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Abstract—The accuracy evaluation of image feature detectors
is done using the repeatability criterion. Therefore, a well-
known data set consisting of image sequences and homography
matrices is processed. This data serves as ground truth mapping
information for the evaluation and is used in many computer
vision papers.

An accuracy validation of the benchmarks has not been done
so far and is provided in this work. The accuracy is limited
and evaluations of feature detectors may result in erroneous
conclusions.

Using a differential evolution approach for the optimization
of a new, feature-independent cost function, the accuracy of the
ground truth homographies is increased. The results are validated

using comparisons between the repeatability rates before and
after the proposed optimization. The new homographies provide
better repeatability results for each detector. The repeatability
rate is increased by up to 20%.

I. INTRODUCTION

The detection of image features is a requirement for many

computer vision challenges such as object recognition, mobile

robot navigation, or scene reconstruction. In the latter case, the

accuracy of the detected points or regions is of key interest.

Only small errors in the feature localization in the image can

lead to large reconstruction errors, depending on the distance

between the camera and the geometry of the scene.

Features are used to establish correspondences between

different images containing the same scene captured by a

camera. To obtain reasonable and comparable feature points,

the image signal surrounding the feature position is analyzed

and distinctive characteristics of this region are extracted.

These characteristics are usually assembled to a vector which

describes the feature. This vector, called descriptor [1], is

used to establish correspondences by calculating a similarity

measure (L2 distance) between the current descriptor and the

feature descriptors of a second image. Feature detection and

correspondence analysis is more challenging if the baseline

between the cameras capturing the images is large. The region

description of corresponding features before and after the

viewpoint change should be the same. Several methods have

been proposed in the literature to model invariants, such as

brightness change and rotation [2], [3], scale change [1], [4],

Fig. 1: Mapping error of a part of the image pair 1-3 of the

Graffiti sequence. Left: Part of the third image I3 of the se-

quence, right: Mapping error represented by color differences

between I3 and the mapped image I1 using the ground truth

homography from the reference data set. The errors result from

an inaccurate homography (top part of the image) as well as

from non-planar scene content (bottom part).

[5], [6], affine transformation [7], [8], [9], [10], [11], [12],

[13], [14], [15], and perspective transformation [16].

For viewpoint changes, the mapping between the local

regions of two images can be modeled by an affine trans-

formation. This is motivated by the assumption that the scene

surface is locally planar and perspective effects are small on

local regions [12].

Extensive work has been done on evaluating feature detec-

tors and descriptors [10], [11], [12], [17], [18], [19], [20], [21].

Commonly, the most important criterion for the accuracy of

affine invariant detectors is the repeatability criterion [6], [10],

[12], [20], [22], [23], [24] using the reference test set in [12].

The data set contains sequences of still images with changes

in illumination, rotation, perspective, and scale. The mapping

from one image to the next is restricted to a homography. For

the benchmark test, the ground truth homography matrices are

also provided in [12]. They are computed using manually se-

lected as well as automatically detected point correspondences.

For both sets of correspondences, a standard homography
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estimation algorithm is used and the results are combined1.

The most accurate localization of affine invariant fea-

tures [25] is achieved by the MSER [8] detector, followed by

Hessian-Affine [12]. However, their performances depend on

the type of image transformation of the specific test sequence

and the type of texture present in the images. It is also

shown [25], [26] that the spatial feature distributions are differ-

ent for each detector, which motivates to use complementary

feature sets for computer vision challenges.

Although the authors comment that the homographies are

not perfect [9], the data set is used as ground truth for high-

accuracy evaluations [6], [9], [12]. In addition to inaccurate

homography matrices, the image data of the set is not suitable

in several cases. In the example image part shown in Fig. 1,

the scene structure is not restricted to one plane, resulting in

large mapping errors in the bottom part of the images. Haja et

al. [20] evaluate another data set [21] for accuracy evaluation,

but use the same estimation procedure as Mikolajczyk et

al. [12] for computing the ground truth homographies. Moreels

et al. [21] use a trifocal tensor-like double epipolar constraint

for the evaluation, but loose a large amount of features which

have to be identified in three images.

The ground truth data set [12] is used as a benchmark for

many feature evaluations. With inaccurate homographies and

inadequate image content, an evaluation may provide mislead-

ing results and conclusions. An accuracy validation of the data

set has not been done so far and is provided in this work.

Furthermore, it is shown that the accuracy of the homography

matrices can be increased using a feature independent cost

function and a Differential Evolution optimization technique.

The detachment of the cost function from a feature detector is

favorable because the resulting homography data is used for

the evaluation of feature detectors. For the validation of the

new homographies, the same feature detectors as in [12] are

evaluated. The detectors are: MSER [8], Hessian-Affine [10],

Harris-Affine [9], intensity extrema-based regions (IBR) [14],

and edge-based regions (EBR) [13].

The contributions of this paper are:

• the analysis of the ground truth data set used for accuracy

evaluation of feature detectors,

• the improvement of ground truth data using a feature

independent cost function, and

• the construction of new, highly-accurate data sets;

• the new evaluation data is provided at:

www.tnt.uni-hannover.de/project/feature evaluation/

In the following section, the basics of homography estima-

tion used for the computation of ground truth homography

matrices are explained. The optimization using Differential

Evolution is derived in Section III. In Section IV, the image

data in analyzed and deficiencies of the reference images

are revealed. Section V shows experimental results using the

proposed cost function and optimization for the reference data

set. Furthermore, the construction of new, highly-accurate data

sets is explained. In Section VI, the paper is concluded.

1www.robots.ox.ac.uk/~vgg/research/affine/det eval files/DataREADME

P

I1

I2

C1
C2

p
p′

Scene Plane

Fig. 2: Projection of an ellipse surrounding the scene point P

to the images I1 and I2 of cameras C1 and C2, respectively.

The image features p and p′ are corresponding.

II. HOMOGRAPHY ESTIMATION

The homography between two images determines the map-

ping between a point p of the first image and the corre-

sponding point p′ in the second image. Corresponding points

p,p′ result from the same scene point P through perspective

projection into the image planes I1, I2. The image planes are

associated with the Cameras C1, C2 as shown in Fig. 2. In

case of a homography mapping, the scene is subject to the

following restrictions:

A) Intrinsic camera parameters of C1, C2 are identical

B) The scene consists of rigid geometry

C) The observed scene geometry is planar or the camera

movement from C1 to C2 is purely rotational

Then, each point pj of the first image can be identified in

the second image with coordinates p′

j with the homography

matrix H ∈ R
3×3 using homogeneous coordinates [27]:

H · pj = p′

j (1)

It follows that the corresponding RGB values I1(H ·pj) and

I2(p
′
j) in the images I1, I2 should be identical:

I1(H · pj) = I2(p
′

j) (2)

A homography is defined only up to scale and has 8 degrees

of freedom. Thus, it can be computed with four correspond-

ing points in the images. As the images are influenced by

noise, the problem to solve is to compute the best possible

solution from an over-determined set of equations evaluating

more than four correspondences. Usually, the Direct Linear

Transformation (DLT) algorithm is used [27]. To create ground

truth homographies for a given image pair, in [12] manually

selected and automatically detected point correspondences are

used for computation. However, the results are still subject to

errors as shown in Fig. 1.

In this work, the homographies are estimated by minimizing

the normalized sum of pixel color differences between the

first image I1 mapped by the homography H and the second

image I2 using each pixel pj , j ∈ [1; J ], of image I1

which is also visible in image I2. This approach leads to the

following objective function with a homography error EH to



Fig. 3: The edited Graffiti sequence with masked bottom parts where the homography violations occur. The radial distortion

is roughly compensated using a line in the images.

be minimized:

EH =
1

J

J
∑

j=1

||I1(H · pj) − I2(p
′

j)|| (3)

We argue that the homography mapping function is optimal

if the color distance between the mapped first image and the

second image is minimal. Due to lighting and perspective

changes between the images, the cost function is likely to

have several local minima. Thus, a Differential Evolution (DE)

optimizer is used for the minimization of EH with respect to H

in the cost function (3). Evolutionary optimization methods

have proved impressive performance for camera parameter

estimation challenges [28], [29], [30], finding the global

optimum in a parameter space with many local optima. The

homographies given by the reference data set can be used as

an initially known approximate solution.

III. DIFFERENTIAL EVOLUTION OPTIMIZATION

For optimizing the cost function (3), the Differential Evo-

lution (DE) algorithm [31], [32] is used. The optimization

objective, the matrix H, is defined only up to scale. Hence

it is described by 8 parameters:

H =





h1 h2 h3

h4 h5 h6

h7 h8 1



 (4)

It is common to set the ninth entry of H to 1. The re-

maining eight matrix elements are assembled to a vector

h = (h1, . . . , h8) ∈ R
8 which holds the parameters to be

optimized by the DE optimizer.

The optimization is based on a population of Np solution

candidates hn,i, n ∈ [1; Np], at iteration i where each

candidate is a position in the 8-dimensional search space. The

search space intervals are determined using an initially known

approximate solution, which is given by the homography of

the reference data set. This homography determines the center

of the search space. The solution candidates are randomly

generated within the search space intervals. The population

improves by generating new 8-tupels iteratively for each

candidate. New positions for the next iteration step i + 1 are

calculated by

h
′

n,i+1 = hk,i + F · (hl,i − hm,i) (5)

hn,i+1 = c
(

hn,i, h
′

n,i+1

)

(6)

where k, l, m are random integers from the interval [1; Np],
F ∈ [0; 1] is a weighting scalar, h

′

n,i+1 is a displaced hk,i

by a weighted difference vector, and c
(

hn,i, h
′

n,i+1

)

is a

crossover operator copying coordinates from both hn,i and

h
′

n,i+1 in order to create hn,i+1. The crossover operator c is

provided with a value Cr ∈ [0; 1] specifying the probability

to copy values either from hn,i or h
′

n,i+1 to hn,i+1 for each

component of the vector. Only if the new candidate hn,i+1

proves to have lower cost using the cost function (3) it replaces

hn,i, otherwise it is discarded.

In this application, the initial search space intervals are

provided by the homographies of the reference data set or

can easily be done manually for the construction of new data

sets (Section V-B). Common DE settings are used: Np = 120,

Cr = 0.8, F = 0.8. The DE converges after approximately

400 iterations with significantly increased accuracy as shown

in the results section V-A. The calculation of the cost function

is computationally expensive and mainly dependent on the im-

age size. The estimation of the homography for the first image

pair of the Graffiti sequence (800 × 640 Pixels) needs about

two hours (385 iterations) using common PC hardware. For the

application of the calculation of ground truth homographies,

this computational expense is not critical.

IV. REFERENCE DATA ANALYSIS

The reference data set2 consists of several image sequences

(6 images each) and matlab code for the computation of

the Repeatability of the features detected in image pairs.

The Repeatability Criterion is explained in Section IV-A. In

Section IV-B, the image data is analyzed.

A. Repeatability Criterion

The Repeatability is the most often used criterion to evaluate

the localization accuracy of feature detectors. Matlab code

is provided together with a data set consisting of an image

sequence and ground truth homography matrices that represent

2www.robots.ox.ac.uk/~vgg/research/affine/index.html
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Fig. 4: Top row: part of image pair 1-3 of the Graffiti sequence, bottom row: part of image pair 1-4 of the Bark sequence.

Image column (a) shows the image mapping H
graf
13 ⊙ I

graf
1 and H

bark
14 ⊙ I

bark
1 using the homographies from the reference data

set. Column (d) shows the mapping with the improved homographies. The images (b) and (c) show the color differences to the

images I
graf
3 and I

bark
4 , respectively. Compared to our results (c), the homographies from the data set (b) show large errors.

Several error structures in the difference images (b) indicate a localization error > 2 pel. Comparing the images (a) and (d),

a shift is noticeable.

the mapping between image pairs. In [9], the following error

measures to calculate the repeatability of a detector evaluating

an image pair are presented. The matrix H is the a priori known

homography relating two images of the data set.

A) For the evaluation of the point position accuracy, the

error in Relative Location d is computed:

d = ||H · p− p′|| < dthres (7)

If the Relative Location error for a feature pair p,p′ is

below a threshold dthres = 1.5 pel, the feature pair is

deemed corresponding.

B) For the evaluation of detected regions in the images (in

general ellipses), the Overlap Error ǫO is computed:

ǫO = 1 −
Rµp

∩ R(H⊤µ
p′H)

(Rµp
∪ R(H⊤µ

p′H))
(8)

where Rµ represents the elliptic region defined by

x⊤µx = 1 [12]. The Overlap Error is a percentage

value that is minimal if a detected ellipse region Rµp

is exactly matching the ellipse R(H⊤µ
p′H) determined by

the ground truth homography H. A feature pair is deemed

corresponding, if the Overlap Error between the ellipses

of the best possible match is below a threshold ǫthres.

In [9], the threshold is chosen to ǫthres = 20%, in [10],

[12] it is ǫthres = 40%, and in [20] ǫthres = 50% is

chosen.

The Repeatability value is the ratio of corresponding feature

pairs and the minimal number of detected feature points in

the first and the second image. While the Relative Location

dthres = 1.5 pel gives an impression of the needed accuracy

for feature detectors and ground truth homographies, the

Overlap Error is its generalization to detected ellipses. The

error structures in the difference images in Fig. 4 (b) indicate

that for several regions in the images the resulting Relative

Location error is above the threshold of 1.5 pel just because

of inaccurate homographies. In these regions, perfect as well

as wrong feature pairs will be misclassified. For the evaluation

of affine invariant feature detectors, the Overlap Error is used

having the same problems.

B. Reference Image Analysis

Some of the sequences of the reference data set contain

scene structures that violate the homography assumption. The

Graffiti sequence, for example, contains a second plane in the

bottom part of the image as shown in Fig. 1. Each detected

feature in this region is not suitable for the evaluation, but has

an effect on the repeatability value. Furthermore, the images

suffer from radial distortion. Several image regions that do

not fulfill the conditions of a homography mapping can be

seen in the other sequences as well. In the Wall sequence, a

second plane is visible, too (non-planar geometry). Significant

movements of scene structures occur in the sequences Boat

(boats, persons, leaves), Bark (leaves), and Trees (leaves).

Unfortunately, these image regions are highly textured. Thus,



15 20 25 30 35 40 45 50 55 60 65
0

10

20

30

40

50

60

70

80

90

re
p
e
a
ta

b
ili

ty
 %

viewpoint angle

 

 

Harris−Affine

Hessian−Affine

MSER

IBR

EBR

15 20 25 30 35 40 45 50 55 60 65
0

10

20

30

40

50

60

70

80

90

re
p
e
a
ta

b
ili

ty
 %

viewpoint angle

 

 

Harris−Affine

Hessian−Affine

MSER

IBR

EBR

Fig. 5: Graffiti sequence: results with old homographies (left) and our new homographies (right) using a threshold of ǫthres =
40%. The MSER and IBR repeatability scores are increased by up to 9%.

they are likely to be detected by a feature detector. While

the violation of planar scene structure in Graffiti and Wall

can be eliminated by masking the image parts (see Fig. 3), a

correction of the image data Boat and Trees is not possible.

Using a robust cost function [29], [30] improves the results

for the usable parts, but this does not lead to significantly

increased repeatability rates.

Ignoring the regions with homography violations as well as

the optimization technique explained in Section II allow for

increasing the accuracy of the computed homography. This is

shown for the examples Graffiti and Bark in the next section.

V. EXPERIMENTAL RESULTS

The presented approach aims to improve the homography

matrices from the ground truth data set [12]. The increased

accuracy is shown using the error measure EH introduced in

Section II as well as the Repeatability Criterion described

in Section IV-A. The latter is the most often used criterion

for the accuracy evaluation of feature detectors. The Repeata-

bility evaluation technique is the same as used in literature

(e.g. [12]). The comparisons are shown in Section V-A.

The proposed method can also be used to generate new

highly-accurate data sets. This is demonstrated for the example

of a viewpoint change scenario in Section V-B.

A. Reference Image Data Set

The image data set provides image pairs with associated

homography matrices that map each point in one image to

the corresponding point in the other image. However, visible

errors occur using the provided homographies when the first

image of a pair is mapped and compared to the second image.

Two examples are shown in Fig. 4. Consider the top row. The

left image (a) shows an image part of the third image of the

Graffiti sequence I
graf
3 . The second image (b) indicates the

color differences ||Hgraf
13 ⊙ I

graf
1 − I

graf
3 || between the image

I
graf
1 mapped to the second by H

graf
13 and the second image

I
graf
3 for each pixel. The bottom part of the Graffiti sequence

represents a violation of the planar assumption of the scene

and therefore displays large errors. To exclude this region from

the homography estimation, this part is masked (image (d) of

Fig. 4, top row). As shown in Table I, the masking decreases

the error EH significantly. The last row in Table I proves that

the proposed optimization method provides a further decrease

of the error EH. This is visualized in Fig. 4 (c).

TABLE I: Graffiti sequence: cost function values EH for the

homographies of the data set and our new homographies. A

visualization is shown in Fig. 4, top row.

Image Pair Igraf 1-2 1-3 1-4 1-5 1-6

Eold
H

(original) 11.16 16.36 20.44 24.47 29.16
Eold
H

(masked) 5.89 9.92 15.82 20.98 25.00
Enew
H

(masked) 4.62 8.71 14.95 19.94 24.30

Minimizing the proposed cost function (3) results in more

accurate homographies as validated in Fig. 5. The left diagram

shows the repeatability evaluation as presented in [12] while

the right shows the same evaluation using the edited images

and the new homographies. The repeatability values increase

for each detector using the data resulting from the new ap-

proach. For this sequence, the MSER detector and the intensity

based region (IBR) detector gain up to 9% in repeatability. The

reason for the differing gain of the detectors is the different

spatial distribution of their features.
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Fig. 6: Bark sequence: results with old homographies (left) and our new homographies (right) using a threshold of ǫthres = 20%.

While in the left diagram Harris-Affine seems superior to MSER, the right diagram depicts a different result. The repeatability

score for MSER is increased by up to 20%.

The second example, the Bark sequence is evaluated without

masking any image parts. The results for EH are summarized

in Table II. The repeatability comparisons before and after the

optimization are shown in Fig. 6 and for the image pair 1-3

for different thresholds ǫthres in Fig. 7. As shown in Table II,

the error EH is reduced significantly, especially for the image

pairs 1-4, 1-5, 1-6. The remaining errors in the image pairs 1-

2 and 1-3 are due to moving scene content (leaves) occurring

for these two image pairs. Using the new homographies, an

evaluation may lead to different results as demonstrated in Fig.

6 and Fig. 7, respectively. In Fig. 6, a threshold ǫthres = 20%
(see Section IV-A) is used. In Fig. 7 the threshold is varied for

a specific image pair 1-3 of the sequence. Again, the MSER

detector shows higher gains (up to 20%) in repeatability values

than most of the others. In the new evaluation, the MSER

results in better performance than the Harris-Affine detector.

TABLE II: Bark sequence: cost function values EH for the

homographies of the data set and our new homographies. A

visualization is shown in Fig. 4, bottom row.

Image Pair Ibark 1-2 1-3 1-4 1-5 1-6

Eold
H

11.20 13.36 9.19 6.98 10.29
Enew
H

10.14 10.04 2.57 3.21 3.34

The homography matrices are re-estimated and improved

for the other sequences of the data set [12] as well. In this

paper, we limit the evaluation to Graffiti (viewpoint change

scenario) and Bark (scale change scenario).

We can infer that our estimation technique clearly outper-

forms the method used in [12]. The new scheme for estimating

homographies could be of great value for the community,

resulting in improved validation. It can also be used to produce

new, highly-accurate data sets as shown in the next section.

B. Construction of Natural Image Data Set

To construct a new sequence data set for the most chal-

lenging scenario viewpoint change, a planar scene is captured

by a Canon EOS350d camera from different viewpoints with

constant intrinsic parameters. The image size is 1536× 1024.

As a first post processing step, the radial distortion in the

images is compensated. Initial estimates for the homographies

are done manually. Then, the proposed optimization scheme is

used to estimate the new homographies. No features are used

for the homography determination. Images and error results EH

of this data set, called Grace, are shown in Fig. 8 and Table III,

respectively. The results demonstrate a small mapping error

compared to the viewpoint change image sequence Graffiti

(Table I) of the reference data set.

TABLE III: Grace: Cost function values EH for the homogra-

phies of the new data set and the homographies resulting from

the proposed approach.

Image Pair Igrace 1-2 1-3 1-4 1-5 1-6

EH 3.44 4.62 6.02 8.21 9.99

To validate the viewpoint change scenario [12], the results

of the image pair 1-3 of the new data set Grace are compared

to the original evaluation of Graffiti in Fig. 9. The highest

score for this new sequence is obtained by MSER, followed

by Hessian-Affine and Harris-Affine. The dominance of the
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Fig. 7: Bark image pair 1-3: results with old homographies (left) and our new homographies (right) with various overlap error

thresholds ǫthres = 10%, . . . , 40%. While in the left diagram Harris-Affine seems superior to MSER in high-accurate feature

positions, the ranking is different in the right diagram.

Fig. 8: Example images of the Grace sequence with rectified images and fully planar geometry.

MSER detector in this field is verified by this result. The

localization accuracy ranking of the other detectors is clearer

than in the original evaluation. These results are confirmed

using the other image pairs of the Grace sequence.

VI. CONCLUSION

In this work, the accuracy of a widely used benchmark data

set for feature detector evaluation is analyzed. The accuracy

of the homography matrices is improved using a feature-

independent cost function and the Differential Evolution ap-

proach for its optimization. New highly-accurate data sets are

constructed using the presented approach.

The increased accuracy is validated using the Repeatability,

a criterion commonly used for the detector evaluation. Using

the reference data set and the proposed approach for the

homography estimation, the repeatability rates are increased by

up to 9% using an Overlap Error threshold of 40% and up to

20% with a threshold of 20%. Furthermore, it is demonstrated

that using the reference data set for high-accuracy evaluation

may lead to false conclusions.

The results of the proposed approach provide improved,

more accurate validation of feature detectors.

The evaluation data is available at the project page:

www.tnt.uni-hannover.de/project/feature evaluation/
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overlap error thresholds ǫthres = 10%, . . . , 60%. In the right diagram, the ranking of the detectors is much clearer.
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