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ABSTRACT:

In this article we present a method that extracts plantations from satellite imagery by finding and exploiting appropriate feature space
projections. Segmentation is done using an automatic two-region segmentation based on the level set method. The behaviour of this
algorithm is defined by a statistical region model that describes the similarity of regions using distances in arbitrary feature spaces.
Subsequently different feature spaces will be evaluated regarding their plantation classification quality in an automatic fashion. The
segmentation quality of our method is assessed by testing several orthophotos depicting a wide range of landscape types and comparing
them with a manual segmentation. We show that a combination of simple texture based features like the structure tensor and the Hessian
matrix are sufficient to facilitate an effective plantation segmentation scheme.

1 INTRODUCTION

When looking at land cover analysis, digital imagery is not only
used for interpretation, but also for the verification and updating
of tagged regions stored in GIS databases. Thus, the efficiency
of today’s workflow can be greatly improved by using automatic
classification algorithms. In our knowledge-based interpretation
and verification system GeoAIDA (Becker et al., 2008), several
operators are used to hierarchically analyse image data. Area pro-
cessing is done using a classification system which incorporates
a Markov/Gibbs random field model, as proposed by Gimel’farb
(Gimel’farb, 1996). Using this model, plantations (as seen in
Figure 1) are particularly difficult to separate from general vege-
tation areas, since they may not notably differ in their statistical
properties. To tackle this challenging task we propose a segmen-
tation on a region model that works with a general feature space
representation. We analyse several potential feature spaces, each
constructed from the local region of a pixel. By analysing dis-
tances in these feature spaces, we can calculate the likelihood that
the pixel belongs to a certain region of the current segmentation.
For region detection we decided to use a state-of-the-art level set
based segmentation framework that allows us to test our region
model in a straightforward manner. The insights from the semi-
automatic feature space comparison are then incorporated into the
segmentation framework and finally tested on real orthophotos.

2 LEVEL SET SEGMENTATION

The variational approach for image segmentation used in our frame-
work is based on the works of (Chan and Vese, 2001, Malladi et
al., 1995, Paragios and Deriche, 1999, Rosenhahn et al., 2007).
Using the level set formulation for the general problem of im-
age segmentation has several advantages. To allow a convenient
and sound interaction between constraints that are imposed on
the contour itself and constraints that act on the two regions sep-
arated by the contour, the 1-D curve is embedded into a 2-D,
image-like structure. Another important advantage of the level
set representation is the natural given possibility to handle topo-
logical changes of the 1-D curve. This makes it particularly use-

ful for plantation segmentation, where no reliable constraints for
the region shapes can be formulated.

In the case of a two-region segmentation, the level set function
ϕ : Ω → R splits the image domain Ω into the two regions
Ω1, Ω2 ⊆ Ω with

ϕ(x) =

(
≥ 0, if x ∈ Ω1

< 0, if x ∈ Ω2

. (1)

The boundary between the object that is to be extracted and the
background is represented by the zero-level line of the function
ϕ. Like most of the works on level set segmentation, we will
focus on this special segmentation case with two regions. In our
work these will represent the object classes plantations and non-
plantations. As shown in (Chan and Vese, 2001), we will require
an optimal contour to minimise the so called Chan-Vese energy
functional that is:

E(ϕ) = −
Z

Ω

“
H(ϕ) log p1 + (1−H(ϕ)) log p2

”
dΩ

+ ν

Z
Ω

|∇H(ϕ)| dΩ (2)

where ν ≥ 0 is a weighting parameter between the two given
constraints, pi are probabilities and H(s) is a regularised Heav-
iside function. The regularised Heaviside function is needed to
build the Euler-Lagrange equation and to make it possible to in-
dicate which region a pixel belongs to at each iteration step. Min-
imising the first term maximises the total a-posteriori probability
given the the two probabilities p1 and p2 of Ω1 and Ω2, i.e., pixels
are assigned to the most probable region according to the Bayes
rule. The second term minimises the length of the contour and
acts as a smoothing term.

Minimisation of the Chan-Vese energy functional (2) can be per-
formed by solving the corresponding Euler-Lagrange equation to
ϕ



Figure 1: Plantation samples from different locations
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where δ(s) is the derivative ofH(s), with respect to its argument.
Starting with some initial contour ϕ0 and given the probabilities
p1 and p2 one has to solve the following initial value problem:

8<:ϕ(x, 0) = ϕ0 for x ∈ Ω
∂ϕ

∂t
= δ(ϕ)

„
log

p1

p2
+ ν div

„
∇ϕ
|∇ϕ|

««
. (4)

Figure 2 shows the workflow of our segmentation algorithm. The
way the two probabilities p1 and p2 are modelled is a very impor-
tant factor for the quality of the segmentation process. The next
section will, therefore, introduce a statistical region model capa-
ble of estimating probability densities in arbitrary feature spaces.

initial contour φ0

update region model
recalculate p1 and p2

adjust contour φ
minimize the Chan-Vese energy functional

image data

Figure 2: Workflow of the segmentation algorithm

3 STATISTICAL REGION MODEL

The purpose of the region model is to provide a model of the
statistical properties underlying the region that is to be extracted
by our segmentation algorithm. The interface between the re-
gion model and segmentation algorithm is defined by a function
p(x, y), mapping each pixel position to the probability that this
pixel belongs to the modelled region of the current segmenta-
tion. Since p(x, y) depends on the current contour of the region,
which will change during the progression of the segmentation,
a good presegmentation is vital in order to achieve high quality
results. To estimate p(x, y), we use the function f(x, y), which
defines a projection from image to feature space. We can now
easily calculate the mean distance between each position and the
modelled region in an arbitrary feature space. The probability
function p(x, y) is now defined by scaling the resulting distances
to the range [0; 1], while considering that larger distances will
map to a lower probability and vice versa.

In case that several functions fc(x, y) are available, each will
provide one independent feature channel c. The function p(x, y)
can then be calculated by multiplying the individual probability
functions pc(x, y).

3.1 Distance Function

When incorporating several feature channels, a consistent scaling
of the feature distances might become quite complex. We will,
therefore, present a distance function based on the normalised
cross correlation (NCC). The feature vectors i, j ∈ Rn will be
interpreted as discrete signals of length n. The NCC is then de-
fined as

%ij =
1

n− 1

n−1X
t=0

(i(t)− ī) (j(t)− j̄)
σiσj

, (5)

whereby ī and j̄ represent the mean component values of i and
j. Since the range of the NCC is known, scaling the distances is
quite trivial. Handling of anti-correlations depends on the appli-
cation so that %ij may either be mirrored around or clamped at 0,
keeping all values positive.

dNCC1 (i, j) = 1− |%ij | (6)
dNCC2 (i, j) = 1− [%ij ]+ , (7)

with [x]+ =


0 , x < 0
x , else

3.2 Presegmentation

In most cases, a good presegmentation can be derived from ex-
isting geodata. If the data is not available or too outdated, there
is an easy method for generating one by analysing the frequency
spectrum of image blocks from the source image. Typical images
of plantations show a peak in a certain frequency range. After an
appropriate range was learned from existing image data (see sec-
tion 3.3.1), each image block is tested for the occurrence of such
a peak and assigned to either the inner or outer region of the pre-
segmentation. Figure 3 shows the result of the presegmentation
step for one test case.

3.3 Feature Selection

Finding appropriate feature spaces is no easy task and is often
done manually. Instead of designing one that is optimised for



Figure 3: The presegmentation mask for a sample scene

plantation segmentation, our strategy is to generate a wide array
of generic feature spaces and compare them in a systematic man-
ner. This selection process is guided by a list of training sets and
can also be used to find feature spaces for other object classes.
The general workflow shown in figure 4 is further explained in
the following sections.

compute distance table for each feature space

generate training set
image blocks are either labeled as plantation or non-plantation

estimate F1-score for each feature space
assume the distances to be normally distributed

select feature spaces with high F1-scores

Figure 4: Workflow of the feature selection

3.3.1 Training Sets. In total, eight training sets were produced,
each of them chosen to represent a different type of geographical
location. Together, the training sets cover an area of approxi-
mately 75km2 subdivided into 4400 image blocks. These image
blocks are then manually classified as being either of the planta-
tion or non-plantation type.

For each training set, a distance table can be generated. A dis-
tance table contains the distances between all image blocks for a
given feature space. It is convenient to sort the entries so that all
plantation and non-plantation blocks are grouped together. The
table can now be subdivided into four quadrants:

• Intra-distances between non-plantations

• 2× Inter-distances

• Intra-distances between plantations

A distance table from a small training set is shown in Figure 5.

3.3.2 Classification Model. Our goal is to find feature-spaces
that produce small intra-distances and large inter-distances. Of
course, small and large are entirely subjective terms. It is suffi-
cient that intra- and inter-distances are separable. To that end, we
will treat that task as a classical binary classification problem.

Using the distance tables we can find normal distributions de-
scribing the intra- and inter-distances. As shown in Figure 6, by
analysing the overlap of the normal distributions, we can compute
the true positive (TP), false positive (FP), true negative (TN) and

Figure 5: The distance table of a feature contains the distances
between all image blocks in the training set. Dark entries signify
a small distance in a given feature space and therefore a high
similarity.

false negative (FN) rates. It is obvious that features with minimal
overlaps will generate better classification results. To get a bet-
ter understanding of the classification capacity of a given feature
space, we will also calculate precision, recall and the correspond-
ing F1-score (Van Rijsbergen, 1979):

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1 = 2 · Precision ·Recall
Precision+Recall

(10)

Figure 6: Intra-distances (green) and inter-distances (blue) are
approximated by normal distributions. The numbered areas
represent: 1. True Positive 2. True Negative 3. False Negative
4. False Positive

3.3.3 Tested Features. Features are generated in a two-step
process. First, the image blocks are transformed during a prepro-
cessing step. The resulting image blocks are then projected into a
feature space of arbitrary dimension. The following lists present
the image and feature space transformations that were tested:

Image transformations: Fourier transformation, structure tensor,
Hessian matrix, local entropy, local fractal dimension, normalised
difference vegetation index (NDVI)



Histogram Co-occurrence matrix Autocorrelation Frequency spectrum
Identity 0.78 0.76 0.61 0.75

Fourier transformation 0.83 0.79 0.78 0.73
Local entropy 0.68 0.67 0.52 0.71
Local fractal dimension 0.54 0.53 0.51 0.57
NDVI 0.76 0.53 0.59 0.75

Structure tensor 0.83 0.72 0.61 0.78

Hessian matrix 0.89 0.89 0.58 0.82

Table 1: Median of the F1-scores across the training sets. Best results are emphasised.

Feature transformations: Histogram, co-occurrence matrix, auto-
correlation, frequency spectrum

Some of our features were from the literature (Pratt, 2001), (Brox
et al., 2006), (Soille and Rivest, 1996) and (Rouse et al., 1974).

Table 1 contains the results of the different transformation combi-
nations in terms of their F1-scores. Higher scores indicate better
classification results, whereby a 1.0 would imply a perfect clas-
sification. Overall, there is a significant variability between each
training set, but texture based features generally generate better
results. Surprisingly, the NDVI feature only works well on half
the training sets, while autocorrelation results tend to be situated
at the bottom of the rankings, despite the strikingly regular struc-
ture usually displayed by plantations.

4 RESULTS

Input scenes for the training sets and the plantation extraction
tests were selected from IKONOS satellite images with a 1m res-
olution in panchromatic mode. Great care was exercised to select
scenes that feature a wide variety of landscape types, and espe-
cially most plantation subtypes.

Table 2 shows the segmentation results for five test scenes, using
different feature space combinations. The feature spaces used
for the segmentations in Figure 7 - 9 were selected according to
the results of the feature selection step in table 1. As such, a
combination of three feature spaces was used:

• Histogram from Hessian matrix

• Histogram from structure tensor

• Histogram from Fourier transformation

The left image shows a manually generated reference mask, while
the right image shows the result from our segmentation algo-
rithm. Overall, our algorithm produces excellent recall, but only
mediocre sensitivity results, which were due to plantation regions
heavily expanding into background regions. This effect is empha-
sised if the background region contains object classes that do not
appear homogeneous in the chosen feature space.

5 CONCLUSIONS AND FUTURE WORK

Our results have shown that feature spaces well suited for the ex-
traction of specific object classes can be selected in an automatic
manner. For some scenes, a segmentation quality of up to 0.94
(F1-score) was reached. Still, the choice of a two-region segmen-
tation scheme proved to be too restricting, since non-plantation
object classes do not appear homogeneous in any single feature
space that was tested. Our plan is, therefore, to update our frame-
work to support a multi-region segmentation algorithm, allowing

us to define and extract multiple object classes from a scene at the
same time. Simultaneously, the catalogue of evaluated feature
spaces will be expanded to get a better understanding of which
feature space encapsulates the statistical properties of each object
class best.
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Figure 7: Manual reference segmentation (left) and our fully automatic segmentation (right)

Figure 8: Manual reference segmentation (left) and our fully automatic segmentation (right)

Figure 9: Manual reference segmentation (left) and our fully automatic segmentation (right)
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Table 2: Segmentation results for five test scenes using different feature space combinations. Best results for each scene are emphasised.


