
A new approach for automated location of active segments in intracardiac
electrograms

M. P. Nguyen1, C. Schilling1 and O. Dössel1

1 Institute of Biomedical Engineering, Universität Karlsruhe (TH), Karlsruhe, Germany

Abstract— Areas in atrium tissue with complex fractionated
atrial electrograms (CFAEs) are among others responsible for
the maintenance of atrial fibrillation (AFib). Those areas are
ideal target sites for ablation to eliminate AFib and restore nor-
mal rhythm. An automated identification of CFAEs with signal
processing algorithms is essential to develop an objective strat-
egy for AFib ablation. This paper introduces a new approach
to locate signal complexes corresponding to electrophysiological
activity. The idea behind this algorithm is based on the idea of
Pan-Tompkins’ QRS-detection algorithm. However in this ap-
proach, the extracted signal feature is the signal energy and
therefore the algorithm takes into account not only information
of the frequency but also of the amplitude. With adaptive thresh-
olding the algorithm is capable to manage changes in the signal
dynamics. The results were validated by experts and the algo-
rithm shows a robust performance.

Keywords— Atrial Fibrillation, Catheter Ablation, CFAEs,
Signal Processing, Segmentation

I. INTRODUCTION

Atrial fibrillation (AFib) is the most common cardiac ar-
rhythmia and is responsible for substantial morbidity and
mortality in general population. Complex approaches have
been developed for the treatment of AFib where radiofre-
quency ablation is an established curative method.

AFib is characterized by rapid and uncoordinated atrial ac-
tivities resulting in an irregular ventricular response. Allessie
et al. reported that there are two major underlying mecha-
nisms of AFib, i.e. random wavelet re-entry and leading circle
re-entry [1]. It is shown by Haissaguerre et al. that ectopic im-
pulses originating in the pulmonary veins often initiate AFib
[2]. Furthermore, Nademanee et al. suggested that areas in
atrium tissue with complex fractionated atrial electrograms
(CFAEs) are responsible for the maintenance of AFib [3].
Thus, in order to achieve conversion of persistent AFib to nor-
mal rhythm, areas with CFAEs are to be ablated along with
pulmonary veins isolation and linear lesions [4].

Electrophysiologic studies on patients provide the physi-
cians with information to design ablation strategies for the
individual. In order to locate areas to be ablated, CFAEs or

signal complexes, which are related to electrical activity of
electropathological substrate, must be identified. Till now,
this procedure is highly dependent on the experience and sub-
jective assessment of the electrophysiologist. For that reason,
effort in signal processing has been made to describe the char-
acteristics of electrical activities in atrial electrograms during
AFib in either time or frequency domain [5] [6].

There are two commercial mapping systems, CARTO
(Biosense-Webster) and EnSite NavX system (St. Jude Med-
ical), which have implemented software algorithms for au-
tomated detection of CFAEs. Both algorithms are based on
time-domain analysis. However, the results of these algo-
rithms depend on initial settings of specific parameters and
for this reason vary with different operators [7]. Up to now
there is only one algorithm published by Kremen and Lhot-
ska [5] for the purpose of searching for individual signal com-
plexes in CFAEs. Based on wavelet transformation their algo-
rithm uses the affinity of the signal to a wavelet in a certain
frequency band for classification.

In this paper we present a new approach to segment the
intracardiac electrograms into sections of signal complexes
related to electrical activity and into those where an isoelec-
tric line is dominant. Our method is based on the idea of the
Pan-Tompkins’ QRS-detection algorithm [8]. Instead of us-
ing differentiation operator we use Teager’s energy operator
[9] for signal feature extraction. By observing the signal en-
ergy, not only the frequency but also the amplitude is taken
into consideration. Thus, our algorithm shows a robust per-
formance even if the baseline is highly erratic.

II. MATERIALS

Intracardiac electrograms of patients with paroxysmal or
persistent AFib were recorded during endocardial mapping
at roof, septum, anterior and posterior wall of the left atrium.
A Lasso® catheter (Biosense Webster) with 10 electrodes is
used, which provides nine leads of bipolar intracardiac elec-
trograms. The potential difference between two adjacent elec-
trodes is given at each lead. The data is recorded by Ensite
NavX system (St. Jude Medical) with a sample frequency of
1.2 kHz. Each recording has a length of 5 or 6 seconds. The
data is prefiltered by the measurement system.



III. METHODS

A. Teager’s energy operator

Working in the field of nonlinear speech processing, Tea-
ger proposed a simple Non-Linear Energy Operator (NLEO)
[9] for time-discrete signals given as follows

En = E[x(n)] = x2
n− xn+1xn−1. (1)

Kaiser showed in his analysis, that NLEO can detect fre-
quency and amplitude of the examined signals [9]. For a har-
monic signal NLEO yields

En = E[Acos(Ω n+Φ)] = A2 sin2
Ω, (2)

where Ω is the digital frequency in radians/sample and is
given by Ω = 2π f / fs. f is the analog frequency and fs the
sample frequency. A is the amplitude and Φ the arbitrary ini-
tial phase. For small Ω we obtain

En = E[Acos(Ω n+Φ)] = A2
Ω

2. (3)

With Ω < π/4 or f / fs < 1/8 the relative error in the last
approximation is always less than 11%. Now let us consider
x(t) = Acos(ωt +Φ) the time-continuous counterpart of x(n).
x(t) can be interpreted as the solution of the well-known sec-
ond order differential equation

ẍ+
k
m

x = 0, (4)

which describes the motion of a mass m suspended by a
spring with force constant k. The energy of the mass-spring
system substituted with x(t) is

E =
1
2

kx2 +
1
2

mẋ2 =
1
2

mω
2A2 (5)

and thus, E ∝ A2ω2. Comparing this result with equation (3),
we see that the output of NLEO can be considered as an indi-
cation of the energy of the signal x(n).

B. Segmentation of intracardiac electrograms

During endocardial mapping electrophysiological activity
is marked by changes in amplitude and frequency in intra-
cardiac electrograms. It is desired to locate these ”active sec-
tions” and separate them from sections where isoelectric line
is expected - called ”inactive sections”. As Teager’s NLEO
provides a quantity which is proportional to the (squared) am-
plitude and the (squared) frequency of the signal, we use the
relative value of this quantity as the extracted feature for au-
tomated classification. Table 1 shows the relation between the

steps in Pan-Tompkins’ algorithm and those in the approach
presented in this paper.

Table 1: Comparison between Pan-Tompkins’ method and our approach

Pan-Tompkins’ algorithm New approach in this paper

1 Preprocessing Preprocessing

2 Differentiation & Squaring Evaluation with NLEO

3 Moving-Window Integration Gaussian Lowpass Filtering

4 Thresholding Thresholding

5 Postprocessing Postprocessing

Preprocessing In the first step, baseline wander is elim-
inated by a DWT1-based approach [10] where frequencies
in range 0–1.17 Hz are removed. Moreover, high frequency
noise is eliminated from the atrial electrograms by a gener-
alized equiripple lowpass filter. For the later application of
NLEO, the filter stopband corner frequency fstop (with an at-
tenuation of -32 dB) is chosen to be one-eighth of the sample
frequency, which equals to 150 Hz. Since frequencies greater
than 150 Hz are beyond the physiological frequency range,
this restriction does not lead to information loss. The signal
after preprocessing step is shown in Fig. 1(a).

Evaluation with NLEO The output of NLEO highlights
sections with high frequency and high amplitude. In Fig. 1(b)
we note that the relative difference between NLEO’s output
of sections where the signal is ”active” and where the signal
is ”inactive”, is significant.

Gaussian Lowpass Filtering In order to take the width of
an individual peak into account, the NLEO output is filtered
with a lowpass. For this purpose, a gaussian filter is chosen
because both - its impulse response and frequency response -
are smooth in the range of interest, Fig. 2.

According to Pan & Tompkins, the effective width of the
filter impulse response should be in the order of the aver-
age peak width. In intracardiac electrograms peaks are usu-
ally 10–20 ms wide. The effective width of the filter impulse
response is set to 17 samples, Fig. 2(a), which, in case of a
sample frequency of 1200 Hz, corresponds to 14 ms.

In spectral analysis of intracardiac electrograms, the fre-
quency range of interest is 0–20 Hz [11]. Within this range,
the magnitude spectrum of the electrograms often shows a
single dominant peak with its harmonics. For that reason, the
cutoff frequency fc is set to 24 Hz, Fig. 2(b). The lowpass
filtered NLEO’s output is shown in Fig. 1(c).

1Discrete Wavelet Transformation
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Fig. 1: Visualization of the segmentation algorithm in its steps.
(a) Signal after preprocessing. (b) NLEO’s output: the signal ”energy”.

(c) Filtered NLEO’s output. (d) Result after thresholding.

Thresholding To adapt to changing characteristics of the
signal, thresholds are adjusted periodically after ∆ t. Over a
one-second time window wi the threshold θi is calculated
using a factor k of the standard deviation of the filtered en-
ergy within wi. The time shift ∆ t is set to 50 ms. Thus, ev-
ery data point has 20 thresholds θi(n) of 20 shifted windows
wi, except for those lying in the first and the last second of
the data set. For each data point, we choose the threshold
θ(n) = min(θi(n)), i = 1, ...,20.

Finally, the factor k is the only arbitrary parameter, which

is used to weight the standard deviation of the filtered energy.
According to experts’ validation, k is set to 0.1.

By comparing the filtered energy in Fig. 1(c) with the
adaptive thresholds θ(n), sections with high energy (active
section) are located and separated from those with low en-
ergy (inactive section). The result is shown in Fig. 1(d).

Postprocessing In the last step the width of inactive and
active sections are revised. All inactive sections, which are
shorter than a refractory period of 30 ms, are removed and
set to be active. In those cases neighboring active sections are
merged.

The respective procedure is applied to the active sections:
an active section should not be shorter than 10 ms.
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Fig. 2: Gaussian lowpass filter

IV. DISCUSSIONS & RESULTS

A new method for automated location and segmentation
of active segments in intracardiac electrograms is proposed.
This method has been applied on recordings from different
positions in the left atrium of five patients with paroxysmal
or persistant AFib. The results were validated by experts.

The presented method uses the signal energy as an ex-
tracted feature for classification. Since both signal frequency
and signal amplitude are taken into consideration, results in-
dicate high performance and stability. Unlike methods based
on the analysis of the signal frequency, perturbation of the
baseline does not affect the result of our algorithm.

With adaptive thresholding, changes in signal characteris-
tic can be detected and evaluated accordingly. Fig. 3(a) shows
that active sections with high amplitudes as well as active
sections with low amplitudes are located accurately with the
presented method.

During endocardial mapping, CFAEs are in the focus of in-
terest since they are associated with AFib substrate. In atrial



electrograms, sections with a prolonged activation complex
are key indices for CFAEs, Fig. 3(b). By introducing a re-
fractory period, fractionated sections can be identified in their
true length. This is achieved in the postprocessing step, where
adjacent active sections with an intersegment smaller than the
refractory period are merged. Therefore active sections in the
segmented signal are able to represent the local electrophysi-
ological activities.

This method has also been tested on intracardiac electro-
grams during atrial flutter and sinus rhythm. The results are
plausible since in both cases the baseline is smoother than
during AFib. With accordingly adjusted parameters (average
peak width, length of the time-window to calculate thresholds
and refractory period), this method works as well on surface
ECGs for detection of QRS-complexes.1                             1.5                            2  0
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Fig. 3: Examples of segmented intracardiac electrograms. On a signal with
changing amplitudes in (a) and with continuous electrical activity in (b).

V. CONCLUSION

With this approach we reach our goal of providing a reli-
able algorithm for location and segmentation of signal com-
plexes in intracardiac electrograms. Objective assessment of
the local electrical activity in intracardiac electrograms can
be achieved with the presented algorithm.

Based on the segmented data, further investigation can be
performed to extract more features from the active signal
complexes, such as fractionation evaluation for automated
diagnosis of AFib. With its low computational complexity,
this method is capable for real-time application and can be
an operator-independent guide for electrophysiologists dur-
ing catheter ablation.

Because of its nature, this algorithm works not only with
intracardiac electrograms during atrial fibrillation, atrial flut-
ter or sinus rhythm, but also with surface ECGs. So far this
is a theoretical approach and needs further investigations to
warrant its clinical value.
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