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Abstract. Computing a 1-dimensional linear subspace is an important
problem in many computer vision algorithms. Its importance stems from
the fact that maximizing a linear homogeneous equation system can be
interpreted as subspace fitting problem. It is trivial to compute the solu-
tion if all coefficients of the equation system are known, yet for the case
of incomplete data, only approximation methods based on variations of
gradient descent have been developed.
In this work, an algorithm is presented in which the data is embedded
in projective spaces. We prove that the intersection of these projective
spaces is identical to the desired subspace. Whereas other algorithms
approximate this subspace iteratively, computing the intersection of pro-
jective spaces defines a linear problem. This solution is therefore not an
approximation but exact in the absence of noise. We derive an upper
boundary on the number of missing entries the algorithm can handle.
Experiments with synthetic data confirm that the proposed algorithm
successfully fits subspaces to data even if more than 90% of the data
is missing. We demonstrate an example application with real image se-
quences.

1 Introduction

In this work, we consider the problem of estimating the linear subspace of a ma-
trix of rank-1 if not all entries of this matrix are known. Since the maximization
of a linear homogeneous equation system amounts to fitting a 1-dimensional sub-
space to the coefficient matrix, the mathematical community already considered
the additional difficulty of unknown coefficients in the late 60s and 70s [23, 17,
10, 22, 8, 18]1.

In computer vision, subspace fitting with missing data received considerable
attention after the introduction of the factorization algorithm by Tomasi and
Kanade [20]. In the same work, the authors also proposed an algorithm which
computes left and right subspaces starting with some part of the matrix where
all entries are known. This solution is iteratively propagated until all unknown
entries are estimated. However, it is likely that the cameras which gave rise to
1 Please notice that for the Wiberg-algorithm, [22] is usually cited. However, this

publication is missing, at least in the issue available online.
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the initial submatrix are in degenerate configuration, hence subsequent estimates
would be incorrect.

Jacobs proposed to first estimate the intersections of all triplets of affine
subspaces induced by points having unknown coordinates [13]. The subspace is
taken to be identical with the space which contains all intersections, i.e. the
intersection of intersections. In general, however, even in the absence of any
noise, this intersection is empty.

Many other approaches in the computer vision community are variants of the
approach of Tomasi and Kanade, for instance by integrating statistical reliability
measures [7] or optimizing a different cost function [3]. Modified EM-schemes
[23, 8] were also proposed, e.g. considering some statistical properties [19], or a
different cost [2]. Hartley and Schaffalitzky alternatingly estimate left and right
subspaces [11]. Buchanon and Fitzgibbon [4] proposed to improve convergence
speed by combining a Gauss-Newton approach [17, 18] with the method of [11].
Recently, it was proposed to integrate problem-specific constraints into EM-
schemes [16, 1].

A new type of algorithms was recently proposed: heuristics which minimize
the l0-, the l1-norm, or the nuclear norm allow for the recovery of low-rank
matrices with partially missing entries, or even matrices with some entries cor-
rupted [6, 9]. Minimizing a spectral norm implies that the number of non-zero
singular values is not kept fixed. Consequently, such algorithms can converge to
a solution where the number of non-zero singular values is different as required
by the physical model. According to our experience this frequently happens in-
deed. Relying on convex optimization, they require certain parameters specified
apriori, and they are known to be slow if the problem size becomes large. Lastly,
their gradient-descent nature makes them susceptible to local minima.

Summarizing, Gauss-Newton approaches [17, 18, 4] are susceptible to local
minima hence they require good initial solutions. Conversely, EM-schemes [23,
22, 8, 19, 16, 1] or EM-like schemes [11] seem to converge more robustly, yet can
require tremendously much time [4]. Approaches generalizing some estimate ob-
tained from some part of the data to the complete data are highly susceptible
to noise, larger amounts of missing data and degenerate camera configurations
[20, 13].

In this work we consider the special case of subspaces of rank-1. We will prove
that for this case a linear solution exists and is unique. Subspace estimation in
the presence of missing matrix entries reduces to solving a single linear equation
system, hence there is no necessity to iterate. No parameters need be chosen
apriori, and the algorithm is immune to local minima. The proposed approach
is significantly faster than iterative approaches even for large problems. Experi-
mental evaluation will show that our algorithm estimates accurate subspace even
if less than 10% of the data is known. Its usefulness is further demonstrated with
several challenging real image sequences.

In Section 2 we will prove existence and uniqueness of a linear solution for
the estimation of a rank-1 subspace if not all matrix entries are known. Section 3
continues with an experimental evaluation of accuracy using simulated data. A
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model application with real-image data is presented in Section 4. The paper ends
with conclusions in Section 5.

2 A Linear Solution

Capitalized letters M are used for scalar constants, bold lower-case letters x for
vectors, bold capital letters X for matrices, and calligraphic capital letters A
for spaces. The symbol x> denotes the transpose of a vector or matrix, and ‖ · ‖
the L2-norm.

Definition 1. Let S ∈ RM be a linear space of dimensionality 1, and let s be a
vector of length 1 spanning S.

If some point x = [x1 · · · xM ]> lies in the subspace S spanned by s we have

1
‖x‖

x>s = 1. (1)

LetX be a M×N matrix whose column vectors consist of N points x1, . . . , xN .
If X is completely known, the vector s spanning the subspace is given by the
left singular vector corresponding to the largest singular value of X [14]. In the
absence of noise, all singular values except the largest one are identically zero.

If not all coordinates of a particular vector xi, i = 1, . . . , n, are known, the
set of possible vectors gives rise to an affine space Ai

xi = Aiyi + ti. (2)

Here, the matrix Ai consists of d basis vectors ej where d is the number of
unknown coordinates of xi. Each basis vector ej equals 1 at the coordinate cor-
responding to the missing coordinate of wi and is zero elsewhere. The vector
ti consists of the known coordinates of xi and is zero at the coordinates corre-
sponding to the missing coordinates of xi. Vector yi is chosen so that Eq. (2)
holds true. Confer to the left plot of Figure 1.

Lemma 1. The affine space Ai and subspace S intersect.

Proof. Since xi is a point of Ai, by Eq. (1) it also is a point of S, hence Ai and
S intersect.

Let Pi denote the projective space spanned by Ai and the origin (shown in
the right plot of Figure 1). Given basis vectors p1, . . . ,pN spanning Pi we can
express any point x on Ai by

x = c1p1 + · · ·+ cNpN . (3)

Theorem 1. The projective space Pi and subspace S intersect.

Proof. Ai ∈ Pi and Ai ∩ S, hence Pi ∩ S must hold true.
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Theorem 2. The intersections S ∩ Pi and S ∩ Pj, i 6= j, are identical.

Proof. By theorem 1 both Pi and Pj intersect with S. Therefore two points
xi ∈ Pi and xj ∈ Pj exist which are in S and in Pi and Pj , respectively.
Assuming that two different lines of intersection si and sj of length 1 exist, we
have x>i /‖xi‖si = 1 and x>j /‖xj‖sj = 1 by Eq. (1). This implies that S must be
spanned at least by si and sj which violates Definition 1. Hence the assumption
that si 6= sj must be incorrect.

Theorem 2 proves that all projective spaces Pi and Pj , i 6= j, intersect in s.
It also proves the uniqueness of the solution.

The right of figures 1 depicts the idea of the proof for 3 points xi, i=1,2,3,
having one unknown coordinate each. Here, projective spaces Pi intersect in a
single line s on which the points xi are located.

Fig. 1. Left: Three points (red dots) located on a line (blue). Affine spaces induced
by unknown coordinates are indicated by red lines. Right: Projective planes (shown
in red) through each affine space (red lines) intersect in a single line (blue) which is
identical to the subspace on which the data resides.

The remaining question is how to compute s: Let Ni be the orthogonal
complement of Pi. A direct consequence of Theorem 2 is that

N1⊥ s, . . . , NN⊥ s, (4)

i.e. s is orthogonal to all spaces Ni, i = 1, · · · , N . We therefore haveN
>
1

...
N>N

 s = 0. (5)

where N i denotes the matrix consisting of all normal vectors to Pi.
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Algorithm 1 Linear 1-Dimensional Subspace Estimation
1: Input : Vectors xi of which not all coordinates are known.
2: Output : The subspace s on which all complete vectors xi would reside.
3: Separate each vector xi into known coordinates ti and unknown coordinates giving

rise to an affine space Ai so Eq. (2) holds true.
4: The basis vectors ej of the affine space Ai and the vector ti span the projective

space Pi. Compute the orthogonal complement N i of Pi by SVD.
5: Create matrix N in Eq. (4).
6: Compute the 1-dimensional nullspace of N by SVD according to Eq. (5).

To determine the M variables of s, at least M equations are necessary. Each
point xi ∈ RM with ui unknown coordinates induces a projective space of di-
mension ui + 1. Hence, M − (ui + 1) normal vectors exist for each point xi. In
the absence of noise, if

N∑
i=1

(M − (ui + 1)) ≥M (6)

the subspace can be estimated.
The only necessary assumption taken is that the points xi are indeed located

on a line intersecting the origin, so X has rank 1 if all its entries are known. If
s does not intersect the origin, i.e. is affine, X has rank 2.

The algorithm for 1D subspace fitting under incomplete data is summarized
in Algorithm 1.

3 Synthetic Evaluation

For a synthetic evaluation of accuracy and required computation time, we ran-
domly created 1000 points in a 100-dimensional space satisfying the rank-1 prop-
erty. Minimal and maximal values were about −150 and 150, respectively. We
then estimated the subspace using our proposed method and compare it with
PowerFactorization [11], an EM-algorithm where subspace and missing data are
estimated alternatingly, and an implementation of a nuclear norm minization
algorithm (NNM) [5]2. Our implementation of the EM-algorithm is similar to
[19] yet without considering statistical reliability of trajectories. All algorithms
were implemented using MatLab. The angular difference between the ground
truth and the estimated vector was adopted as measure for the error.

We randomly removed entries from the data matrix consisting of all points.
We gradually increased the number of entries to be removed in steps of 10%,
20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 98%. To evaluate the robustness
three different levels of independent, normally distributed noise were added to
the data. Standard deviations of noise were set to 0, 0.1, and 1.0. The last level
is equivalent to a strong pixel noise of about 3%. For each combination of noise
and sampling ratio, all four algorithms were executed ten times and the average
2 The code is generously provided at svt.caltech.edu.



6 H. Ackermann, B. Rosenhahn

(a)

10% 30% 50% 70% 90% 98%
0

10

20

30

40

50

60

70

Amount Missing Entries [Percent]

A
cc

ur
ac

y 
[D

eg
re

es
]

10% 30% 50% 70% 90% 98%

10

20

30

40

50

60

70

Amount Missing Entries [Percent]

A
cc

ur
ac

y 
[D

eg
re

es
]

10% 30% 50% 70% 90% 98%

10

20

30

40

50

60

70

Amount Missing Entries [Percent]

A
cc

ur
ac

y 
[D

eg
re

es
]

(b)

10% 30% 50% 70% 90% 98%

100

200

300

400

500

600

700

Amount Missing Entries [Percent]

C
om

pu
ta

tio
n 

T
im

e 
[S

ec
on

ds
]

10% 30% 50% 70% 90% 98%

100

200

300

400

500

600

Amount Missing Entries [Percent]

C
om

pu
ta

tio
n 

T
im

e 
[S

ec
on

ds
]

10% 30% 50% 70% 90% 98%

100

200

300

400

500

600

Amount Missing Entries [Percent]

C
om

pu
ta

tio
n 

T
im

e 
[S

ec
on

ds
]

Fig. 2. (a) Average angular difference between ground-truth and estimation for sev-
eral sampling ratios. The red dash-dotted line indicates PowerFactorization, the green
dashed line the EM-algorithm, the cyan dotted line nuclear norm minimization and the
blue solid line the proposed method. (b) Average computation time in seconds. The
proposed method needs between 0.43sec and 0.84sec. Even for a sampling ratio of 98%
where PowerFactorization is fastest, our method is 25 times faster while being much
more accurate. Nuclear norm minization is between 12 and 17 times slower for all sam-
pling ratios and noise levels while being significantly less accurate even for relatively
complete data.

angular error and computation time computed. Since PowerFactorization and the
EM-approach are susceptible to local minima we randomly initialized them 50
and 5 times, respectively, and took the best result. According to our experience,
choosing more than 50 or 5 repetitions does not change the optimal result. All
computations were performed on an Intel Core2 Quad CPU with 3.0GHz.

Figure 2(a) shows the average angular errors if there was no noise in the
data (left), small pixel noise with standard deviation σ = 0.1 (middle), and
strong noise with σ = 1.0. The x-axis shows the amount of missing entries in
percent, the y-axis the average angular error. The red dash-dotted line indicates
the error due to PowerFactorization, the green dashed line the EM-method, the
cyan dotted line NNM, and the solid blue line our algorithm. As can be seen,
for less than 80% of missing entries, PowerFactorization and the EM-method
perform approximately same as good as the proposed method, only NNM is
between 1.4 and almost 10000 times less accurate. Beyond 80% missing data,
the proposed algorithm is much more accurate than all other algorithms. NNM
regularly fails to estimate a subspace of dimension 1, but computes a higher-
dimensional solution.
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The average computation times are shown in Fig. 2(b). The left plot in
Fig. 2(b) shows the computation time in seconds on the y-axis if the data is
noise-free, the middle plot if the noise is small (σ = 0.1), and the right plot
shows results for strong noise (σ = 1.0). The proposed procedure requires less
between 0.43sec and 0.84sec of time for all three experiments. Our algorithm is
between 12 and 17 times faster than NNM, and between 25 and 240 times faster
than PowerFactorization. For all combinations of sampling ratios and noise, the
proposed method is at least same as accurate while being magnitudes faster and
immune to local minima. Nuclear norm minimization usually fails to estimate
the correct subspace from simple data like the one shown in Fig. 1.

4 Real-Image Application

In this section we present a real image application. It is known that 3D-
reconstruction from point correspondences can be achieved by means of an iter-
ative version of the so-called factorization algorithm [15, 12]. It involves fitting a
4-dimensional subspace to data. However, this algorithm cannot be used if some
data is missing. If the camera is calibrated and does not rotate, the rank-4 con-
straint can be reduced to rank-1. Under incomplete data, the method of Sec. 2
can be applied then.

In Sec. 4.1 we shortly review the projective factorization algorithm [15, 12].
In Sec. 4.2 we will consider the case when not all feature points are known in all
images. We will show that the standard rank-4 constraint reduces to a rank-1
problem if intrinsic and rotation parameters are known. 3D-reconstructions from
challenging out-door sequences are shown in Sec. 4.3.

4.1 Projective Factorization

Assuming a perspective camera model, the ith camera is defined by the matrix

P i = K [ Ri | ti ] . (7)

Here, vector ti contains the translation parameters of the ith camera, matrix Ri

the rotation parameters, and matrix K the intrinsic parameters such as focal
length f , principal point p = [ px py ]> and photo sensor scales ax and ay

K =

fax 0 px

0 fay py

0 0 1

 . (8)

While we assume here that intrinsic parameters are known and fixed throughout
the sequence, varying intrinsics are possible as long as they are known which is
the case for many real-world applications.

The jth homogeneous 3D-point Xj = [ Xj Yj Zj 1 ]> is projected onto an
image point xij = [ uij vij 1 ]> by

λijxij = P iXj . (9)
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The projective depth λij is a scalar to ensure that the third coordinate of xij

equals 1.
Given N points in M images, we may arrange all image measurements xij

into an observation matrix W

W =

 λ11x11 · · · λ1Nx1N

...
. . .

...
λM1xM1 · · · λMNxMN

 =

 P 1

...
PM


︸ ︷︷ ︸

P

[
X1 · · · XN

]︸ ︷︷ ︸
X

. (10)

With some risk of confusion, denote the stack of all camera matrices by P
and the matrix of all homogeneous 3D-points by X. Equation (10) implies that
the columns of matrix W span a 4-dimensional subspace if all scalars λij are
known.

Equation (10) may be written as(
I − PP>

)
W = 0, (11)

if the column vectors of P have unit length and are mutually orthogonal. The
symbol I denotes the identity matrix. Equation (11) can be used to compute(
I − PP>

)
as left nullspace of W .

Conversely, if P is known, the projective depths λij may be computed by
solving (

I − PP>
)
Djλj = 0 (12)

for λj where Dj denotes a 3M × M matrix consisting of the measurements
xij of the jth trajectory on its diagonal, and λj the vector consisting of the
corresponding variables λij .

If both the variables λij and the camera matrices P are unknown, a projective
reconstruction can be estimated by initializing the λij , for instance to 1, and
iteratively solving Eqs. (11) and (12). To avoid a trivial solution we impose the
constraint that the columns of W should have unit length. If all observations
xij are normalized to length 1, this constraint is satisfied if all vectors λj have
length 1 which is automatically enforced by standard tools for computing the
singular value decomposition.

4.2 Missing Observations

The procedure in Sec. 4.1 may only be used if all observations xij are known
across all images. Unfortunately, this is a rather unrealistic requirement. For
instance, feature points can disappear due to failure of the tracking software,
or due to occlusion in the scene. Conversely, the method introduced in Sec. 2
can fit subspaces to incomplete data yet it requires a rank-1 constraint. In the
following, we will show that the rank-4 constraint can be reduced to rank-1 so
a projective reconstruction can be computed from data where feature points
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are missing: In many real-world problems, the intrinsic camera parameters are
known or can be easily estimated. Furthermore, in applications like car or robot
navigation, information about the rotation of the vehicle is available. If both
K and all rotation matrices Ri are known, the only remaining unknown is the
vector t =

[
t>1 · · · t>M

]>
. The known measurements xij are weighted with

K−1. Unknown observations x̃ij are initialized to 1√
3

[ 1 1 1 ]>. From Eq. (11)
we have the requirement that (

I − tt>
)
W = 0. (13)

However, Eq. (13) does not sufficiently constrain t. It has also be orthogonal
to the known subspace spanned by

R =

 R1

...
RM

 . (14)

Since vector t should be orthogonal to R, it must reside in the orthogonal
complement of R. Letting

N =

N
>
1

...
N>N

 , (15)

where the matrices N i are the normals to the projective spaces induced by
trajectory vectors with missing coordinates. If we combine the orthogonality
constraint with Eq. (5) we then obtain(

I −RR>
)
Nt = 0. (16)

If the vector t has been determined, the missing observations can be estimated
by minimizing the distance to the subspace P = [ R t ](

I − PP>
)
Λjdj = 0 (17)

whereΛj denotes a 3M×3M matrix with vectors [ λij λij λij ]> on each triple of
its diagonal entries, and dj the vector of all observations x1j · · · xMj . Similar
to [1], dj can be separated into known and unknown feature points thus the
unknown observations can be estimated by solving a linear equation system.

Since the variables λij are not known generally, it is necessary to estimate the
vector t, the projective depths λij , and all missing observations x̃ij . We obtain
a projective reconstruction by iterating the following three steps: estimate t by
Eq. (16), estimate all unknown observations x̃ij by Eq. (17), and optimize the
projective depths λij by Eq. (12).

Iterations may be terminated if the difference of reprojection errors

ε =
1
L

M∑
i=1

N∑
j=1

δijK (xij −N [P iXj ]) (18)
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between two consecutive iterations becomes sufficiently small. Here, δij equals
one if xij was observed and is zero otherwise. The symbol N [·] denotes the scale
normalization to make the third coordinate equal to 1. We use the normalization

L =
M∑
i=1

N∑
j=1

δij . (19)

4.3 Real-Image Sequences

(a)

(b)

Fig. 3. (a) Six images of a 50-image sequence with 1700 trajectories. A total of 40.5%
of all feature points (indicated by the red points) is known. The iterative projective
factorization converged to a reprojection error of 3.24[px]. (b) 3D-reconstruction using
the algorithm proposed in Sec. 4.2. The right wall is planar. The angle between floor
and the two walls is not exactly perpendicular, but both walls are almost orthogonal.
The depth difference between left wall and wood logs is clearly recognizable.

Figures 3(a), 4(a), and 5(a) each show six images of three sequences which
were taken with the video function of a consumer-level digital camera (Canon
PowerShot A530). The images have size 640× 480 pixels and are of low quality.

Correspondences were established using a standard software (voodoo camera
tracker3). We did not check manually for matching errors, so it is possible that
outliers are present in the data. Particular trajectories, e.g. such of short length,
were not excluded either. Rotational motion is small but present since we did
not carefully arrange the camera. This induces some model-noise which is not in-
dependently distributed. Intrinsic calibration parameters were determined using
[21]. The 3D-reconstructions are not further optimized by a bundle adjustment.
3 www.digilab.uni-hannover.de/docs/manual.html
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(a)

(b)

Fig. 4. (a) Six images of a 60-image sequence with 1500 trajectories. A total of 36.7%
of all feature points (indicated by the red points) is known. The iterative projective
factorization converged to a reprojection error of 3.0[px]. (b) 3D-reconstruction using
the algorithm proposed in Sec. 4.2. The left image shows a side view, the middle one
a front view, and the right image a view from top. While the curvature of the well is
slightly underestimated, it is well perceivable. Well and floor are perpendicular, and
the depth ratios between plants (green points) and well are reasonable.

The sequence corresponding to Fig. 3(a) consists of 1700 trajectories which
were tracked over 50 images. A total of 40.5% of all feature points are known. The
left plot of Fig. 6 indicates where feature points are known and where unknown.
The horizontal axis indicates the number of the trajectory, the vertical axis
the image number. Feature points missing in some image are marked by black,
present features by white. We stopped the projective factorization algorithm
after 30 iterations resulting in a reprojection error of 3.24 (pixels). Figure 3(b)
shows three images of the 3D-reconstruction. The outline of the wooden logs
in the left part is clearly visible. The angle between ground plane and the two
planes is not exactly rectangular, but the angle between both planes is quite
orthogonal (shown in the third, top-view image), and the surface of the right
wall is almost perfectly planar what can be seen in the first image.

The second sequence, corresponding to the six images shown in Fig. 4(a),
consists of 1500 trajectories over 60 images with 36.7% of the feature points
being known. Absence and presence of feature points is shown by the middle
plot in Fig. 6. The algorithm converged to a reprojection error of 3.0[px] after 50
iterations. Three images of the 3D-reconstruction of the sequence are shown in
Fig. 4(b). The well can be seen in the center of the images. While the curvature
of the well is underestimated (shown in the third, top-view image), the angle
between floor and well is almost rectangular. The depth ratios between plants
(green points) and well look reasonable.
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(a)

(b)

Fig. 5. (a) Six images of a 60-image sequence with 2000 trajectories. A total of 31.38%
of all feature points (indicated by the red points) is known. The iterative projective
factorization converged to a reprojection error of 2.3[px]. (b) 3D-reconstruction using
the algorithm proposed in Sec. 4.2. The walls of the building, the tree to the left and
the stairs in the lower left part of the images can be well perceived. The angle between
the two main walls is not exactly rectangular but still looks good.

The last sequence, corresponding to Fig. 5(a), consists of 2000 trajectories
over 60 images with 31.38% of the feature points tracked (cf. right plot of Fig. 6).
The reprojection error was 2.3[px] after 20 iterations. The 3D-reconstruction is
shown in Fig. 5(b). The structure of the building is clearly visible. The two main
walls, the tree in the left part and the stairs in the lower right part can be
seen. The top-view image shows that the angle between the two walls is slightly
distorted.

5 Conclusions

In this work, we presented an algorithm for fitting a 1-dimensional subspace to
incomplete data. We proved that for this special case, a linear solution exists
and is unique. Using simulated data we showed that for various levels of noise,
the proposed algorithm is more accurate than other methods if more than 80%
of the data is missing. It is magnitudes faster while being same as accurate
or even more precise. We demonstrated that our method is able to compute
3D-reconstructions of low-quality real-image sequences with large amounts of
unobserved correspondences.
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Fig. 6. Presence of the trajectories of the sequences shown in Figs. 3(a) (left), 4(a)
(middle) and 5(a) (right). The number of each trajectory is indicated by the horizontal
axis, the image number by the vertical axis. White represents known feature points,
black absent points.

References

1. H. Ackermann and B. Rosenhahn. Trajectory Reconstruction for Affine Structure-
from-Motion by Global and Local Constraints. In IEEE Computer Vision and
Pattern Recognition (CVPR), Miami, Florida, USA, June 2009.

2. P. Aguiar, J. Xavier, and M. Stosic. Spectrally Optimal Factorization of Incom-
plete Matrices. In IEEE Computer Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1–8, 2008.

3. M. Brand. Incremental singular value decomposition of uncertain data with missing
values. In 7th European Conference on Computer Vision (ECCV), pages 707–720,
London, UK, May 2002.

4. A. Buchanan and A. Fitzgibbon. Damped Newton Algorithms for Matrix Factor-
ization with Missing Data. In IEEE Computer Vision and Pattern Recognition
(CVPR), pages 316–322, Washington, DC, USA, 2005.

5. J.-F. Cai, E. J. Candès, and Z. Shen. A singular value thresholding algorithm for
matrix completion. SIAM Journal on Optimization, 20(4):1956–1982, 2010.

6. E. J. Candès and B. Recht. Exact matrix completion via convex optimization.
Foundations of Computational Mathematics, 9(6):717–772, 2009.

7. P. Chen and D. Suter. Recovering the Missing Components in a Large Noisy Low-
Rank Matrix: Application to SFM. IEEE Transactions on Pattern Analyis and
Machine Intelligence, 26(8):1051–1063, August 2004.

8. A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data
via the em algorithm. Journal of the Royal Statistical Society. Series B (Method-
ological), 39(1):1–38, 1977.

9. M. Fazel. Matrix Rank Minimization with Applications. PhD thesis, Dept. Elec-
trical Engineering, Stanford University, March 2002.

10. K. Gabriel and S. Zamir. Lower rank approximation of matrices by least squares
with any choice of weights. Techonometrics, 21(4):489–498, 1979.

11. R. Hartley and F. Schaffalizky. PowerFactorization: 3D Reconstruction with Miss-
ing or Uncertain Data. In Australia-Japan Advanced Workshop on Computer Vi-
sion, June 2002.

12. A. Heyden, R. Berthilsson, and G. Sparr. An Iterative Factorization Method
for Projective Structure and Motion from Image Sequences. Image and Vision
Computing, 17(13):981–991, November 1999.



14 H. Ackermann, B. Rosenhahn

13. D. W. Jacobs. Linear fitting with missing data for structure-from-motion. Com-
puter Vision and Image Understanding, 82(1):57–81, April 2001.

14. K. Kanatani. Statistical Optimization for Geometric Computation: Theory and
Practice. Elsevier Science Inc., New York, NY, USA, 1996.

15. S. Mahamud and M. Hebert. Iterative Projective Reconstruction from Multiple
Views. In IEEE Computer Vision and Pattern Recognition (CVPR), pages 430–
437, Hilton Head, SC, USA, June 2000.

16. M. Marquez and J. Costeira. Optimal Shape from Motion Estimation with Missing
and Degenerate Data. In IEEE Workshop on Application of Computer Vision
(WACV), Copper Mountain, CO, USA, January 2008.

17. A. Ruhe. Numerical computation of principal components when several observa-
tions are missing. Technical report, Dept. Information Processing, University of
Umeda, Umeda, Sweden, April 1974.

18. A. Ruhe and P. Wedin. Algorithms for separable nonlinear least squares problems.
Society for Industrial and Applied Mathematics Review, 22(3):318–337, 1980.

19. Y. Sugaya and K. Kanatani. Extending Interrupted Feature Point Tracking for 3-D
Affine Reconstruction. In 8th European Conference on Computer Vision (ECCV),
pages 310–321, Prague, Czech Republic, May 2004.

20. C. Tomasi and T. Kanade. Shape and motion from image streams under or-
thography: A factorization method. International Journal of Computer Vision,
9(2):137–154, November 1992.

21. R. Tsai. A versatile camera calibration technique for high-accuracy 3-d machine
vision metrology using off-the-shelf cameras and lenses. IEEE Transaction on
Robotics and Automation, 3(4):323–344, 1987.

22. T. Wiberg. Computation of principal components when data are missing. In
Second Symp. on Computational Statistics, pages 229–236, Berlin, Germany, 1976.

23. H. Wold. Estimation of principal components and related models by iterative least
squares. In Krishnaiah, editor, Multivariate Analysis, pages 391–420, 1966.


