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Abstract

In this paper we propose face tracking on a mobile de-
vice by integrating an inertial measurement unit into a
boosting based face detection framework. Since boosting
based methods are highly rotational variant, we use gyro-
scope data to compensate for the camera orientation by vir-
tual compensation of the camera ego-motion. The proposed
fusion of inertial sensors and face detection has been tested
on Apple’s iPhone 4. The tests reveal that the proposed fu-
sion provides significant better results with only minor com-
putational overhead compared to the reference face detec-
tion algorithm.

1. Introduction
In the last decade, much work on face detection has been

done [15] and a variety of different approaches have been
developed. Yang et al. [14] classify face detection meth-
ods into four categories: knowledge-based methods, fea-
ture invariant approaches, template matching methods and
appearance-based methods. They characterize appearance-
based methods as algorithms that learn models from a set of
training images. Zhang et al. [15] recapitulate that in gen-
eral appearance-based methods have shown superior perfor-
mance to algorithms belonging to the remaining three cate-
gories. One of the most famous approaches belonging into
that category is the object detection framework presented by
Viola and Jones [12] that utilizes the machine learning al-
gorithm Adaboost [5] in the classifier training. They boost
weak classifiers based on so called Haar-like features and
use an intermediate image representation, the integral im-
age, for efficient feature computation. The drawback of
many boosting based face detectors, like the framework pre-
sented by Viola and Jones, is that they are highly rotational
variant.

In practice, however, it is possible that the faces are not
upright in the image and boosting based methods, trained
on upright faces, fail to detect the face. This situation oc-
curs if either the people rotate their faces while taking an
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Figure 1: Comparison between standard face detection us-
ing the OpenCV implementation of Viola and Jones (a) and
the proposed integration of inertial sensors to compensate
the camera ego-motion (b).

image or, more often, if the camera is not upright. In this
paper we focus only on the situation, where the camera is
not upright. We will use inertial sensors of the device to
virtually align the image and run Viola and Jones detector
on the rotated image. The rotation will make sure, that the
face will become upright in the rotated image and thus the
algorithm is able to detect the face.

1.1. Prior Work

In recent years several approaches have been proposed
to achieve a rotation invariant detection based on the frame-
work of Viola and Jones. In [4], Du et al. introduce a new
set of ± 26.565◦ rotated Haar-like features that can be effi-
ciently computed. Utilizing the new features they divide the
360◦ plane into 12 orientations on which faces are searched
for. Although the rotated features can be calculated in an
efficient way this method has the drawback that in princi-
ple 12-times as much features have to be evaluated, which
overcharges the processing power of most mobile devices.

In [13], Wu et al. proposed a fast rotation invariant face
detection, also based on a variant of Adaboost and Haar-like
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features. They divide human faces according to the variant
appearance due to different view points. Because of the run-
ning time of 250 ms for a 320× 240 image on a Pentium 4
2.4 GHz PC, their rotation invariant multi-view face detec-
tion is also not applicable for a mobile device.

Ren et al. [11] proposed several optimizations for the Vi-
ola and Jones face detection algorithm on mobile devices.
The optimizations are categorized into three classes: data
reduction, search reduction and numerical reduction. Re-
ducing the amount of data e.g. by spacial subsampling lead
to a smaller detection rate. Also the proposed search re-
duction will lead to a smaller detection rate. Since our mo-
bile device, Apples iPhone 4, has a full floating point unit
the numerical reduction gained no improvement in running
time.

Inertial sensors are getting major attention over the last
years in the computer vision community. The main rea-
son is, that it is a comparable cheap sensor which is readily
available on mobile devices and it can act complementary
to the visual cues provided from image data: In [9], Pons
et al. used inertial sensors to stabilize markerless human
motion capturing. Also in the problem of reconstructing 3D
structure and camera motion from a sequence of images,
known as structure from motion (SfM), additional inertial
sensors can provide valuable information. In [6] Labrie et
al. combined a camera with an inertial sensor to estimate
the camera translations between the frames of a sequence.
By this means they improved the efficiency of the required
process of matching between the images. Clipp et al. [3]
make use of consumer inertial sensors and GPS system to
build a mobile reconstruction system for large scale urban
scenes. In [10], Ramachandran et al. simplified the SfM
problem by utilizing the measurements of inertial sensors.

1.2. Contribution

We propose the fusion of inertial sensors and the boost-
ing based face detection by Viola and Jones. To overcome
the effect that a face is not detected if the camera rotates,
we utilize inertial sensors to compute a virtual upright im-
age. Using the virtual upright image, instead of the original
image, for face detection lead to a huge improvement for
the situation, that the camera is rotated. Since there is no
benchmark available for the fusion of inertial sensors and
face detection, we will make our test sequences including
the sensor information publicly available. To summarize,
our contribution are:

• We ported the OpenCV [2] implementation of the Vi-
ola and Jones algorithm to Apple’s iPhone 4.

• By utilizing inertial sensors we compensate camera
ego-motion.

• The computational overhead is insignificant.
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Figure 2: Rectangle in an integral image. The sum of the
pixels in the rectangle edged by the points A,B,C and D
can be calculated as D +A−B − C

• We will provide the video sequences and sensor data
for the scientific community.

2. Boosting based face detection

Adaptive Boosting, Adaboost, is a machine learning al-
gorithm proposed by Freund and Schapire [5]. During
a round-based training phase it automatically composes a
strong classifier as a linear combination of some weak clas-
sifiers. In each round one weak classifier is selected from
a given set of classifier, that classifies a labeled training
set with minimal error. That classifier is added to the lin-
ear combination and thereby weighted based on its classi-
fication error. The key point of Adaptive Boosting is that
also weights are assigned to the elements of the training set
and the classification error is calculated from the weights of
the wrongly classified elements. After each training round
these weights are adapted such that incorrectly classified el-
ements obtain higher influence on the classification error.
In that way Adaboost concentrates on the challenging ele-
ments of the training set during the classifier selection.

In [12] Viola and Jones proposed the application of Ad-
aboost in object detection. They employed a set of Haar-
like features as the basis for the classifier selection and in-
troduced integral images to allow for their efficient calcula-
tion. Haar-like features describe rectangular shapes in the
way that the difference between the sums of pixel intensi-
ties in rectangular image areas is calculated. In the integral
image representation each pixel is calculated as the sum of
the pixels above and to the left, including itself. Therefore
the sums of rectangular regions in Haar-like features can
be computed from integral images by evaluating only the
corner pixels of the rectangles, see Fig. 2. Obviously this
property is only valid for rectangles whose edges are par-
allel to the image axes. Hence in the framework proposed
by Viola and Jones all Haar-like features are aligned in that
way.

The training phase of the object detection framework is
computational expensive as the selection of the weak clas-
sifiers is performed by an exhaustive search. This process
often takes several hours or days to complete. But the strong
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Figure 3: Attentional cascade consisting of 5 stages. The
classifier in each stage assigns the examination windows to
True or False class and thus decides if they are passed to the
next stage.

classifier formed by the Adaboost algorithm can be applied
in real-time because it is, although complex, a linear com-
bination of classifiers based on Haar-like features. Addi-
tionally Viola and Jones set up their detector in an atten-
tional cascade as shown in Fig. 3. In the cascade structure
earlier stages contain small and efficient boosted classifiers,
which are trained to reject a significant amount of negative
sub-windows while preserving almost all positive examples.
The following stages consist of increasingly complex clas-
sifiers that achieve lower false positive rates. As most of the
examined sub-windows are rejected in the early stages only
few are passed to the slower complex classifiers. Therefore
the attentional cascade of classifiers can be processed very
efficiently.

During training the strong classifier has been adapted to
the task of classifying the training set of positive and neg-
ative example images. To enable Adaboost the creation of
a classifier capable to describe a high variety of unseen ob-
jects the positive training set is usually designed on the one
hand to contain enough variation. On the other hand the
positive set should be constrained to reduce the complex-
ity of the classification problem. For this reason many face
detectors, like in OpenCV [2], have been trained solely on
upright faces yielding a highly rotational variant classifier.

Because of the alignment constraints on the Haar-like
features these face classifiers cannot be rotated without
strong decreases in performance and thus rotated faces are
not detected.

3. Inertial Measurement Unit

The mobile devices used in our work, Apples iPhone 4
and the 4G iPod Touch, provide an inertial measurement
unit (IMU) consisting of a three axis accelerometer and a
three axis gyroscope [1]. To feature a full nine degree-of-
freedom (9-DoF) inertial sensing device, Apple combined
both MEMS (Micro-Electro-Mechanical Systems) with an
electronic compass. In this work only the 3-DoF gyroscope-
data is used to determine the relevant orientation of the cam-
era.
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Figure 4: (a) Camera-coordinate system. (b) Projection
of zworld onto the screen surface spanned by the vectors
(xdevice, ydevice). (c) To compute the virtual upright image
the yaw-angle describes the rotation angle.

3.1. World-coordinate System

The attitude, or spatial orientation of the device is mea-
sured in relation to the so called world-coordinate sys-
tem. This reference system is established automatically
by the device when an application starts. The world-
coordinate system defined by the IMU is spanned by the
axes (xworld, yworld, zworld), where

zworld = −
agravitation

||agravitation||
, (1)

meaning that the z-axis is always the negative direction of
gravity measured by the internal accelerometer. The x-axis
and y-axis are always defined orthogonal to gravity to define
right-hand space. To provide a constant assignment during a
session, the x-axis and y-axis are internally defined accord-
ing to the device orientation. Apple provides a proprietary
algorithm that can accurately calculate absolute orientations
relative to the static world coordinate system.

3.2. Camera-coordinate system

Fig. 4a shows the camera-coordinate system defined by
the basis-vectors (xdevice, ydevice, zdevice). In contrast to the
world-coordinate system, the camera-coordinate system is
well defined. The z-axis is defined to be orthogonal to the
devices screen surface, y-axis is parallel to the longitudi-
nal side and the x-axis to the transverse side. Analogue to
the world-coordinate system the basis defines a right-hand
space. For our problem we are especially interested in the
orientation of the defined camera-coordinate system in rela-
tion to zworld. Therefore we need to compute the angle be-
tween a projection of zworld onto the device screen surface
and ydevice.

68



'
1

'
2

d
1

d
2

e
2

e
1

a

bounding rect

image

b

Figure 5: Bounding Rectangle. Having a yaw-angle ϕ and
rotating the image increases its dimensions.

4. Mapping the Two Coordinate Systems
Apples proprietary algorithm provides a stream of

quaternions [8] (or rotation-matrices) that define, at every
frame, the map or coordinate transformation from the ini-
tial world-coordinate system to the device’s current refer-
ence frame [1]. Using quaternions, we are able to com-
pute the camera-coordinate system. Having a quaternion
q = (qre, qim) describing the absolute orientation of frame
t relative to the initial reference frame we get:

(0, idevice,t) = q(0, iworld)q
−1 , (2)

for i = (xdevice,t, ydevice,t, zdevice,t) ∈ R3. (0, iworld)
describes the reference world-coordinate system and
(0, idevice,t) describes the current camera-coordinate system
at frame t. Now we want to compute a mapping to align
ydevice with the negative direction of gravity zworld. For this,
we use the projection zproj,t of the axis zworld on the devices
screen surface at frame t.

zproj,t = zworld − 〈zworld|zdevice,t〉 · zdevice,t , (3)

as illustrated in Fig. 4b.
If zproj = ydevice holds, the devices y-axis is perfect

aligned with the negative direction of gravity and we can
use the current frame directly to detect a face using the Viola
and Jones face detector. On the other hand, if zproj 6= ydevice
the device y-axis is not aligned with the negative direction
of gravity and we compute the so called yaw-angle accord-
ing to (see Fig. 4c):

cos(ϕyaw) = ±〈ydevice,t|zproj,t〉/||zproj,t|| . (4)

We choose the positive sign, if 〈ydevice × zworld|zdevice〉 > 0
and else the negative sign. This gives us the angle ϕyaw =
]ydevice, zproj, that we need for transforming the current im-
age and align it with zworld.

4.1. Rotating the Image

Having the yaw-angle, we rotate the image and produce
an virtual upright image for the Viola and Jones face de-
tector. The first step is to compute the so called bounding
rectangle, since we do not want to loose information. The
bounding rectangle is defined according to Fig. 5 and the
equations:

d = d1 + d2 = a cosϕyaw + b sinϕyaw

e = e1 + e2 = a sinϕyaw + b cosϕyaw
(5)

This implies that the aligned frame dimension gets bigger
according to ϕyaw. Since the additional pixels are defined
to be white, we use OpenCV’s option Canny pruning [2] to
skip these region in the face detection algorithm.

5. Experiments

For face detection using inertial sensors to compute a
virtual upright image, there is no standard test set avail-
able. Therefore we provide detection results on 3 video se-
quences recorded with an iPhone 4. For all sequences we
logged the angle of rotation ϕyaw according to Equation 4.
All sequences were recorded in a public environment with
the constraint, that a person is in front of the camera.

To show, that the rotation dependency of the Viola and
Jones face detector has been resolved in case of a device ro-
tation, we provide experiments on 3 video sequences with
different situations. The individual cases are classified ac-
cording to Table 1. The results presented in the diagrams
for each of the situations show if either the face has been
detected (1) or not (0). The x-axes in the diagrams state the
yaw-angle of the camera ego-motion from −180◦ till 180◦.

Because of the additional rotation of every frame and the
different image size we further analyzed the running time
of both methods on an iPhone 4. For the face detection we
used the OpenCV implementation [2], which is an improved
version of the Viola and Jones algorithm, implemented by
Lienhart [7].

Using an image size of 192× 144 and a minimum patch
size of 20 pixels, the running time of Viola and Jones face
detector (OpenCV implementation) on an iPhone 4 is about
80 ms. Assume a 45◦ rotation, resulting in an image size
of ≈ 238 × 283, the running time of Viola and Jones face
detector is about 150 ms plus 12 ms needed for the rotation.
Increasing the image size to 480 × 360, which correspond
to a rotated image size of 594 × 594, the running times are
210 ms and 350 ms plus 70 ms for the image transformation.
This means that the running time is, in the worst case, dou-
bled. It seems that the OpenCV implementation of Canny
pruning does not skip the additional regions. Skipping these
regions, since there is no face, would speed up the presented
approach.

69



(a) (b)

(c) (d)

Figure 6: Example frames of all sequences: (a) Seq. 1:
upright camera and upright face. Both algorithms detect
the face; (b) Seq. 2: upright camera and rotated face.
Both algorithms performed comparably; (c+d) Seq. 3: ro-
tated camera and upright face. The proposed fusion outper-
formed the standard algorithm.

CAMERA FACE SYMBOLIC

Sequence 1 straight straight

Sequence 2 straight rotated

Sequence 3 rotated straight

Table 1: Evaluation of test cases

Sequence 1, as shown in Figure 6a, analyzes whether
the alteration and extension of the framework has a nega-
tive impact for the standard case. This is a situation of ideal
conditions for the unmodified face detector. The face is al-
most perfectly aligned upright and thus corresponds to the
expected value of the algorithm. The yaw-angle computed
is almost zero, so that the individual frames are rotated with
a small angle. The experimental video sequence consists of
165 frames and yaw-angles between ≈ −9◦ and ≈ 11◦.

Figure 7 shows, that the extension causes no loss of

Figure 7: Detection-rate on video sequence 1. The camera
and the face are almost perfectly aligned upright. Both al-
gorithms detect the face in every frame. The y-axis states
weather a face is detected (1) or not (0). The x-axis depicts
the yaw-angle of the camera ego-motion.

Figure 8: Detection-rate on video sequence 2. The camera
is almost perfectly aligned upright and the face rotates to the
left and to the right. Both algorithms perform comparably.
The y-axis states weather a face is detected (1) or not (0).
The x-axis depicts the yaw-angle of the camera ego-motion.

quality compared to the conventional algorithm, since both
methods detect the face in every frame.

Similar to the first sequence, we did not change the di-
rection of the camera orientation in sequence 2. The face,
however, turns from the ideal position to a rotated one. As
expected and shown in figure 6b, both algorithms fail to
recognize the face after a certain amount of rotation. Since
the camera was not perfectly aligned, the original algorithm
performed slightly better. The experimental video sequence
consists of 352 frames, a camera yaw angle between≈ −8◦
and≈ 8◦ and a face rotation around zworld between≈ −30◦
and ≈ 45◦.

The graph in Figure 8 shows, that both algorithms
achieve a similar performance in this case.

The third sequence analyzes the main weakness, which
was the motivation for this paper. An upright face in front
of the camera and the camera being rotated, see Figure 6c.
For the evaluation we recorded a sequence with 472 frames
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Figure 9: Detection-rate on video sequence 3. The face in
front of the camera is upright and the camera performs a
full 360◦rotation. This is the main motivation of our paper.
The proposed fusion of Viola and Jones face detector and
inertial sensors to compensate the ego-motion of the cam-
era clearly outperforms the standard approach. The y-axis
states weather a face is detected (1) or not (0). The x-axis
depicts the yaw-angle of the camera ego-motion.

] FRAMES OPENCV FUSION

Sequence 1 165 100 % 100 %
Sequence 2 352 ≈ 54 % ≈ 52 %
Sequence 3 472 ≈ 7 % 100 %

Table 2: Comparison of detection rates using the OpenCV
implementation of Viola and Jones and the proposed fusion
with inertial sensors.

and the camera did a full 360◦ rotation. For the traditional
Viola and Jones algorithm this means, that the face is no
longer in the expected orientation and the detection fails, as
shown in Figure 9. Using the inertial sensors to compute
the camera ego-motion and align the face virtually however
performed flawlessly and managed to find the face in 100%
of the tested frames. For this case the integration of an IMU
into face detection outperforms the standard algorithm.

Table 2 gives a complete overview of the detection rates
on the tested sequences.

6. Conclusion
We presented an efficient fusion of an inertial measure-

ment unit and boosting based face detection by Viola and
Jones. Using the internal IMU, in our case the gyroscope
of Apple’s iPhone 4, we compute a virtual upright image
and align the vertical axis. Running Viola and Jones face
detector on the virtual upright image instead of the origi-
nal gained much better results. In our experiments, we have
shown that the proposed fusion is efficient and the computa-
tional overhead is insignificant. We showed, that our fusion
clearly outperforms the standard approach if the camera ro-
tates, while the face stays upright in front of the camera.

Compared to other algorithms, which claim to be rotation
invariant, our method is fast enough to run on a mobile de-
vice like Apple’s iPhone 4. Since there is no test set avail-
able for the integration of inertial sensors into face detection
algorithms we will publish our sequences and sensor data.
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