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Abstract. In this paper, we introduce a novel framework for automatically eval-
uating the quality of 3D tracking results obtained from markerless motion cap-
turing. In our approach, we use additional inertial sensors to generate suitable
reference information. In contrast to previously used marker-based evaluation
schemes, inertial sensors are inexpensive, easy to operate, and impose compara-
tively weak additional constraints on the overall recording setup with regard to
location, recording volume, and illumination. On the downside, acceleration and
rate of turn data as obtained from such inertial systems turn out to be unsuit-
able representations for tracking evaluation. As our main contribution, we show
how tracking results can be analyzed and evaluated on the basis of suitable limb
orientations, which can be derived from 3D tracking results as well as from en-
hanced inertial sensors fixed on these limbs. Our experiments on various motion
sequences of different complexity demonstrate that such limb orientations consti-
tute a suitable mid-level representation for robustly detecting most of the tracking
errors. In particular, our evaluation approach reveals also misconfigurations and
twists of the limbs that can hardly be detected from traditional evaluation metrics.

1 Introduction

In the field of computer vision, markerless motion capturing (mocap) with the objective
to estimate 3D pose information of a human actor from image data is a traditional field
of research in computer vision [2, 4, 21, 26, 34]. Even though motion capturing has been
an active research field for more than two decades [14], recent tracking procedures still
tend to produce many tracking errors. In particular, when dealing with more involved
settings like only few cameras, difficult lighting conditions, or challenging motion se-
quences, tracking errors are likely to occur.

In the process of developing and improving tracking algorithms, the analysis and
evaluation of tracking results play a crucial role. In practice, the tracking results are
often evaluated by manually inspecting the reconstructed 3D motion sequences or by
looking at the differences between the 2D projections of these sequences and the orig-
inal image data. To automate and objectify the evaluation process, one requires in-
dependent ground truth 3D information used for evaluation in addition to the image
sequences. So far, only few benchmark data sets with non-synthetic data such as [27]
are publicly available that make a fully automatic evaluation possible. Such benchmark
data sets are generated by running a marker-based optical mocap system as a refer-
ence in addition to a multiview video camera system. However, marker-based mocap
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Fig. 1. To compare data of the inertial and the tracking world, orientation data turns out to be a
suitable common mid-level representation.

systems are costly and inconvenient to set up, and typically pose additional constraints
on the recording environment (e. g., illumination, volume, indoor). As an alternative to
recording human motions with real cameras, rendering software can be used to gener-
ate synthetic semi-realistic images, yielding a ground truth representation in a natural
way [1]. However, these images do not represent real recording scenarios well.

In this paper, we present an approach for automatically analyzing and evaluating
3D tracking results using an inertial-based sensor system to generate suitable reference
information. In the following, to clearly distinguish between these two types of data, we
speak of the tracking world to refer to data derived from markerless motion tracking,
and we speak of the inertial world to refer to data derived from an inertial system,
see also Fig. 1. In contrast to marker-based reference systems, inertial sensors impose
comparatively weak additional constraints on the overall recording setup. Furthermore,
inertial systems are relatively inexpensive as well as easy to operate and maintain. On
the downside, the acceleration and rate of turn data obtained from such inertial systems
cannot be directly compared with the tracking result which is given in form of 3D
positions or joint angles. To make such data comparable, one could integrate the inertial
data to obtain 3D positional data. Integration, however, is not practical since inertial data
is prone to noise. Even small potions of noise accumulate during numerical integration,
leading to diverging positional data [31]. On the other hand, one could differentiate the
3D positional data of the tracking result to obtain velocities and accelerations. Such
data, however, is very local in nature with respect to the temporal dimension, making
comparisons on this level susceptible to short-time artifacts and unwanted outliers.

Contributions. As the main contribution of this paper, we introduce a novel inertial-
based evaluation framework, where we use orientation data as a kind of common mid-
level representation. On the one hand, we derive tracking orientations of certain limbs
from the estimated 3D pose parameters given by a tracking result. On the other hand,
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Fig. 2. Snapshots of a tracking result at the given timestamps of the tracked sequence. Basis axes
of the limb coordinate systems of the left lower leg are drawn, once extracted from the tracking
result (thin axes, dark colors), and once from an enhanced inertial sensor (bold axes, light colors).

we use enhanced inertial sensors rigidly attached to suitable limbs to derive inertial
orientations. Introducing a robust calibration scheme, we show how these two types of
orientations can be used to reliably detect tracking errors in markerless motion track-
ing. In contrast to using velocities and accelerations, our orientation-based approach
particularly suits this purpose since typical tracking errors stem from misconfigurations
of certain limbs that effect the tracking result over an entire period of time rather than
occurring at certain instances of time.

Standard error metrics are based on Euclidean distances between positions of joints
or markers which reflect positional errors fairly well. However, orientation errors, in
particular misestimated rotations of cylindrical limbs, can lead to small deviations in
the Euclidean distance metric. Moreover, these tracking errors are difficult to spot from
visual cues. By contrast, our evaluation approach reveals twists of rotationally symmet-
ric body parts by an orientation-based distance metric.

The remainder of this paper is organized as follows. After discussing related work
in Sect. 2, we discuss in Sect. 3 the two types of orientation data. In particular, we
introduce a robust calibration method for making the tracking orientations and inertial
orientations comparable. In Sect. 4, we present our evaluation framework. Furthermore,
we report on extensive experiments conducted on the basis of 24 different motion se-
quences exemplarily using a state-of-the-art markerless tracking system. Finally, con-
clusions and prospects on future work are given in Sect. 5.

2 Related Work

To the best of the authors’ knowledge, this is the first approach for evaluating mark-
erless tracking using inertial sensors. However, there are several papers that deal with
the combination of inertial sensors and cameras. Works in this field have in common
that the relative offset between both systems has to be obtained as a subtask. Starting
with works in robotics [6, 17, 24, 29], this task has also been approached in the vision
community, e. g., [22]. Also, [11] identifies the task with the gray-box problem in the
area of system identification. Application scenarios include the estimation of an offset
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between a robot’s end effector and a visual sensor attached to it [24, 29], or between an
inertial sensor and a camera [11, 22]. Analytically, both scenarios can be described by
the hand-eye calibration equation AX = XB, to which we relate our work in Sect. 3.

For motion tracking, [18] uses orientation data obtained from a small set of inertial
sensors attached to the outer extremities to stabilize a markerless motion tracking ap-
proach. The authors, however, do not discuss the option of using inertial data to evaluate
a purely markerless tracking approach. Moreover, they do not discuss the essential step
of spatial alignment of both worlds, to which we present a solution in this paper.

For activity recognition, [13] evaluates the influence of sensor displacement on a
certain body limb for recognition performance and proposes a heuristic for improving
detection results when the exact sensor position on the body limb is not known. Re-
cently, CMU made a multi-modal activity database publicly available, also containing
inertial data [5]. In biomedics, the authors of [7] use inertial sensors fixed on a lower
leg to reconstruct the one-dimensional knee angle in the sagittal plane. To study biome-
chanical properties of outdoor activities, GPS information can be combined with inertial
sensors [3]. Using a combination of inertial, magnetometer and GPS information, [8]
shows that accurate position estimation for pedestrians is possible. In [28], the motion
of an arm model is reconstructed using inertial sensors [30]. [28] retrieves motions from
a database using few inertial sensor signals to obtain a full body motion. Using only in-
ertial and magnetic sensors, [19] shows that a full body motion can be reconstructed.
Having many sensors in a custom motion capture suit [33], a plausible motion model in
everyday surroundings can be reconstructed. For home entertainment, inertial sensors
are used actively in the recent years. User interfaces based on such sensors have been
studied, e. g., in [23].

3 Orientation Data

After introducing the basics of orientation data, we describe how to obtain inertial as
well as tracking orientation data (Sect. 3.2). In Sect. 3.3, we present a robust and effi-
cient solution for the calibration problem that one needs to solve to make the two types
of orientation data comparable.

3.1 Basics

Suppose a fixed global coordinate system FG that is represented by a right-handed or-
thonormal basis (like all coordinate systems in this paper). Furthermore, suppose a local
coordinate system FL that is moving for a static observer in FG. The relative orientation
of FL with respect to FG can be modeled as a rotation. Given the basis vectors XL, YL,
and ZL ∈ R3×1 of FL in coordinates of FG, the rotation is defined by a rotation matrix
with column vectors XL, YL, and ZL.

In the following, we represent a rotation (or orientation) by a unit length quater-
nion q ∈ R

4, ‖q‖2 = 1, which is a more compact representation than rotation ma-
trices, see [9, 25]. The composition of two rotations represented by q1 and q2 is then
given as the composition q2 ◦ q1. Furthermore, the inverse rotation of q is given by the
quaternion conjugate q. Further, we define a distance function dquat : R4 × R4 → R,
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dquat(q1, q2) = 360/π · arccos ‖〈q1, q2〉‖, which denotes the angle in degrees between
the rotations defined by q1 and q2, see [12] for a proof. We use the notation

FA FBq

(1)

to describe a transformation of coordinate systems FA to FB using the rotation defined
by q. For time dependent quantities we append a discrete frame index (t) and assume
that co-occurring quantities are subject to the same sampling rate.

3.2 Obtaining Two Types of Orientation Data

We now describe how to obtain orientation data in the inertial as well as in the track-
ing world. In the inertial world, as described in [10], an orientation estimation de-
vice can be used to measure its orientation in a static global coordinate system FGI =
(XGI ,YGI ,ZGI). In this coordinate system, the ZGI axis points to the negative gravity
direction, the XGI direction is the orthogonalized direction of the magnetic North, and
YGI is chosen to form an orthonormal right-handed basis. Measurements of accelerom-
eters, gyroscopes, and a magnetic field sensor are fused in a Kalman filter method,
which provides drift free estimates of the sensor’s orientation qI(t). This orientation
maps from the sensor’s local coordinate system FLI to FGI, see Fig. 3. We refer to qI(t)
with the term inertial orientation. In our experiments, we use an orientation estimation
device MTx provided by Xsens [35].

In the tracking world, a global coordinate system FGT is defined by camera cali-
bration. Tracking results are typically given by a mesh-based surface representation for
every frame in coordinates of FGT. To obtain the orientation of a certain limb in the
mesh, one needs to define a local coordinate system FLT that is rigidly attached to the
limb. By selecting three non-collinear vertices of the limb, an orthonormal basis of FLT
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can be build. To ensure that the coordinate system is well defined, one has to claim one-
to-one vertex correspondence throughout the entire motion sequence. In many cases,
tracking results are given as joint angles of a skeletal kinematic chain, which drives the
animation of the mesh surface. In this case, without having to resort to the vertices of
the mesh surface, a local coordinate system for every limb can be defined by forward
kinematics [15]. This way, a tracking orientation qT(t) can be obtained, see Fig. 3.

In order to make qI(t) and qT(t) comparable, one needs a correspondence between
the global coordinate systems FGI and FGT as well as between the two local coordinate
systems FLI and FLT. These correspondences, however, are generally not known. The
global inertial coordinate system FGI is defined by physical quantities, whereas FGT is
defined by an arbitrary placement of a calibration cube in the recording volume. Let
qG denote the resulting offset. Furthermore, the local coordinate system FLI is defined
by the placement of the sensor on the human actor, whereas FLT is defined either by
mesh vertices or by means of a kinematic chain. Let qL denote the resulting offset.
The determination of qG and qL is referred to as calibration, which is a tedious and
error-prone task when done manually. Therefore, automated calibration is an important
concern that we deal with in Section 3.3.

3.3 Calibration and Error Measure

In this section we describe a robust method how qL and qG can be obtained. We show
that the described problem is closely related to the prominent hand-eye calibration task
in robotics [32]. The orientation qI(t) can be described by two distinct compositions of
rotations in the diagram of Fig. 3, once with tracking and once with inertial orientations:

FLI FLT FGT FGI
q
L

q
T(t) qG

q
I(t)

(2)

With quaternion algebra, this equality can be expressed as

qI(t) = qG ◦ qT(t) ◦ qL . (3)

Now, we can express the rotation that is needed to transform FLI at frame s to FLI at
frame t. In Fig. 3, there are two distinct compositions of rotations, starting at t in FLI

and ending at s in FLI:

FLI FLT FGT FGI FGT FLT FLI

FGI

q
L

q
T(t) qG q

G
qT(s) qL

q
I(t) qI(s)

(4)

Here, tracking orientations in the upper path and inertial orientations in the lower path
are used. The equality of the paths can be expressed with quaternion algebra, where the
offset qG cancels out:

qI(s) ◦ qI(t) = qL ◦ qT(s) ◦ qT(t) ◦ qL . (5)

Substituting qA := qI(s) ◦ qI(t), qB := qT(s) ◦ qT(t), and qX := qL, we get

qA ◦ qX = qX ◦ qB . (6)
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In robotics, a more general equation of the same form, in which homogeneous transfor-
mations are used instead of sole rotations, describes the hand-eye calibration problem.
Manifold solutions to this problem have been published, see, e. g. [29] and references
therein. Unique solutions can be found as soon as two measurements of qA and qB are
available. However, in the presence of noise, an approximate solution using many mea-
surements is preferable to diminish the influence of measurement errors. Therefore, we
suggest to use N � 2 measurements based on a calibration tracking result. The solution
of

argmin
qX

∑

n∈[1:N ]

‖qA
n ◦ qX − qX ◦ qB

n‖ (7)

yields a best approximate solution under the Euclidean norm. In [17], Park and Martin
present an efficient and easy to implement solution for this subproblem of the hand-eye
calibration using exponential coordinates, which we adapt for our needs. Denoting the
real part of a quaternion q with qw and the imaginary part with qxyz, the quaternion
logarithm is defined as

log(q) := 2 arccos(qw)
qxyz

‖qxyz‖
∈ R3×1 . (8)

Intuitively, log(q) extracts a representation for rotations in which the direction of log(q)
denotes the axis and the length denotes the angle of the rotation. Then, we define the
matrix M as

αn := log(qA
n ), βn := log(qB

n) (9)

M :=
∑

n∈[1:N ]

βn · trans(αn), M ∈ R3×3, (10)

where trans(α) is the transpose of α. The solution to Eq. (7) as a rotation matrix is
given by

MX := (trans(M) · M)
−1/2 · trans(M) . (11)

To convert MX to the quaternion qX, we refer to [25]. Using this formulation, the offset
qL can be found efficiently from Eq. (5). Analogously, one can also regard the dual
equation

qI(s) ◦ qI(t) = qG ◦ qT(s) ◦ qT(t) ◦ qG (12)

to find a solution for the global offset qG. After alignment, we use a thresholding strat-
egy based on Eq. (3) to detect whether a tracking error in frame t occurs by evaluating

dquat

(

qI(t), qG ◦ qT(t) ◦ qL
)

> τ . (13)

4 Experiments

Data Acquisition. For our experiments, we recorded a comprehensive set of image data
using eight synchronized cameras as well as inertial data for five different body parts
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Multiview video Silhouettes Mesh with skeleton Projected mesh

Fig. 4. Starting from multiview video, silhouettes are extracted by chroma keying. A generated
skeleton-enhanced 3D model of the actor is then fit to the silhouettes based on optimization of
joint angle parameters as well as the root orientation and translation.

using MTx devices [35]. By systematically recording two human actors performing
various actions including motion classes such as walk, sit down and stand up, hop and
jump, cartwheel, rotate arms, and throw, we obtained 24 takes with a total length of
14131 frames or 353 seconds of data.

We selected body points at different kinematic levels for fixing the sensors. Firstly,
to represent body limbs that are influenced by a small number of degrees of freedom,
we selected the lower legs as mounting position. Secondly, to represent body limbs
that are influenced by a larger number of degrees of freedom, we selected the hands as
mounting positions. Thirdly, the fifth sensor was fixed on the upper torso.

Finally, to temporally align the inertial data and the video data, we used a simple
cross-correlation method applied to inertial absolute accelerations from both worlds.
Here, since the offsets do not change with time, temporally local tracking errors do not
play a crucial role in this step. All data streams were sampled at 40Hz.

Tracking. Our framework is thought for evaluating tracking results independent of the
specific tracking method. In our experiments, we exemplarily used a tracking algorithm
similar to [20], see Fig. 4. First, we extract silhouettes from captured images by chroma
keying. We generate a surface mesh of the actor using a 3D body scanner and fit a
skeletal kinematic chain to it. Then, the surface deformation of the mesh is defined by
joint angle parameters as well as root orientation and translation of the kinematic chain.
Using a local optimization approach, pose configuration parameters are determined to
minimize the distance between the transformed 3D mesh projected back onto the 2D
images and the silhouettes. This way, we generated tracking results for all 24 takes,
which we then evaluated in our experiments.

Calibration. To compare orientation data from different worlds as explained in Sec-
tion 3.2, the global coordinate system offset qG and local offsets qL

s for each of the
sensors s ∈ [1 : 5] have to be estimated. For this purpose, we propose a solution using a
calibration take. There are only two small requirements for the calibration take that are
easy to meet in practice. Firstly, the orientations of the limbs should be represented rea-
sonably well by the tracking result. Secondly, to obtain unambiguous offsets, the take
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Fig. 5. Distance measure dquat and threshold τ used to reveal tracking errors in an example
tracking sequence for (a) the left leg and (b) the left hand. Using these curves, automatically
detected tracking errors are marked by red boxes, see (c). Manual annotations conducted by two
subjects are marked with gray and black boxes, respectively.

should contain poses in different orientations. To this end, we selected a take contain-
ing relatively slow motions which are rather easy to track. Since the offset for the local
and global orientations are constant for each actor, local tracking errors do not have a
significant impact on the final estimations.

Automatic Evaluation and Discussion. In our experiments we resort to a studio setup
for the multiview recordings. Going for outdoor recordings, one would require a more
advanced tracking method than the one we currently use. However, our evaluation con-
cepts transfer without modification to more advanced tracking scenarios. In particular,
inertial sensors do not depend on a studio setup and are applicable for outdoor settings.

To automatically detect tracking errors, we evaluate Eq. (13) for every limb and
frame. In Fig. 5, the quaternion distance functions for (a) the left leg and (b) the left hand
are drawn. In Fig. 5 (c), the detected tracking errors for the body segments are marked
with red boxes, which we also refer to as automatic annotations. In our experiments,
we chose the quality threshold τ = 45 ◦ (dashed line), which turned out to be a suitable
trade-off between error detection capability and robustness. The threshold selection will
be discussed later, see also Fig. 8.

Since we aim to assess the quality of the presented procedure, we asked two people
(hereafter referred to as A1 and A2) of our working group to manually annotate each
frame of the tracking results according to tracking errors in the limbs, see Fig. 5 (c). We
refer to these annotations as manual annotations. For this task, the annotators were pro-
vided with the original multiview videos as well as with a tool to view the reconstructed
3D mesh from arbitrary viewpoints. As it turned out, both annotators did not notice any
tracking errors in the torso. This is also reflected by our distance measure, which stays
well within a small range of 14.4 ◦ mean and 7.7 ◦ standard deviation. Therefore, we
only regard the other four sensors in our evaluation below.

In Fig. 5 (a), high distance values correspond to a tracking error in the left leg. The
corresponding motion sequence is also indicated by Fig. 2. Here, both annotators as well
as the automatic annotations agree. However, we found that the automatic annotation
procedure generally marks more frames as erroneous than the annotators did. For an
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(a) (b)

Fig. 6. (a) Left: Calibrated inertial orientation for point in time 4.2 s of the example tracking
sequence. (a) Right: Tracking orientation. A tracking error can be detected means of orientation
distances. (b): In a cartwheel sequence, both hands show tracking errors.
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Fig. 7. Comparison of automatic (red) and manual annotations (gray, black) of (a) cartwheels and
(b) locomotion.

annotator A, one needs to distinguish between false positives (automatic annotations,
where A has not seen an error), and false negatives, where A has seen a tracking error,
but the automatic annotation procedure did not detected it. In fact, by examining the
false positives in more detail, we found that they often correspond to subtle tracking
errors that are hardly visible when looking at the reconstructed mesh. For instance, in
the example sequence at 4.2 s, the procedure has marked a tracking error in the left
hand. Fig. 6 (a) (left) shows that the palm is facing to the actor’s hip, represented by the
blue axis of the calibrated inertial orientation. In the 3D reconstruction (right), however,
the palm is facing backwards.

At this point we emphasize that such a tracking error might appear subtle and unim-
portant, because it is hardly noticeable in the visual appearance of an untextured 3D
mesh. However, when using a textured mesh in a rendered scene, this kind of orienta-
tion error will lead to unwanted artifacts. Such an error is not well reflected by previous
evaluation metrics like the one presented in [27]. In these metrics, ground truth marker
trajectories are compared to trajectories extracted from the 3D mesh, where such an
error results in only negligible differences on the positional level. With the proposed
method based on orientation data, however, this error can be revealed.

Fig. 7 (a) shows the annotations of a take containing cartwheels. As an example for a
false positive, consider the point in time 2.5 s. Both annotators agreed on a tracking error
in the actor’s left hand. In Fig. 6 (b), this error is visible even without the additionally
drawn inertial orientations (left) and tracking orientations (right), since the left hand
points into the wrong direction. By contrast, the tracking error in the right hand is much
less visually apparent. In fact, the orientation of the whole arm is estimated incorrectly,
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Fig. 8. (a): Precision and recall values for τ = 45 ◦. Precision (black), recall (red) and F-measure
(green) over variations of τ for (b) legs and (c) hands. Solid and dashed lines represent values
belonging to A1 and A2, respectively.

coming from a misconfiguration in the shoulder joint. This error is revealed by the
orientation error of the end-effector in the kinematic chain. Again, this error could not
be captured well with traditional metrics.

To evaluate the accuracy on all takes, we calculated precision and recall values,
taking each of the manual annotations as baseline. We separately report on the values
for the hands and the legs representing two kinematic levels, see Figure 8 (a). For both
the legs and hands the automatic annotations show relatively small precision values
of around 0.65 and 0.36, respectively. As discussed above, the low precision is coming
from a large amount of automatically detected tracking errors that the annotators did not
see. This shows that the manual evaluation of tracking results is not sufficient to find
all tracking errors. By contrast, the recall values for the legs are quite high, showing
that the automatic annotation procedure detected nearly all manually annotated errors.
The hands, however, show a lower recall in comparison to the legs. Note that this is
mainly due to the per-frame annotations we pursued. In case of short tracking errors
that mainly occur in the tracking results of the hands, small misalignments in the re-
sults lead to low recall values, see Fig. 7 (b). Although most of the boxes coming from
manual annotations have a certain overlap with an automatic annotation, the automatic
annotations achieve a low recall. Here, segment-based rather than frame-based values
may be a more suitable measure.

For quantitative evaluations a combined recording setup with a marker-based optical
motion capture system would have been beneficial. In our setup we did not have a
marker-based reference system at hand. Different sources of errors like sensor noise and
bias, calibration errors, sensors getting out of place, or errors due to the approximation
of the human body with a rigged surface mesh are thus difficult to quantify. However,
our experiments show that the influence of all sources of noise are small. For example,
the distance measure of the upper torso sensor over all 14131 frames of our evaluation
data stays within a small error range with a mean of 14.4 ◦ and a standard deviation
of 7.7 ◦, and the manual inspection shows that there are no noticeable tracking errors
in the torso region. This observation suggests that the overall noise lies within this
small order of magnitude. In particular, it follows that the accuracy of the obtained
inertial orientations is high enough for a quantitative evaluation of tracking results.
Moreover, our experiments show that the proposed distance metric is able to cover most
of the manually observed tracking errors, which is supported by high recall values.
Finally, a manual inspection showed that the false positive detections correspond to
tracking errors that were difficult to perceive for the manual annotators. This supports



12 Analyzing and Evaluating Markerless Motion Tracking Using Inertial Sensors

0 1 2 3 4 5 6 7 8 9 10

−10

0

10

[r
a
d

s
]

0 1 2 3 4 5 6 7 8 9 10

−10

0

10

[m s
2

]

(a) (b)

time [s] time [s]

Fig. 9. Calibrated inertial data (cyan) and tracking data (black) for the left leg of the example
sequence used in Fig. 5 (a). (a): Y-component of the local rate of turn data. (b): Z-component of
the local acceleration data. The tracking errors are hardly detectable.

the statement that our orientation-based distance measure is well suited for detecting
tracking errors.

To evaluate the influence of the threshold parameter τ , we computed precision, re-
call, and F-measure for variations of τ , see Fig. 8. Selecting a low τ yields in a high
recall, since many parts of the evaluation takes are annotated. However, also many parts
unrelated to tracking errors are annotated, yielding a low precision. Our final choice of
τ = 45◦ is motivated by the request of having high recall values without having too
many false detections.

As described in Sect. 3.2, orientation data from the inertial world is obtained by
combining different sensors. These sensors naturally provide 3D acceleration and rate
of turn data. Thus, a method comparing these types of data with corresponding data
generated from the tracking world could also reveal tracking errors. In practice, how-
ever, this does not work well. In Fig. 9, we show a comparison of (a) the rate of turn
data and (b) the acceleration data corresponding to the left leg for the example track-
ing sequence also used in Fig. 5 (a). Here, we only present the Y-component of the
rate of turn and Z-component of the acceleration data, which show the most significant
differences. One can see that the tracking error in the left leg, occurring from 4.6 s to
6.6 s, is hardly revealed on the basis of such data. Firstly, these quantities are very lo-
cal in nature with respect to the temporal dimension. This makes it hard to detect the
duration as well as the starting and ending point in time of an error. Secondly, filtering
techniques necessary to determine meaningful acceleration and rate of turn data may
not only suppress the sensor noise but may also smooth out peaks coming from actual
tracking errors. Thirdly, slowly moving limbs generate low amplitudes in these quan-
tities, which makes it hard, if not infeasible, to detect errors for such motions. With
orientation data, as shown in the paper, these considerations do not hold, thus yielding
a robust procedure for tracking error detection.

5 Conclusions

As a main result of this paper, we showed that limb orientations are a suitable mid-level
representation for detecting tracking errors in markerless motion capturing. In contrast
to traditional evaluation techniques with marker-based optical systems, the usage of
inertial sensors provides an unobtrusive and affordable way to generate ground truth
data. Furthermore, inertial sensors impose comparatively weak additional constraints on
the overall recording setup with regard to location, recording volume, and illumination.
In particular, our procedure enables the detection of tracking errors that come from
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rotationally symmetric body parts. Such errors can hardly be identified by traditional
evaluation metrics which are based on visual cues or positional information.

Sensor fusion for motion tracking, recognition, and retrieval applications has be-
come a vital strand of research. Apart from detecting tracking errors, the integration
of inertial data into tracking algorithms as additional prior information constitutes a
promising approach to stabilizing motion tracking in complex scenarios such as out-
door settings, fast motions, or presence of occlusions. Furthermore, we plan to apply our
framework for orientation-based motion retrieval and reconstruction. Finally, we con-
tribute to these fields by making the multimodal data set and the Matlab-implementation
of the calibration method used in this paper publicly available at [16].
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