
Vision, Video, and Graphics (2003)
P. Hall, P. Willis (Editors)

Extending Natural Textures with Multi-scale Synthesis

O. Stahlhut

Institute of Communication Theory and Signal Processing, University of Hanover, Germany
[stahlhut@tnt.uni-hannover.de, http://www.tnt.uni-hannover.de/∼stahlhut]

Abstract

This paper presents a texture synthesis algorithm that was designed for the tile-less generation of large images of
arbitrary size from small sample images. The synthesised texture shows features that are visually similar to the
sample over a wide frequency range. The development of the algorithm aimed at achieving high quality results
for a large range of natural textures, incorporation of the original samples in the synthesis product, ease of use
and good texturing speed even with input sample data two magnitudes larger than used by previous techniques.
Like other algorithms we utilise an implicit texture model by copying arbitrary shaped texture patches from the
sample to the destination over a multi-scale image pyramid. Our method combines the advantages of different
previous techniques with respect to quality. A mixture of exhaustive searching, massive parallel computing and the
well-known LBG-algorithm ensures a good balance between texturing quality and speed.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation

1. Introduction

Texture processing plays an important role in computer
graphics and vision. It involves analysis, “understanding”,
modelling, synthesising and segmentation of textures. All
these terms are related to each other, e.g. texture synthe-
sis usually demands a preceding analysis and texture model.
Segmentation and synthesis can be interchangeable, respec-
tively can be derived from the same basic algorithm. There
is a manifold of sources for obtaining textures: digital cam-
eras, interactive digital image creation, scans of photos or
hand-drawn pictures. All these sources share the common
disadvantage that the texture size is usually limited, inappli-
cable for a certain task and can’t be extended without tiling
artefacts and visible seams. On the other hand these limited
texture samples can be used to derive a texture model for
a texture synthesis process. Texture synthesis uses a small
sample to produce a texture of arbitrary size with the same
visual appearance as the sample texture. Depending on the
type of algorithm these automatic generated textures can also
be tileable for fast generation of even larger textures. Other
fields of application are image denoising or restoration, to-
gether with texture mapping synthesis is used to produce re-
alistic impressions of the environment within virtual worlds.

The next section will give a brief overview on previous work
in the field of texture synthesis.

2. Previous Work

There is a long history of previous works on automatic
texture synthesis techniques, for example procedural ap-
proaches7, 11, 17 which are well suited for specific classes
of materials (e.g., wood, marble, clouds and fire), simula-
tion of physical processes for generation of biological pat-
terns19, 21, 22 or corrosion5, 6 and other natural phenomena.
We want to focus on more general texture synthesis methods
related to our work, which are sample-image based. Most of
the sample-image based methods can be divided into four
categories:

• Feature Matching
• Markov Random Field (MRF), Gibbs Sampling with ex-

plicit model
• MRF with implicit model
• Texture patching

The feature matching methods adapt the features of a sam-
ple and output texture in an iterative process. Impressive re-
sults were first shown by12 who matched the histograms

c© The Eurographics Association 2003.

mailto:stahlhut@tnt.uni-hannover.de
http://www.tnt.uni-hannover.de/~stahlhut


Stahlhut / Extending Textures

of two steerable image pyramids of sample and destina-
tion. This work was further improved by consideration of the
cross-scale dependencies within the pyramids2 and match-
ing of joint statistics18. The feature matching methods have
the disadvantage of being iterative and computational ex-
pensive. The texturing speed decreases with the number of
different matched features which are necessary to provide
a good texturing quality. MRF methods characterise a tex-
ture by determining significant dependencies between a cen-
tral pixel and its spatial neighbours. These neighbourhood
cliques are modelled by Markov Random Fields which are
used for probability sampling for an iterative texture synthe-
sis process9, 10, 24. Even though MRF provide a very gen-
eral texture description and many good results were shown
in the mentioned publications, the drawback again is compu-
tational speed. MRF methods with an implicit model avoid
the construction of an explicit model1, 20. Local similarity
of the synthesised texture and texture sample is achieved by
continuous comparison of the synthesis pixel spatial neigh-
bourhood with all given spatial neighbourhoods of the tex-
ture sample. Describing the pixel neighbourhoods as a vector
involves searching in a high-dimensional vectorspace. This
also leads to heavy computational effort but fortunately can
be improved by a lot of different measures. Texture patching,
e.g. Image Quilting8 or Patch-Based Sampling15, rearrange
small texture blocks or arbitrary shaped texture patches of
the sample texture to form a new visually similar texture.
These methods spend most of the process time on optimis-
ing the transition between neighbouring patches. It involves
calculating least cost paths through boundary error surfaces
and post-processing, e.g. smoothing of the patch borders.

3. Motivation

Looking at the different algorithms for texture synthesis and
comparing their impressive results for a collection of tex-
tures fromVisTex13 and Brodatz3, we were interested in
designing a texture synthesis algorithm which includes the
most advantageous aspects of recent approaches to achieve
a good balance between synthesis quality and time. We
consideredconstrained synthesisas necessary - the al-
gorithm should be able to extend or fill user-masked ar-
eas of the sample textures. The synthesised texture should
also be tileable in horizontaland vertical direction. Tex-
ture structures should be well reproduced over a wide fre-
quency range. The last three points require multi-scale op-
eration using an image pyramid2, 12, 18, 20. We combine an
implicit MRF model , which promises an especially good
quality for a variety of sample textures1, 20, with texture
patching, which reduces the cost of extensive searching8, 15.
Not single pixels but small blocks, are copied from the sam-
ple texture. Block transfer is especially suited to preserve the
local structure of the texture. If we define a texture block as
texture element, which of course is different from the gen-
eral texel definition (pixel of a texture map), one can say that
the application of the implicit MRF model is shifted from

the pixel to the texel domain. Together with the multi-scale
approach it ensures an equally good reproduction of local
and global texture features. At last a resolution-dependent,
variable search strategyis used to identify the optimum
synthesis block.

4. Algorithm

Figure 1: Incomplete sample texture.

First we want to give an overview on how the algorithm
works on a single resolution levell . Figure2 shows a part of
the fourth level (l = 3) of an image pyramidIl constructed
from the texture sampleI0 seen in figure1. For construc-
tion of Gaussian image pyramids the reader is referred to
4. The black area ofIl is undetermined and is going to be
filled during the texture synthesis. The image of the cur-
rent level I3 is divided into non-overlapping blocksBi in
scanline ordering. In practical application the user-defined,
odd blocksize isBsize∈ [3,5,7,9,11], single pixel synthesis
(Bsize= 1) is also possible. A listL{Bu} of all blocks with
(partly) undetermined texture information is generated. The
green blocks surrounded by the red grids in figure2 exem-
plarily show four locations of undetermined texture informa-
tion. The red grid defines the symmetric, respectively square
shaped, pixel neighbourhood of the enclosed block. These
neighbourhoods contain defined as well as undefined (black)
pixels. The listL{Bu} is sorted in ascending order according
to the number of undefined pixels in the symmetric block
neighbourhoodpunde f(N(Bu)).

In the next step the reference information for the texture
synthesis has to be identified. Only blocksBr with neigh-
bourhoodNre f (Br ) that is completelyinsidethe sample tex-
ture area are used. The position of these blocks is han-
dled with pixel accuracy. In figure2 the green blocks with

c© The Eurographics Association 2003.



Stahlhut / Extending Textures

Figure 2: Symmetric neighbourhoods. yellow/green: causal reference neighbourhoods with reference texture blocks, red/green:
non-causal search neighbourhoods with (partly) undefined texture blocks, blue: variable search masks for ensuring causality of
the texture synthesis.

yellow neighbourhoodNre f depict such well-defined refer-
ences. For the synthesis process each reference blockBr is
represented by its symmetric reference neighbourhoodNre f

r .
A Nre f

r can be expressed as a linear vector~Nre f
r . This means

that all neighbourhood pixels are collected in scanline order-
ing (from left to right and top to bottom) and are stored in a
contiguous memory block. All~Nre f

r together form a neigh-
bourhood vectorspaceV{Nre f}, which is calculated once
and stored in memory.

In the synthesis loop the neighbourhoodN of the first
blockBu=0 from the block listL{Bu} is converted to a neigh-
bourhood search vector~Nsearch

u . This vector is compared to
all reference vectors inV{Nre f} (for more details on dis-
tance metrics see section7). The corresponding reference
block of the vector~Nre f

r that is closest to~Nsearch
u is copied

to the position of the blockBu. Only undefined pixels of the
block Bu which are marked by the variable mask are trans-
ferred at the copying stage. The blockBu is removed from
the listL{Bu}, the list position of all adjacent blocks toBu is
updated. The latter is necessary because the number of un-
defined pixel in the neighbourhoods of the adjacent blocks
to Bu may have changed after the copy action. The loop con-
tinues until all blocks are removed from the listL{Bu} and
hence all undefined areas ofIl are filled.

Keeping the blocklistL{Bu} sorted bypunde f(N(Bu)) en-
sures that those blocks which show the best-defined neigh-
bourhood are synthesised first. In figure2 the two blocks in
the upper corners of the missing rectangle would be top of
the sorted list. The synthesis “grows” the missing rectangle

and afterwards progresses over the edgy border seen on the
left.

For acceleration the listL{Bu} can be transformed into
a hash table withpunde f(N(Bu)) as hash key. Furthermore a
spatial lookup table indexing the hash elements allows direct
identification of adjacent blocks for fast list update.

5. Boundary handling

As one can see in figure2 the comparison of a search vector
~Nsearchwith a reference vector~Nre f of V{Nre f} must take
into account that the the search vector is partially undefined.
To ensure causality of the texture synthesis a masking oper-
ation on both vectors is performed before the actual compar-
ison takes place. Example masks for two search neighbour-
hoods are highlighted blue in figure2.

To fulfil the requirement of tileable synthesis results,
the surface is treated toroidally, i.e. the image coordinates
are always addressed with a modulo operation:(x,y) =
(x mod Iwidth

l ,y mod Iheight
l ). This, together with the image

pyramid, enables tileability.

6. Weighted multi-scale synthesis

All MRF approaches have in common that they can only
reproduce those structures correctly that match the size of
the analysis window. This is also true for the neighbourhood
searching described in4. To synthesise global texture struc-
tures one has to enlarge the neighbourhood window to the

c© The Eurographics Association 2003.



Stahlhut / Extending Textures

size of the largest texture feature which increases the com-
putational cost dramatically. Another approach is to handle
the different texture frequencies separately in an image pyra-
mid and to refine the texture while progressing from low to
high resolution levels.

block 3x3

level l

level l+1

block neighbourhood 9x9 (part l)

block neighbourhood
5x5 (part l+1)

Figure 3: Symmetric multiresolution neighbourhood.

For our algorithm that means, that after completion of
the pyramid level with the lowest resolution as described
in 4 the next levels are processed in the same way, except
that the symmetric neighbourhood is extended to take into
account the results of the previous level to propagate and
maintain the low frequency structures. Figure3 shows a typ-
ical symmetric multiresolution neighbourhood. Both parts of
the neighbourhood are always odd in size. The size of the
low resolution part is adjusted to cover at least the texture
area of the higher resolution level. During the comparison of
~Nsearchwith all ~Nre f the two neighbourhood parts are treated
separately. The weighting ratio between the two parts can
be adjusted by the user. It’s possible to put more empha-
sis on exact reproduction of global features which results in
more artefacts in the local structure, i.e. sharp gradients at
the border of the created texture patches. On the other hand
reducing the weight of the low resolution part of the neigh-
bourhood optimises the reproduction of local structures, es-
pecially the transition between neighbouring patches, with
global coherence disappearing at the same time. Fortunately
artefacts at the texture patch borders are compensated as the
algorithm progresses through the pyramid levels.

The multi-scale approach is essential for single-pass con-
strained texture synthesis. On the lowest resolution level the
neighbourhood window must be able to bridge the missing
parts of the texture for achieving an optimum synthesis re-
sult. In other words, the size of the neighbourhood window
in the lowest level determines the distance over which two
different parts of the texture are equalised. Figure4 shows
the synthesis of three successive pyramid levels together
with their copy map. The copy map codes the coordinates
of the origin of the copied reference texture block and visu-
alises the patching behaviour of the synthesis algorithm. The
gradients left and bottom of the final pyramid level in figure

4 show the coordinate coding of the copy map. The red chan-
nel corresponds to the x coordinate, the green channel to the
y coordinate.

Figure 4: Constraint multiresolution synthesis.

7. Vector comparison

In section4 the algorithm was outlined, except for details
on search strategies and - most important - the comparison
scheme for two neighbourhood vectors. In20 the L2 norm
was used for measuring the distance between two vectors.
As pointed out by1 the L2 norm is not a good measure for
perceptual similarity. Metrics that are better adapted to the
human visual system exist14, but are computationally ex-
pensive.

c© The Eurographics Association 2003.



Stahlhut / Extending Textures

Coming from video coding we decided to separate the lu-
minance and chrominance information. Only the luminance
information is processed in the core algorithm. Knowing that
there is a strong correlation between structure and colour for
certain classes of textures, we use a colour post processing
in our first approach, see section9. As synthesis speed is
one of our primary objectives, we implemented the vector
comparison as a sum of absolute differences of the vector
components.

D(~Nsearch,~Nre f ) = ∑
i
| Nsearch

i −Nre f
i | (1)

ThisL1 norm is also non-optimal for determination of per-
ceptual similarity, but very common with multimedia appli-
cations and therefore available as hardware instruction in the
MMX TM (MMX is a trademark of Intel Corporation) com-
mand set of x86-CPUs. Migration fromL2 norm calculation
to L1 norm with MMXTM increased the execution speed by
a factor of 3. Only slight differences are visible in the syn-
thesis results -L2 norm gives a smoother transition between
neighbouring patches, but also tends to blur the images a lit-
tle more thanL1, see also1.

8. Search strategy

Though computing the vector distance with MMXTM-L1
norm accelerates the algorithm, the exhaustive searching in
the neighbourhood vector spaceV{Nre f} is still very slow
even on fast workstations. This is fatal if we think of huge
output textures the size of several megabytes. To acceler-
ate the search process20 introduced tree structured vector
quantisation (TSVQ) of the search space. Our experiments
showed, that partitioning of the high-dimensional, thin pop-
ulated search space with TSVQ only delivered good results
with generous backtracking of the tree branches. The nec-
essary degree of backtracking varied with the kind of tex-
ture that was processed. Also1 pointed out, that TSVQ had
a strong blurring influence on the synthesis. So we investi-
gated other techniques and tried hypercube searching16 and
the LBG-algorithm23.

Hypercube searching involves resorting, respectively
hashing, of the vectorspace dimensions and is also very
memory intensive. As the sorting has to happen only once
at the beginning of the synthesis loop, followed by millions
of search operations, we considered that sorting time can be
neglected. Hypercube searching converges quickly if the hy-
percube sizeε can be set to a small value and many vectors
can be sorted out in a single iteration. We derived a value
for ε from an exhaustive search result of our texture syn-
thesis which was large (≈ 60) with respect to the absolute
grey value range[0,255]. Our final hypercube algorithm with
dynamicε adjustment increased texturing speed by a factor
of 3. Unfortunately hypercube searching can’t be combined
with MMX TM and is a dead end for further acceleration. So

we decided to keep the MMXTM advantage and concentrate
on vector quantisation with the LBG algorithm.

With LBG 23 a number of seed vectors~Nseed
s is placed in

the vectorspaceV{Nre f} (step 1). In practice these vectors
are chosen randomly from the existing vectors~Nre f

r . In step
2 each vector~Nre f

r is assigned to the closest vector~Nseed
s . In

step 3 each vector of~Nseed
s is moved to the geometric centre

of the group of assigned vectors. Steps 2 and 3 are repeated
until the relative change of the sum of the absolute displace-
ments of the seed vectors~Nseed

s is below a given threshold,
for example 5%. After convergence the seed vectors repre-
sent the centres of evenly distributed partitions of the vector
spaceV{Nre f}. As with hypercube searching the prepara-
tion time for the partitioning is short compared to the actual
search process. Within the synthesis process a search vector
~Nsearch is compared to all seed vectors~Nseed

s . The partition
of the most similar seed vector is searched for the final ref-
erence vector~Nre f

r . The search speed is optimal if the num-
ber of seed vectors is chosen as square root of the number
of vectors inV{Nre f}. For example instead of exhaustively
searching 1000000 reference vectors, with LBG only 2 times
1000 vectors have to be compared. In addition LBG can be
combined with MMXTM-L1 norm calculation which makes
a total increase of texturing speed by a factor 1500 for this
example.

As with all quantisation schemes it is not guaranteed
that LBG delivers the optimum vector. Compared to TSVQ
the error rate was much lower at identical runtime and we
achieved a better visual quality of the synthesis results. Even
so, if we synthesise over a pyramid, errors in lower levels are
propagated to higher resolutions. To avoid error accumula-
tion we decided to use a mixed search strategy which can be
adjusted to user preferences. Looking at the search process
in general, we notice that the computational effort increases
by a factor 16 from each pyramid level to the next. The rea-
son for this is the quadratic enlargement of the reference tex-
ture (factor 4) multiplied by the quadratic enlargement of the
surface to be textured (again factor 4). In practice that means
that the lower pyramid layers can be computed very fast and
exhaustive searching with the advantage of optimal search
results should be favoured.

Therefore we created a multithreaded search procedure
that is able to take advantage of symmetric multiprocessing
architectures (SMP) by searching subpartitions ofV{Nre f}
in parallel running threads. In the next step we enhanced
this “brute force” approach by implementing standalone net-
work search clients which can be controlled by the master
synthesis process. The master checks for available resources
and launches the clients remotely on suitable machines. The
clients are calibrated with a dummy search procedure to get
a figure for the local system performance. Based on these
results the vector spaceV{Nre f} is divided into partitions,
which are distributed to the clients. At request a search vec-
tor is transmitted to the clients which respond with an in-

c© The Eurographics Association 2003.



Stahlhut / Extending Textures

dex on the optimum vector in their associated subspace. The
master checks the subspace results for the global optimum
vector and executes the texture transfer. If a client fails or
becomes busy the cluster is dynamically recalibrated and the
vector space is repartitioned.

The user defines which search method (SMP, cluster,
LBG) is used on which pyramid level. For most experiments
we utilise SMP for all lowlevel layers and LBG for the pyra-
mid layer with the highest resolution.

9. Colour handling

Figure 5: Colour assignment error at texture patch borders.
Left: full synthesis result gives a good overall impression,
right: a detail view of the texture shows the colour artefacts.

In section7 we explained that the current version of our
core synthesis algorithm relies only on the luminance infor-
mation of the texture sample for acceleration reasons. Colour
information may be introduced by two different approaches.
First, the calculation of the sum of the absolute differences
of two vectors can easily be extended to colour handling by
including each of the RGB-channels separately into the sum.
This would triple the memory usage of the vector space and
reduce execution speed by a factor of three. That’s why we
chose to reconstruct the colour in the highest pyramid level.
When synthesising the final resolution of the pyramid, we
use the information of the copy map to rearrange the origi-
nal colour input texture according to the texture patch layout
seen in the copy map. This is done in parallel to the synthesis
of the greyscale texture.

Running tests on theVisTexlibrary we realized that most
of the images shown there have a strong correlation between
structure and colour. Our colour handling fails, if the same
structures have different colours, see figure5. At the borders
of the connected texture patches colour artefacts are visible,
which can be improved slightly by blurring the colour infor-
mation.

10. Results

10.1. Full texture synthesis

Our algorithm described in the previous sections was de-
signed for single-pass constrained synthesis, which will be

discussed in10.2. For comparison of our method with previ-
ous techniques, we had to alter the algorithm to simple scan-
line operation with a fixed variable mask that changed the
neighbourhood to L-shape, see20. Also the synthesis surface
had to be initialised with random noise drawn from the tex-
ture sample, to give the synthesis some information to start
with. Results for a full synthesis along with textures created
by 1 and20 are shown in figure6.

The results from Wei and Levoy where taken from their
webpage (http://www.graphics.stanford.edu/projects/tex-
ture/demo/), the textures generated by Ashikhmin are taken
from 1. Our results were processed using a three level
pyramid, a 9x9 neighbourhood, 3x3 or 5x5 blocks and a
mix of exhaustive and LBG-searching. The global and
local structures are well reproduced due to the multi-scale
synthesis. As the input sample is very limited in size
and information, the global variation of our results is low.
Careful consideration shows that especially for the grass and
knots texture only few global features where selected by the
synthesis process. Although the results from Wei and Levoy
were produced with a similar method (exhaustive searching
over an image pyramid, but copying pixels) they contain a
lot of blur and artefacts in the global structure. The reason
for this is not totally clear to us, but could be an imple-
mentation issue. The local structure of Ashikhmin’s results
is the same quality as ours. The global coherence on the
other hand is limited to the capability of the applied texture
prefetch model which assumes that most of the transferred
texture patches are adjacent to each other. Certain textures
with more complicated global structure like the knots need a
true multi-scale analysis for optimal reproduction. Figure7
shows more examples for full synthesis with our algorithm.

Algorithm Training[s] Synthesis[s]

a) Wei, Levoy (exhaustive) - 503
b) Wei, Levoy (TSVQ) 12 12

c) Ashikhmin - 0.2
d) Stahlhut 1 (exhaustive) - 72
e) Stahlhut 1 (exh./LBG) 1.8 11
f) Stahlhut 3 (exhaustive) - 6.5
g) Stahlhut 3 (exh./LBG) 1.6 1.2

Table 1: Running times for synthesising a192x192 texture
from a64x64sample. a)b)d)e)f)g) use a9x9 neighbourhood,
c) 5x5 neighbourhood, a)b)c)d)e) pixelwise synthesis, f)g)
3x3-blockwise synthesis, times for d)e)f)g) have been multi-
plied by 6.6 for direct comparison

Due to the MMXTM utilisation our algorithm is bound to
x86-architecture (Linux PC platform) and relating the tex-
turing rate of our approach to former methods running on
MIPS R10000 CPUs needs some estimates. Benchmarking
integer, memory and floating point performances of a 2GHz
Pentium 4 and a 195MHz MIPS R10000 gives the ratios

c© The Eurographics Association 2003.



Stahlhut / Extending Textures

Figure 6: Full texture synthesis results. From left to right: input texture sample192x192 from VisTex13 library, Wei Levoy
results, Ashikhmin results, our results. All results are200x200.

(6.9,6.1,4.0). As far as we know floating point operations
aren’t used in any of the algorithms, so we suggest an inter-
architecture conversion factor of 6.6. Table1 shows figures
for full texture synthesis.

LBG preparation is faster than of TSVQ. The synthesis
times of e) and g) in table1 result from a combination of two
pyramid layers exhaustive search and LBG for the top level.
The difference between a) and d) is due to MMXTM opera-
tion and colour post-processing of our algorithm. Compared
to Wei and Levoy we gain from implementation issues, com-
pared to Ashikhmin who employs a texture prefetch model
we are still half a magnitude slower for full synthesis.

10.2. Single-pass constrained synthesis

As our algorithm was developed for single-pass constrained
synthesis, the advantages become fully visible when syn-

thesising with blocks instead of pixels in combination with
the image pyramid. In typical applications, such as texturing
of landscape scenes, we use much larger reference textures
(size 500x500 to 2000x2000 and above) which give a good
overview about the global features. For example, synthesis
of a 1000x1000 texture using a 500x500 texture as input with
a blocksize of 5x5 and a 11x11 neighbourhood needs 154
seconds. Setting this into relation of 192x192 from 64x64
would result in a runtime of 0.09 seconds, which is close to
the measurements of1.

Figure 8 shows some results produced with our single-
pass constrained synthesis. Texture reference for the synthe-
sis process is always the input image itself, no further texture
information was used to obtain the missing parts.

c© The Eurographics Association 2003.



Stahlhut / Extending Textures

Figure 7: Full texture synthesis. Left: input texture sample512x512from VisTex13 library, right: synthesis results1024x1024.

10.3. Texture mixing

The pyramid offers another interesting aspect of synthesis:
mixing of global and local features. We down-sample a large
piece of texture and use it as input for texturing a low reso-
lution pyramid layer. Doing so, the global structure is well
preserved. In a next step representative parts of the local
structure of the original texture are put together to a high
resolution collage. This collage is used to refine the global
information while progressing through the pyramid, see fig-
ure9.

The idea behind this approach is, that the local texture
structure is often redundant and processing of large input
textures with previous techniques involved handling all this
redundant information at the same time, which reduces the
texturing speed significantly. By optimising the input for the
different pyramid layers, the texturing rate can be increased
by magnitudes without loosing visible quality.

Texture mixing also allows interactive user control by
modifying the global structure in a lower pyramid layer be-
fore the high-frequency information is synthesised. The text

c© The Eurographics Association 2003.



Stahlhut / Extending Textures

Figure 8: Constrained texture synthesis. Left: incomplete input texture, right: synthesis results. All images from VisTex library
13.

in figure9 was created that way and integrates smoothly into
the knot structure.

Figure 9: Texture mixing. Top row: input and output texture
of global structures, local input. Bottom row: output texture.

11. Conclusion and Outlook

In this paper we presented an algorithm for constraint tex-
ture synthesis which uses an image pyramid for correct re-
production of local and global features of an input texture.
The synthesis rearranges blocks of the input texture accord-
ing to neighbourhood constraints to fill the output texture.
The block selection is achieved by continuous comparison of
the block neighbourhoods of output and reference texture. It
involves heavy searching, which was accelerated by applica-
tion of the LBG-algorithm. The algorithm works especially
well for textures which show repeating, similiar elements on
the local scale with an arbitrary global arrangement. Texture
quality and speed have been improved compared to previous
approaches.

Currently we are investigating new methods for colour
handling by colour compression in conjuction with fast im-
plementations of metrics for improved perceptual similarity.
The algorithm is going to be extendend to work on a three-
dimensional surface description.

c© The Eurographics Association 2003.



Stahlhut / Extending Textures

References

1. Michael Ashikhmin. Synthesizing natural textures. In
Proceedings of the 2001 symposium on Interactive 3D
graphics, pages 217–226. ACM Press, 2001.2, 4, 5, 6,
7

2. Jeremy S. De Bonet. Multiresolution sampling pro-
cedure for analysis and synthesis of texture images.
In Proceedings of the 24th annual conference on
Computer graphics and interactive techniques, pages
361–368. ACM Press/Addison-Wesley Publishing Co.,
1997. 2

3. P. Brodatz.Textures: A Photographic Album for Artists
and Designers. Dover Publications, New York, 1966.
2

4. Peter J. Burt and Edward H. Adelson. The laplacian
pyramid as a compact image code.IEEE Transactions
on Communications, COM-31,4:532–540, 1983.2

5. Julie Dorsey, Alan Edelman, Justin Legakis, Hen-
rik Wann Jensen, and Hans Kohling Pedersen. Mod-
eling and rendering of weathered stone. InSiggraph
1999, Computer Graphics Proceedings, pages 225–
234, Los Angeles, 1999. Addison Wesley Longman.1

6. Julie Dorsey and Pat Hanrahan. Modeling and render-
ing of metallic patinas. InProceedings of the 23rd an-
nual conference on Computer graphics and interactive
techniques, pages 387–396. ACM Press, 1996.1

7. David S. Ebert, F. Kenton Musgrave, Darwyn Peachey,
Ken Perlin, and Steven Worley.Texturing and model-
ing: a procedural approach. Academic Press Profes-
sional, Inc., 1994.1

8. Alexei A. Efros and William T. Freeman. Image quilt-
ing for texture synthesis and transfer. InProceedings
of the 28th annual conference on Computer graph-
ics and interactive techniques, pages 341–346. ACM
Press, 2001.2

9. G. L. Gimel’farb. Texture modeling by multiple pair-
wise pixel interactions.IEEE Transactions on Pattern
Analysis and Machine Intelligence, 18(11):1110–1114,
1996. 2

10. Georgy L. Gimel’farb.Image Textures and Gibbs Ran-
dom Fields. Kluwer Academic Publishers, 1999.2

11. John C. Hart, Nate Carr, Masaki Kameya, Stephen A.
Tibbitts, and Terrance J. Coleman. Antialiased pa-
rameterized solid texturing simplified for consumer-
level hardware implementation. InProceedings of the
1999 Eurographics/SIGGRAPH workshop on Graphics
hardware, pages 45–53. ACM Press, 1999.1

12. David J. Heeger and James R. Bergen. Pyramid-based
texture analysis/synthesis. InProceedings of the 22nd

annual conference on Computer graphics and interac-
tive techniques, pages 229–238. ACM Press, 1995.1,
2

13. MIT Media LAB. Vision texture library. http://www-
white.media.mit.edu/vismod/imagery/VisionTexture.,
1995. 2, 7, 8, 9

14. C. Lambrecht and J. Farrell. Perceptual quality metric
for digitally coded color images. InProceedings of the
European Signal Processing Conference, pages 1175–
1178, 1996.4

15. Lin Liang, Ce Liu, Ying-Qing Xu, Baining Guo, and
Heung-Yeung Shum. Real-time texture synthesis by
patch-based sampling.ACM Transactions on Graph-
ics (TOG), 20(3):127–150, 2001.2

16. Sameer A. Nene and Shree K. Nayar. A simple algo-
rithm for nearest neighbor search in high dimensions.
IEEETPAMI: IEEE Transactions on Pattern Analysis
and Machine Intelligence, 19, 1997. 5

17. Ken Perlin. An image synthesizer. InProceedings
of the 12th annual conference on Computer graph-
ics and interactive techniques, pages 287–296. ACM
Press, 1985.1

18. Javier Portilla and Eero P. Simoncelli. A paramet-
ric texture model based on joint statistics of complex
wavelet coefficients. International Journal of Com-
puter Vision, 40(1):49–70, 2000.2

19. Greg Turk. Generating textures on arbitrary surfaces
using reaction-diffusion. InProceedings of the 18th an-
nual conference on Computer graphics and interactive
techniques, pages 289–298. ACM Press, 1991.1

20. Li-Yi Wei and Marc Levoy. Fast texture synthesis us-
ing tree-structured vector quantization. InSiggraph
2000, Computer Graphics Proceedings, pages 479–
488. ACM Press / ACM SIGGRAPH / Addison Wesley
Longman, 2000.2, 4, 5, 6

21. Andrew Witkin and Michael Kass. Reaction-diffusion
textures. InProceedings of the 18th annual confer-
ence on Computer graphics and interactive techniques,
pages 299–308. ACM Press, 1991.1

22. Steven Worley. A cellular texture basis function. In
Proceedings of the 23rd annual conference on Com-
puter graphics and interactive techniques, pages 291–
294. ACM Press, 1996.1

23. A. Buzo Y. Linde and R.M. Gray. An algorithm for
vector quantizer design.IEEE Transactions on Com-
munications, COM-28:84–95, 1980.5

24. Song Chun Zhu, Yingnian Wu, and David Mumford.
Filters, random fields and maximum entropy (frame):
Towards a unified theory for texture modeling.Inter-
national Journal of Computer Vision, 27(2):107–126,
1998. 2

c© The Eurographics Association 2003.


