includes the simplifying of the original graph.

proposed by Blake et al. [2] and the same set of parameters. Since our method
does not change the segmentation result we will not show any segmentation
results. Instead we evaluate our contribution by comparing the computational
time of BK-algorithm with and without using our proposed Slim Graphs. We
ran all our experiments on a MacBook Pro with 2.4 GHz Intel Core i5 processor
and 4GB Ram.

5.1 Experiments on small scale images

Figure 5 shows the running times of Boykov’s algorithm on the original graph
and the Slim Graph and the running time of simplifying the graph. In the run-
ning time on the original graph we included the time creating the graph and
computing the maximum flow. We excluded the time computing the capacities
and histograms. The running time on the Slim Graph further includes the time
for building the Slim Graph. The experiments on the small scale images show
that using Slim Graphs never affects the running time negatively and can sig-
nificantly speedup the segmentation process.

As mentioned earlier, most simple edges exists between pixel-nodes and
terminal-nodes. Since the weight of these edges is defined by the unary term, we
performed a second experiment on small scale images, comparing the effective-
ness of the Slim Graph under weak vs. strong unary terms. Therefore we com-
puted the maximum flow for one image, three different trimaps (lasso, rectangle
and user strokes) and varied the parameter γ from 0 (strong unary term) to 100
(weak unary term). Figure 6 shows the running times of our experiments. It turns
out, that the speedup using Slim Graphs is highest using strong unary terms and
trimaps separating fore- and background with small errors. Regardless, even with
weak unary terms and poor initializations (e.g. rectangular-trimap) the proposed
algorithm using the proposed Slim Graph performed faster.

SlimCuts: GraphCuts for High Resolution Images Using Graph Reduction 11

(a)

0 20 40 60 80 1000

50

100

150

200

250

gamma

tim
e

in
 m

s

simplification
proposed method
BK algorithm

(b)

0 20 40 60 80 1000

200

400

600

gamma

tim
e

in
 m

s

simplification
proposed method
BK algorithm

(c)

0 20 40 60 80 1000

50

100

150

gamma
tim

e
in

 m
s

simplification
proposed method
BK algorithm

(d)

Fig. 6: Weak vs. Strong Unary Terms: Running time over the flower image (a)
with different trimaps and varying γ; (b) Lasso trimap around the flowers; (c)
Rectangular trimap; (d) user strokes provided in (a). Using good initializations
(b) and (c) the proposed algorithm performed significantly faster. Nevertheless,
even with a poor initialization and a weak unary term we achieved a speedup.

5.2 Experiments on large scale images

To evaluate the speed up of the proposed method we used large scale images
with up to 26 MP and down sampled these images to several image-sizes. As
shown in Figure 7, solving the maximum flow problem on our Slim Graphs sig-
nificantly speeds up the algorithm. This speed up is achieved by a large decrease
of variables/nodes due to many simple edges. As already shown by Delong and
Boykov [8] the problem of BK-algorithm is that it becomes inefficient and unus-
able, if the graph does not fit into the physical memory. Due to this limitation
the algorithm is greatly extended by the proposed method.

5.3 Experiments on resource-limited systems

We also compared the running time of BK-algorithm on Apple’s iPhone 4 with
512MB Ram. Therefore we used 7 different sized images from 0.15 MP up to 2.52
MP. The average speedup of using Slim Graphs was approximately 32%. The
limitations of the physical memory prohibited a comparison of larger images.
The results of the experiments are shown in Figure 8a. Using Slim Graphs we
are able to segment images with up to 2.5 MP in 6 seconds on an iPhone 4, while

12 Björn Scheuermann, Bodo Rosenhahn

1.03 3.6 8.54 14.53 25.841 ms

1 s

1 min

1 h

image size in MP

tim
e

(lo
ga

rit
hm

ic
 s

ca
le

)

simplification
proposed method
BK algorithm

2.6 s

38 min

Fig. 7: Large scale images: Running time with one image and image sizes up
to 25.84 MP. Up to an image size of 8.54 MP, the proposed method was ap-
proximately 50% faster. Larger images exceeded the physical memory and the
proposed method was approximately 877 times faster. On the original image size
of 25.84 MP the computation time of the BK-algorithm was 38 minutes. The
proposed method required 2.6 seconds. This time already includes the graph
simplification step..

using the original Graph we can only compute segmentations for images up to
1.6 MP in 8 seconds. The biggest speedup of approximately 45% where reached
on the image with 1.61MP, because the number of unlabeled nodes could be
reduced from 1.61million to 446951.

6 Conclusion

An efficient method for graph simplification of maximum flow/ minimum cut
algorithms is presented. It constructs a Slim Graph by merging nodes that are
connected by simple edges. A proof that the maximum flow of the much smaller
graph remains identical is given. Hence it can be applied to any maximum flow
algorithm. We demonstrated that the speedup is between 14 and 70 percent on
small scale problems compared to the BK-algorithm. On high quality images with
up to 26 MP, the proposed method was up to 877 times faster. It was shown
that the proposed method required much less memory allowing segmentation
of images of reasonable sizes even on mobile devices. A further reduction of
computation time can be achieved by using parallel hardware architecture. In
addition the visualization of our Slim Graph can be utilized to guide the user
during the segmentation process resulting in less user interaction.

References

1. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow
algorithms for energy minimization in vision. IEEE Trans. on Pattern Analysis
and Machine Intelligence (TPAMI) 26(9) (2004) 1124–1137

SlimCuts: GraphCuts for High Resolution Images Using Graph Reduction 13

0.15 0.30 0.63 0.90 1.23 1.61 2.520

2

4

6

8

image size in MP

tim
e

in
 s

simplification
proposed method
BK algorithm

(a) (b)

Fig. 8: Resource-limited systems: (a): Running time in seconds over 7 different
sized images. The average speedup using Slim Graphs was approximately 36%.
Running BK-algorithm without using Slim Graphs was not possible on images
bigger than 1.6 MP. The running time of the proposed method includes the
graph simplification. (b): Example segmentation using Apple’s iPhone. Left im-
age shows an image with user scribbles and the right image the final segmenta-
tion.

2. Blake, A., Rother, C., Brown, M., Perez, P., Torr, P.: Interactive image segmen-
tation using an adaptive gmmrf model. In: European Conf. Computer Vision
(ECCV). (2004) 428–441

3. Boykov, Y., Kolmogorov, V.: Computing geodesics and minimal surfaces via graph
cuts. Nineth IEEE Int. Conf. on Computer Vision (ICCV) (2003) 26–33

4. Lempitsky, V., Boykov, Y.: Global optimization for shape fitting. In: Comp. Vision
and Pattern Recognition (CVPR). (2007) 1–8

5. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via
graph cuts. IEEE Trans. on Pattern Analysis and Machine Intelligence (TPAMI)
23(11) (2002) 1222–1239

6. Kohli, P., Torr, P.H.S.: Efficiently solving dynamic markov random fields using
graph cuts. In: Tenth IEEE Int. Conf. on Computer Vision (ICCV). Volume 2.
(2005) 922–929

7. Rother, C., Kolmogorov, V., Blake, A.: Grabcut: Interactive foreground extraction
using iterated graph cuts. SIGGRAPH 23(3) (2004) 309–314

8. Delong, A., Boykov, Y.: A scalable graph-cut algorithm for n-d grids. In: Comp.
Vision and Pattern Recognition (CVPR). (2008)

9. Boykov, Y., Jolly, M.: Interactive graph cuts for optimal boundary & region seg-
mentation of objects in nd images. In: Eighth IEEE Int. Conf. on Computer Vision
(ICCV). Volume 1. (2001) 105–112

10. Strandmark, P., Kahl, F.: Parallel and distributed graph cuts by dual decomposi-
tion. In: Comp. Vision and Pattern Recognition (CVPR). (2010)

11. Vineet, V., Narayanan, P.: Cuda cuts: Fast graph cuts on the gpu. In: Comp.
Vision and Pattern Recognition Workshops (CVPRW). (2008)

12. Bhusnurmath, A., Taylor, C.: Graph cuts via l1 norm minimization. IEEE Trans.
on Pattern Analysis and Machine Intelligence (TPAMI) 30(10) (2008) 1866–1871

14 Björn Scheuermann, Bodo Rosenhahn

13. Klodt, M., Schoenemann, T., Kolev, K., Schikora, M., Cremers, D.: An experi-
mental comparison of discrete and continuous shape optimization methods. In:
European Conf. Computer Vision (ECCV). (2008)

14. Puzicha, J., Buhmann, J.: Multiscale annealing for grouping and unsupervised
texture segmentation. Comp. Vision and Image Understanding 76(3) (1999) 213–
230

15. Lombaert, H., Sun, Y., Grady, L., Xu, C.: A multilevel banded graph cuts method
for fast image segmentation. In: Tenth IEEE Int. Conf. on Computer Vision
(ICCV). Volume 1. (2005) 259–265

16. Sinop, A., Grady, L.: Accurate banded graph cut segmentation of thin structures
using laplacian pyramids. Medical Image Computing and Computer-Assisted In-
tervention (MICCAI) 4191 (2006) 896–903

17. Kohli, P., Lempitsky, V., Rother, C.: Uncertainty driven multi-scale optimization.
Pattern Recognition (DAGM) (2010) 242–251

18. Karger, D., Stein, C.: A new approach to the minimum cut problem. Journal of
the ACM (JACM) 43(4) (1996) 601–640

19. Benczúr, A.A., Karger, D.R.: Approximating s-t minimum cuts in Õ(n2) time. In:
Proceedings of the twenty-eighth annual ACM symposium on Theory of computing.
STOC ’96 (1996) 47–55

20. Spielman, D., Teng, S.: Nearly-linear time algorithms for graph partitioning, graph
sparsification, and solving linear systems. In: Proceedings of the thirty-sixth annual
ACM symposium on Theory of computing. STOC ’04, ACM (2004) 81–90

21. Chekuri, C., Goldberg, A., Karger, D., Levine, M., Stein, C.: Experimental study
of minimum cut algorithms. In: Proceedings of the eighth annual ACM-SIAM
symposium on Discrete algorithms. SODA ’97, Society for Industrial and Applied
Mathematics (1997) 324–333

22. Padberg, M., Rinaldi, G.: An efficient algorithm for the minimum capacity cut
problem. Mathematical Programming 47(1) (1990) 19–36

23. Hogstedt, K., Kimelman, D., Rajan, V., Roth, T., Wegman, M.: Graph cutting
algorithms for distributed applications partitioning. ACM SIGMETRICS Perfor-
mance Evaluation Review 28(4) (2001) 27–29

24. Ford, L., Fulkerson, D.: Maximum flow through a network. Canadian J. of Math.
8 (1956) 299–404

