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Abstract. Image segmentation is the process of partitioning an image
into at least two regions. Usually, active contours or level set based im-
age segmentation methods combine different feature channels, arising
from the color distribution, texture or scale information, in an energy
minimization approach. In this paper, we integrate the Dempster-Shafer
evidence theory in level set based image segmentation to fuse the in-
formation (and resolve conflicts) arising from different feature channels.
They are further combined with a smoothing term and applied to the
signed distance function of an evolving contour. In several experiments
we demonstrate the properties and advantages of using the Dempster-
Shafer evidence theory in level set based image segmentation.

1 Introduction

Image segmentation is a popular problem in the field of computer vision. It is the
first step in many fundamental tasks which pattern recognition and computer
vision have to deal with. The problem has been formalized by Mumford and
Shah as the minimization of a functional [1]. Level set representations or active
contours [2–4] are a very efficient way to find minimizers of such a functional.

As shown by many papers and textbooks on segmentation [2–8], a lot of
progress has been made using these variational frameworks. However it still faces
several difficulties which are usually caused by violations of model assumptions.
For example, homogeneous [2] or smooth [1] object regions are usually assumed.
Due to noise, occlusion, texture or shading this is often not appropriate to de-
lineate object regions. Statistical modeling of regions [5] and supplement of ad-
ditional information such as texture [6], motion [7] or shape priors [8] increases
the number of scenes where image segmentation using variational frameworks
succeeds.

Another reason for failed segmentations is a unsuitable or false initialization,
which is necessary to find a local minimizer for a segmentation functional.

Earlier works on image segmentation using the Dempster-Shafer theory of
evidence have been presented in [9–12] and in [13]. These works combined the
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Fig. 1: Segmentation results using either the probabilistic Bayesian model or
Dempster-Shafer evidence theory to fuse information.

evidence theory with either a simple threshholding [9], a decisional procedure
[10], a fuzzy clustering algorithm [11], a region merging algorithm [12] or a
k-means clustering algorithm [13]. All cited works use the idea of Dempster-
Shafer to fuse the informations arising from three color channels. In contrast
to these works we propose to combine the evidence theory with a variational
segmentation framework, including statistical modeling of regions, the respective
Euler-Lagrange equations and a smoothness term.

1.1 Contribution

In this paper we propose to use the Dempster-Shafer theory of evidence [14,
15] to combine several information sources in a variational segmentation frame-
work. This theory of evidence is an elegant way to fuse information from differ-
ent feature channels, e.g., color channels and texture information, and it offers
an alternative to traditional probabilistic theory. Instead of using the proba-
bilistic Bayesian model to fuse separated probability densities we deal with the
Dempster-Shafer evidence theory which allows to represent inaccuracy and un-
certainty at the same time. A prerequisite for the Dempster-Shafer theory of
evidence is a mass function. We show how to define these functions and combine
them to derive the so called belief function. This belief function represents the
total belief for a hypothesis and can be integrated into a variational segmentation
framework to assign more support to high probabilities (see Figure 1).

Note, that image segmentation is just our example application, but we strongly
believe that the Dempster-Shafer evidence theory can be advantageous for other
applications in Computer Vision or Machine Learning as well. Therefore, this
theory is of general interest for our research community.
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1.2 Paper Organization

In Section 2 we continue with a review of the variational approach for image
segmentation, which is the basis for our segmentation framework, and a pre-
sentation of the Dempster-Shafer theory of evidence. Section 3 introduces the
proposed segmentation method which combines the variational segmentation
method and the Dempster-Shafer theory of evidence. Experimental results in
Section 4 demonstrate the advantages of the proposed method. The paper fin-
ishes with a short conclusion.

2 Background

2.1 Image Segmentation using a Variational Framework

Our variational segmentation framework is based on the works of [2, 16]. Using
the level set formulation for the general problem of image segmentation has
several well known advantages, e.g. the naturally given possibility to handle
topological changes of the 1-D boundary curve. This is especially important if
the object is partially occluded by another object or if the object consist of
multiple parts.

In case of a two-phase segmentation, the level set function ϕ : Ω → R splits
the image domain Ω into two regions Ω1, Ω2 ⊆ Ω with

ϕ(x) =

{
≥ 0, if x ∈ Ω1

< 0, if x ∈ Ω2

. (1)

The zero-level line of the function ϕ(x) represents the boundary between the
object, which is sought to be extracted, and the background. A successful remedy
to extend the number of situations in which image segmentation can succeed is
the use of additional constraints, for instance the restriction to a certain object
shape [17, 18]. However in this work we focus on segmentation without using
shape priors.

The basis for our segmentation framework is the so called Chan-Vese energy
functional [2]:

E(ϕ) =−
∫
Ω

(
H(ϕ) log p1 + (1−H(ϕ)) log p2

)
dΩ

+ ν

∫
Ω

|∇H(ϕ)| dΩ ,

(2)

where ν ≥ 0 is a weighting parameter between the given constraints, pi are prob-
ability densities and H(s) is a regularized Heaviside function. The regularized
Heaviside function is needed to build the Euler-Lagrange equation and to make
it possible to indicate at each iteration step to which region a pixel belongs.
Given the two probability densities p1 and p2 of Ω1 and Ω2 the total a-posteriori
probability is maximized by minimizing the first term, i.e. pixels are assigned to
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the most probable region according to the Bayes rule. The second term penalizes
the length of the contour and act as a smoothing term.

Minimization of the Chan-Vese energy functional (2) can be easily performed
by solving the corresponding Euler-Lagrange equation to ϕ. This leads to the
following partial differential equation

∂ϕ

∂t
= δ(ϕ)

(
log

p1
p2

+ ν div

( ∇ϕ
|∇ϕ|

))
, (3)

where δ(s) describes the derivative of H(s) with respect to its argument. Starting
with some initial contour ϕ0 and given the probability densities p1 and p2 one
has to solve the following initial value problemϕ(x, 0) = ϕ0 for x ∈ Ω

∂ϕ

∂t
= δ(ϕ)

(
log

p1
p2

+ ν div

( ∇ϕ
|∇ϕ|

))
. (4)

Thus, the quality of the segmentation process is limited by the initial contour
and the way the foreground and background probability densities p1 and p2 are
modeled. In this paper we used the nonparametric Parzen estimates [6], which is
a well known histogram-based method. This Model was chosen since compared
to multivariate Gaussian Mixture Models (GMM) it leads to comparable results
without estimating so many parameters. Other possibilities to model the prob-
ability densities given the image cues are, e.g., a Gaussian density with fixed
standard deviation [2] or a generalized Laplacian [19].

For the proposed method it is necessary to extend this segmentation frame-
work from gray scale images to feature vector images I = (I1, . . . , Im). This
extension is straight forward and has been applied to the Chan-Vese model [20].
For this extension it is assumed that the channels Ij are independent, so that
the total a posteriori probability density pi(I) of region Ωi is the product of the
separated probability densities pi,j(Ij). Thus the Chan-Vese model (2) for vector
images reads:

E(ϕ) =−
∫
Ω

H(ϕ)

m∑
j=1

log p1,j dΩ −
∫
Ω

(1−H(ϕ))

m∑
j=1

log p2,j dΩ

+ ν

∫
Ω

|∇H(ϕ)| dΩ
(5)

and yields to the following Euler-Lagrange equation:

∂ϕ

∂t
= δ(ϕ)

 m∑
j=1

log
p1,j
p2,j

+ ν div

( ∇ϕ
|∇ϕ|

) . (6)

Because of their independency, the pi,j can be estimated for each region i and
each channel j separately. In other words, for each pixel in the image the fore-
ground probability

∑m
j=1 log p1,j and the background probability

∑m
j=1 log p2,j is

computed over all feature channels j. Possible image features to be incorporated
by means of this model are color, texture [21, 6] and motion [7].
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2.2 Dempster-Shafer evidence theory

The Dempster-Shafer evidence theory, also called evidence theory, was first in-
troduced in the late 60s by A.P. Dempster [14], and formalized in 1976 by G.
Shafer [15].

This theory is often described as a generalization of the Bayesian theory to
represent inaccuracy and uncertainty information at the same time. The basic
idea of the evidence theory is to define a so called mass function on a hypothe-
ses set Ω, also called frame of discernment. Let us note the hypotheses set Ω
composed of n single mutually exclusive subsets Ωi, which is symbolized by:

Ω = {Ω1, Ω2, . . . , Ωn} . (7)

In order to express a degree of confidence for each element A of the power
set ℘(Ω), it is possible to associate an elementary mass function m(A) which
indicates all confidences assigned to this proposition. The mass function m is
defined by:

m : ℘(Ω)→ [0, 1] (8)

For all hypotheses, m must fulfill the following conditions:

(i) m(∅) = 0 (ii)
∑
An⊆Ω

m(An) = 1 . (9)

In this context, the quantity m(A) can be interpreted as the belief strictly placed
on hypothesis A. This quantity differs from a Bayesian probability function by
the totality of the belief which is distributed not only on the simple classes, but
also on the composed classes. This modeling shows the impossibility to dissociate
several hypotheses. This characteristic is the principal advantage of the evidence
theory, but it also represents the principal difficulty of this method.

If m(A) > 0, hypothesis A is a so called focal element. The union of all the
focal elements of a mass function is called the core N of the mass function

N = {A ∈ ℘(Ω) | m(A) > 0} . (10)

From the basic belief assignment m, a belief function Bel : ℘(Ω) → [0, 1] and a
plausibility function Pl : ℘(Ω)→ [0, 1] can be defined as

Bel(A) =
∑
An⊆A

m(An) , P l(A) =
∑

A∩An 6=∅

m(An) , (11)

with An ∈ ℘(Ω). Bel(A) is interpreted as the total belief committed to hypoth-
esis A, that is, the mass of A itself plus the mass attached to all subsets of A.
Bel(A) then is the total positive effect the body of evidence has on a value being
in A. It quantifies the minimal degree of belief of the hypothesis A.

A particular characteristic of the Dempster-Shafer evidence theory (one which
makes it different from probability theory) is that if Bel(A) < 1, then the remain-
ing evidence 1−Bel(A) needs not necessarily refute A (i.e., support its negation
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A). That is, we do not have the so-called additivity rule Bel(A) + Bel(A) = 1.
Some of the remaining evidence may be assigned to propositions which are not
disjoint from A, and hence could be plausibly transferable to A in the light of
new information. This is formally represented by the plausibility function Pl
(see Eq. (11)). Pl(A) is the mass of hypothesis A and the mass of all sets which
intersect with A, i.e. those sets which might transfer their mass to A. Pl(A)
is the extent to which the available evidence fails to refute A. It quantifies the
maximal degree of belief of hypothesis A.

The relation between mass function, belief function and plausibility function
is described by:

m(A) ≤ Bel(A) ≤ Pl(A) ∀A ∈ ℘(Ω) (12)

Dempster’s rule of combination The Dempster-Shafer theory has an impor-
tant operation, the Dempster’s rule of combination, for pooling of evidence from
a variety of features. This rule aggregates two independent bodies of evidence
defined within the same frame of discernment into one body of evidence. Let m1

and m2 be two mass functions associated to two independent bodies of evidence
defined in the same frame of discernment. The new body of evidence is defined
by

m(A) = m1(A)⊗m2(A) =

∑
B∩C=A

m1(B)m2(C)

1−
∑

B∩C=∅

m1(B)m2(C)
. (13)

Dempster’s rule of combination computes a measure of agreement between two
bodies of evidence concerning various propositions discerned from a common
frame of discernment. Since Dempster’s rule of combination is associative, we
can combine information coming from more than two feature channels.

3 Dempster-Shafer evidence theory for variational image
segmentation

To introduce the proposed method, using the Dempster-Shafer evidence theory
to fuse information arising from different feature channels, we consider the fol-
lowing example. Let I = (I1, I2) be a vector image with two feature channels and
ϕt with t ≥ 0 be a contour dividing the image into foreground and background.
To minimize the energy functional (5), foreground and background probabilities
need to be computed over both feature channels. Using the Bayesian model and
disregard the smoothing term, a pixel is defined as foreground if

2∑
i=1

log

(
p1,i
p2,i

)
> 0 . (14)

Our proposed method uses the Dempster-Shafer theory of evidence to fuse the
information coming from the feature channels. Therefore, we have to define the
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Fuse Information according to Dempster’s rule of combination
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Fig. 2: Proposed image segmentation paradigm based on combining the varia-
tional framework and Dempster-Shafer theory of evidence.

mass function m : ℘(Ω) → [0, 1]. In case of a two-phase segmentation, the
frame of discernment becomes Ω = (Ω1, Ω2) where Ω1 denotes the object or
foreground, and Ω2 the background. We propose to define the mass function mj

for all hypotheses as:

mj(Ω1) = p1,j(I(x)), mj(Ω2) = p2,j(I(x)) ,

mj(∅) = 0 , mj(Ω) = 1− (p1,j(I(x))) + p2,j(I(x))) ,
(15)

for j ∈ {1, 2}. In practice, the defined mass functions fulfill Eq. (9). If p1,j+p2,j >
1 normalization is straight forward to fulfill the condition. Dempster’s rule of
combination (Eq. (13)) fuses the two bodies of evidence to compute a measure
of agreement between both mass functions. We obtain the new mass function
m = m1 ⊗m2, with Dempster’s rule of combination (13).

In case of a two-phase segmentation, the total belief committed to a focal
element Ωi is equal to the belief strictly placed on Ωi. Thus we obtain

Bel(Ωi) = m(Ωi) for i ∈ {1, 2} and Bel(Ω) = 1 . (16)

If we use the total belief committed to a focal element and disregard the smooth-
ing term, a pixel is defined as foreground if

log

(
Bel(Ω1)

Bel(Ω2)

)
> 0 . (17)

The plausibility function Pl(Ωi), which quantifies the maximal degree of belief
of the hypothesis Ωi defines a pixel as foreground if

log

(
Pl(Ω1)

Pl(Ω2)

)
= log

(
m(Ω1) +m(Ω)

m(Ω2) +m(Ω)

)
> 0 . (18)
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Fig. 3: (a) Illustration of two foreground probability densities (solid red line) and
two background probability densities (dashed blue line), (b) product of the two
separated densities (Bayesian model), (c) mass functions (given by Dempster’s
rule of combination (13)); Using the evidence theory to fuse the densities enlarges
the area of the supported foreground

Our proposed method uses the total belief committed to foreground or back-
ground region. Figure 2 shows the general segmentation paradigm to evolve
a contour combining the variational framework and Dempster-Shafer evidence
theory.

In general, let I = (I1, . . . , Ik) be a vector image with k feature channels.
Assuming independent feature channels and using the Bayesian model, the total
a-posteriori probability of a region is the product of the separated probability
densities. With Dempster-Shafer’s theory of evidence, the information arising
from the k feature channels is fused using Dempster’s rule of combination, re-
sulting in:

m = m1 ⊗m2 ⊗ . . .⊗mk , (19)

where mj is defined by Equation (9). Now, the total belief committed to a
region is used as the a-posteriori probability of a region. Thus, the new energy-
functional of our proposed method is given by:

E(ϕ) =−
∫
Ω

H(ϕ) logBel(Ω1) dΩ −
∫
Ω

(1−H(ϕ)) logBel(Ω2) dΩ

+ ν

∫
Ω

|∇H(ϕ)| dΩ
(20)

and yields to the following Euler-Lagrange equation:

∂ϕ

∂t
= δ(ϕ)

[
log

Bel(Ω1)

Bel(Ω2)
+ ν div

( ∇ϕ
|∇ϕ|

)]
. (21)

Figure 3 shows the differences between both models and clarifies the effect of the
new method. Given two foreground and two background probability densities in
Figure 3a, the product of the separated probability densities is shown in Figure
3b and the total belief function coming from Dempster’s rule of combination
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(a) (b) (c) (d) (e) (f)

Fig. 4: (a) and (d): Two different initializations for the segmentation methods,
(b) and (e): final segmentations using the Bayesian model, (c) and (f): final seg-
mentations using Dempster-Shafer evidence theory. While the proposed method
converges to almost identical results, the Bayesian model get stuck in two differ-
ent local minima, due to one inadequate foreground histogram. Evaluating the
energy of the results shows that the energy of (e) is the bigger than the other
ones.

in Figure 3c. Obviously, the effect of the foreground probability in Figure 3c is
larger than in Figure 3b, since the Dempster-Shafer theory of evidence supports
high probabilities whereas the Bayesian model supports small probabilities.

Intuitively this means that the Bayesian model searches for feature channels
not supporting a region whereas the Dempster-Shafer theory searches for feature
channels that support a specific region.

Properties of the Bayesian model, e.g., to include shape priors [22], can be
transferred straightforward to the proposed framework by adding terms to the
new energy-functional (20).

4 Experimental Results

We introduced a segmentation method which integrates the Dempster-Shafer
theory of evidence into a variational segmentation framework. To show the ef-
fect of the new approach, we present some results of our proposed method and
compare them to segmentation results using the Bayesian framework to fuse
information arising from different feature channels.

We evaluate our method on real images taken from the Berkeley segmentation
dataset [23], our own real images, as well as on synthetic textured images from
the Prague texture segmentation data-generator and benchmark [24]. In most of
our experiments we used the CIELAB color channels and the smoothing term.
This implies that we do not integrate additional information such as texture or
shape priors in most of our experiments. To demonstrate the advantages of our
framework we integrated texture features for the experiments on the synthetic
textured images.

A situation in which the advantages of the proposed method become appar-
ent is the synthetic example shown in Figure 4. While the segmentation using
the Bayesian model computes different segmentation boundaries for the two ini-
tializations, the proposed methods converges to almost identical results for both
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Fig. 5: Precision-Recall-Diagram. Circles mark the performance using Dempster-
Shafer theory of evidence, x marks the performance using Bayes. The black marks
mark the mean performance (Dempster-Shafer: 0.93, 0.83; Bayes: 0.81, 0.82).

initializations. The reason for the different segmentation results with the ini-
tialization in Figure 4d is a inadequate foreground statistic for one of the two
feature channels (red and green). For the upper part of the object, that has to
be segmented, this inadequate feature channel (green) supports the foreground
with very small probabilities. More formally:

∃j ∈ {1, 2} | p1,j(x) ≈ 0 ∀x ∈ A , (22)

while A is the upper part of the object. Using the Bayesian model we obtain

p1(x) =
∏
j

p1,j(x) ≈ 0 . (23)

Because of the noisy background, these statistics have a larger standard deviation
than the foreground statistics (see also Figure 3). For our example we obtain

p1,1(x) ∈ [0.024; 0.040] , p1,2(x) ≈ 0 ,

p2,1(x) ∈ [0.006; 0.004] , p2,2(x) ∈ [0.007; 0.006] ,
(24)

for x ∈ A, which results in

p2(x) =
∏
j

p2,j(x) > p1(x) ∀x ∈ A . (25)

Apparently the first feature channel (red) is not considered, even if it supports
the foreground with the highest probability. With the Dempster-Shafer evidence
theory this problem is solved elegantly since in the aforementioned case we have

Bel(Ω1) > Bel(Ω2) ∀x ∈ A , (26)
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This may be explained by the fact, that the Dempster-Shafer evidence theory
assigns more support to high probabilities whereas the Bayesian model more
strongly supports small probabilities (see also Figure 3).

The same effect of the evidence theory can be observed in real images, where
the Bayesian model does not segment parts of the object, because one feature
channel is approximately zero (e.g. Figure 1, or the tent in Figure 7). Conversely,
the proposed method converges to a good segmentation in these regions because
the two other channels strongly support the foreground.

To evaluate and demonstrate the impact of the new method, we choose 47
images from the Berkeley segmentation dataset [23]. This subset was chosen for
practical reasons, because most of the images are not suited for variational image
segmentation. To measure the performance we calculated precision and recall for
each of the images, which are defined by:

Precision =
|G ∩R|

|G ∩R|+ |R \G| , Recall =
|G ∩R|

|G ∩R|+ |G \R| , (27)

where G is the ground-truth foreground object and the region R is the object-
segment derived from the segmentation. As ground-truth foreground we used the
manual segmented ground-truth from [25], which is publicly available. For both
frameworks we used the same manually selected initialization for each image,
which was typically a rectangular inside the object. We decided to use manually
segmentations, since both methods find local minimizers of the given energy
functional. The regularization parameter was chosen slightly different between
the frameworks but remained the same for all images. The probability densities
where modeled as nonparametric Parzen estimates.

The performance of all images is shown in Figure 5. Using the Bayesian frame-
work to fuse the information leads to a mean precision of 0.81 and a mean recall
of 0.82 while the mean precision using the proposed Dempster-Shafer theory is
0.92 and the mean recall is 0.83.

Figures 7 and 1 show some example segmentations on images from the Berke-
ley segmentation dataset. Using our proposed method to fuse the different infor-
mation helps to segment and separate much better the semantically interesting
and different regions by searching for features that support the foreground region
or the background region. Analyzing the lower right Example of Figure 7 shows,
that the Bayesian model segment parts of the swamp, because on channel does
not support the background. Sometimes the proposed model leads to slightly
worse segmentations. E.g. analyzing the flower, some parts of the blossoms are
not segmented. The reason why the Bayesian model segments these parts is one
channel that does not support the background.

Example segmentations integrating texture features are given in Figure 6.
Again the proposed method separates the the interesting regions much better
than the Bayesian approach.
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Fig. 6: Segmentation results using either the probabilistic Bayesian model or
Dempster-Shafer evidence theory to fuse color and texture information.

5 Conclusion

In this paper we proposed the Dempster-Shafer evidence theory as an extension
of the Bayesian model for the task of level set based image segmentation. The
main property of this theory is to combine information arising from different
feature channels by modeling inaccuracy and uncertainty at the same time. It
therefore allows to fuse these information and resolve conflicts. In several ex-
periments on real and synthetic images we demonstrated the properties and
advantages of using the Dempster-Shafer evidence theory for image segmenta-
tion.

We strongly believe that this theory is of high interest for other applications
in the fields of Computer Vision or Machine Learning as well.
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