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Abstract

Digital in-line holography is a microscopy technique
which has gotten an increasing amount of attention over
the last few years in the fields of microbiology, medicine
and physics, as it provides an efficient way of measuring 3D
microscopic data over time. In this paper we approach the
challenges of a high throughput analysis of holographic mi-
croscopy data and present a system for detecting particles
in 3D reconstructed holograms and their 3D trajectory esti-
mation over time. Our main contribution is a robust method
which evolves from the Hungarian bipartite weighted graph
matching algorithm and allows us to deal with newly enter-
ing and leaving particles and compensate for missing data
and outliers. In the experiments we compare our fully auto-
matic system with manually labeled ground truth data and
we can report an accuracy between 76% and 91%.

1. Introduction
Most processes in biology are three dimensional. This

holds true for the structure of biological matter and for inter-
action of even the smallest building blocks of nature. In the
case of small swimming objects, such as bacteria, algae or a
range of pathogens, motility is of fundamental importance
as interactions often are controlled by their motility. Mo-
tion and interaction with the environment is the prerequisite
for e.g. formation of biofilms [22], biofouling by marine
algae [8, 20] or the action of pathogens [6]. Understanding
the motility and behavioral patterns of microorganisms al-
lows us to understand their interaction with the environment
and thus control unwanted consequences such as infections
or biofouling. Many microorganisms are some microme-
ter large and swim in highly complex, 3D motion patterns
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with velocities of multiple body length per second. Due to
their small size they usually swim in a highly laminar, low
Reynolds number regime.

Microscopes are necessary to study such small objects at
high magnification. Berg built a tracking light microscope,
capable of tracking one bacterium at a time in 3D by using
translation stages, which has been used to investigate bac-
teria like Escherichia Coli [2]. Another way of measuring
3D trajectories is stereoscopy, which requires two synchro-
nized cameras [1]. Confocal microscopy has also been used
to study the motion of particles in colloidal systems over
time, however the nature of this scanning technique limits
the achievable frame rate [25].

For any of these techniques, in order to draw statisti-
cally relevant conclusions, thousands of images have to be
analyzed. Nowadays, this analysis is still heavily depen-
dent on manual intervention. The search for a nearly au-
tomatic analysis of biological images has been extensively
studied [16] but most of the work focuses on position as
well as on the shape of the particle [24]. Statistical methods
like Kalman and particle filters are widely used for tracking
but they need a dynamical model of the target, a task that
can be challenging depending on the microorganism under
study, e.g., the recent work [12] presents a complete vision
system for 2D cell tracking. It proves the increasing de-
mand for efficient computer vision approaches in the field
of microscopy as an emerging discipline. In contrast to [12],
we deal with 3D trajectories of moving particles over time.
In this work we further propose a global optimal matching
solution and not a local one as suggested in [14].

In this paper, we present a microscopy technique, Digi-
tal in-line holography, which provides videos of a 3D vol-
ume and is used to study complex movements of microor-
ganisms. The huge amount of information that we can ex-
tract from holographic images has driven us to create a new
method to analyze this complex 4D data. We propose a geo-
metrically motivated and globally optimal multi-level Hun-



garian to compensate for leaving and entering particles, re-
cover from missing data and erase the outliers to reconstruct
the whole trajectory of the microorganisms.

This paper is organized as follows: Section 2 offers a
description of the Digital in-line holography technique. In
Section 3 we introduce the Hungarian algorithm, in Section
4 the creation of the cost matrix is explained, along with
two modifications. The main contribution of our paper, the
multi-level Hungarian, is detailed in Section 5. Section 6
includes relevant experimental results to show the perfor-
mance of our algorithm.

2. Digital in-line holography
Digital in-line holography provides an alternative, lens-

less microscopy technique which intrinsically contains
three dimensional information about the investigated vol-
ume. It does not require a feedback control which responds
to the motion and it uses only one CCD chip. This makes
the method very straightforward and can be implemented
with a very simple setup as shown in Figure 1.
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Figure 1: Schematic setup for a digital in-line holographic
experiment consisting of the laser, a spatial filter to create
the divergent light cone, the objects of interest (e.g. mi-
croorganisms) and a detector which records the hologram

The holographic microscope requires only a divergent
wavefront which is produced by diffraction of laser light
from a pinhole. A CCD chip finally captures the hologram.
The holographic microscope setup follows directly Gabors
initial idea [4] and has been implemented for laser radia-
tion by Xu et al. [26]. A hologram recorded without the
presence of particles, called the source is subtracted from
each hologram. This is used to reduce the constant illu-
mination background and other artifacts; there are filtering
methods [3,19] to achieve this in case a source image is not
readily available. These resulting holograms can then be re-
constructed back into real space by a Kirchhoff-Helmholtz
transformation [26] shown in Equation 1.

K(r) =

Z
S

d2ξI(ξ)e
2πiξ·r
λξ (1)

in which the integration extends over the 2-D surface
of the screen with coordinates ξ = (X,Y, L), where L is
the distance from the source (pinhole) to the center of the

screen (CCD chip), and I(ξ) is the contrast image (holo-
gram) on the screen obtained by subtracting the images with
and without the object present (so called source image).
Several reconstructing methods are evaluated in [9].

From the reconstruction we obtain 3 projections XY ,
XZ and Y Z, shown in Figure 2, as described in [7].

P(x,y,z)

Figure 2: Projections XY, XZ and YZ obtained after recon-
structing the holograms. P(x,y,z) represents the 3D position
of the microorganisms [7]

The great advantage is that every object located in the
light cone between the pinhole and the CCD detector can
be reconstructed and thus located in three dimensions. Us-
ing video sequences of holograms, it is possible to track
objects in 3D over time and multiple spores present in a
single frame can be tracked simultaneously [5,8,14]. Using
this advantage of digital in-line holography a number of 3D
phenomena in microbiology have been investigated: Lewis
et al. [11] examined the swimming speed of Alexandrium
(Dinophyceae), Sheng et al. [21] studied the swimming be-
havior of predatory dinoflagellates in the presence of prey,
and Sun et al. [23] used a submersible device to investigate
in situ plankton in the ocean.

3. Hungarian: the matching algorithm
Graph Matching is one of the fundamental problems in

Graph Theory and it can be defined as: given a graph G =
(V,E), where E represents its set of edges and V its set of
nodes, a matching M in G is a set of pairwise non-adjacent
edges, which means that no edges share a common vertex.

A graph G = (V,E) is bipartite when its vertices V can
be divided into two sets X and Y such that: the original
set of vertices is formed by the union of the two subsets
(V = X ∪ Y ); each vertex belongs to just one of the two
subsets (X ∩ Y = ∅); every edge in X connects to one in
Y (E ⊆ X × Y ). A matching in a bipartite graph is always
perfect, that is, all the vertices are matched. It is easier to
compute than in general graphs, as the number of possible
combinations decreases considerably with the bipartite re-



striction and the result is found without approximations.
For our application, we are specially interested in the As-

signment Problem, which consists in finding a maximum
weight matching in a weighted bipartite graph. In a general
form, the problem can be expressed as: ”There are N jobs
and N workers. Any worker can be assigned to any job, in-
curring some cost that varies depending on the job-worker
assignment. All jobs must be performed by assigning ex-
actly one worker to each job in such a way that the total
cost is minimized (or maximized)”. For the subsets of ver-
tices X and Y , we build a cost matrix in which the element
C(i, j) will represent the weight or cost related to vertex i
in X and vertex j in Y .

For numerical optimization we use the Hungarian or
Munkres’ assignment algorithm, a combinatorial optimiza-
tion algorithm [10,17] that solves the bipartite graph match-
ing problem in polynomial time. For implementation details
on the Hungarian we recommend [18]. Our initial problem
configuration is: there are M particles in frame t1 and N
particles in frame t2. The Hungarian will help us to find
which particle in t1 corresponds to which particle in t2, al-
lowing us to reconstruct their full trajectories in 3D space.
Nonetheless, the Hungarian algorithm has some disadvan-
tages which we should know and correct to make the algo-
rithm more robust. In the context of our project, we sum-
marize in Table 1 some of the advantages and disadvantages
of the Hungarian algorithm.

ADVANTAGES DISADVANTAGES
Finds a global solution for
all vertices

Cannot handle missing
vertices (a)

Cost matrix is versatile Cannot handle entering or
leaving particles (b)

Easy to solve, bipartite
matching is the simplest
of all graph problems

No discrimination of
matches even if the cost is
very high (c)

Table 1: Summary of the advantages and disadvantages of
the Hungarian algorithm

In the following sections, we present how to solve the
three disadvantages: (a) is solved with the multi-level Hun-
garian method explained in Section 5, (b) is solved with the
IN/OUT states of Section 4.1 and finally a solution for (c)
is presented in Section 4.2 as a maximum cost restriction.

4. Cost function
The cost function C as key input for the Hungarian al-

gorithm is created using the Euclidean distances between
particles, that is, element C(i, j) of the matrix represents
the distance between particle i of frame t1 and particle j of
frame t2. With this matrix, we need to solve a minimum as-

signment problem since we are interested in matching those
particles which are close to each other.

Note that it is also possible to include in the cost func-
tion other characteristics of the particle like speed, size or
gray level distribution. Such parameters can act as addi-
tional regularizers during trajectory estimation.

4.1. IN and OUT states

In order to include more knowledge about the environ-
ment to the Hungarian algorithm and avoid matches with
very high costs, we have created a variation for the cost ma-
trix. The idea is to model the possible entrances and ex-
its of the particles from the Field Of View (FOV) of the
holographic microscope. We include the information of
the environment by calculating the distance of each parti-
cle to the nearest edge of the FOV as in Equation 2, where
mx,my,mz are the low borders and Mx,My,Mz are the
high borders for each of the axis. Note that the low bor-
der in the z axis is not included as it represents the surface
where the microorganisms might settle and, therefore, no
particles can enter or leave from there. If N is the number
of particles in frame t2, then k > N .

C(i, k) = min(|Pi −Mx|, |Pi −mx|,
|Pi −My|, |Pi −my|, |Pi −Mz|) (2)

If the distance is small enough, the Hungarian algorithm
matches the particle with an IN/OUT state.

(a) Wrongly matched

OUT 

IN 

(b) Correctly matched as a result of the IN/OUT state feature

Figure 3: Representation of the particles in frame t1 (left)
and t2 (right). The lines represent the matchings.

In Figure 3 we consider the simple scenario in which we
have 4 particles in one frame and 4 in the next frame. As



we can see, there is a particle which leaves the scene from
the edge below and a particle which enters the scene in the
next frame from the edge above. As shown in Figure 3a, the
Hungarian algorithm finds a wrong matching since the re-
sult is completely altered by the entering/leaving particles.
With the introduction of the IN/OUT state feature, the parti-
cles are now correctly matched (see Figure 3b) and the ones
which enter/leave the scene are identified as independent
particles.

4.2. Maximum cost restriction

Theoretically, particles can only enter/leave the scene by
crossing the borders of the FOV, but due to noise and illumi-
nation irregularities of the holograms, it is possible for par-
ticles to disappear in the middle of the scene. If a particle is
no longer detected, all the matches can be greatly affected
in a similar way as shown in Figure 3a. That is why we
introduce a maximum cost restriction for the cost matrix,
which does not allow matches which have costs higher than
a given threshold. This threshold is based on the observed
maximum speed of the algae spores under study [7].

5. Multi-level Hungarian for missing data
In this section we present our main contribution, the

multi-level Hungarian. The whole method described in Sec-
tion 5 is summarized in a diagram in Figure 4.
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Figure 4: Diagram of the algorithm described in Section 5

5.1. Initial particle detection

In our sequences we are observing the algae Ulva linza,
which has a spheric head and four thin flagella. Since the
head scatters most of the light, in the projected images the

particles have a circular shape. In order to preserve and
enhance particles but reduce noise and illumination irregu-
larities of the image, we apply the Laplacian of Gaussian
filter (LoG) which, for its shape, is a blob detector [13].

Due to the divergent nature of the light cone, the particles
can appear smaller or larger in the projections. Therefore,
the LoG filter is applied in several scales [13]. Note that the
whole algorithm is extremely adaptable, since we can detect
particles with any shape by just changing the filter. The final
3D position (Figure 4, green box labeled ”Candidate parti-
cles”) is determined by thresholding each projection XY ,
XZ and Y Z to find the particles in each image and cross-
ing the information of the three projections.

5.2. Compensating for missing data and outliers

If we consider just the particles detected using the thresh-
olding, we see that there are many gaps within a trajec-
tory (see Figure 7a). These gaps can be a result of morph-
ing (different object orientations yield to different contrast),
changes in the illumination, etc. The standard Hungarian is
not capable of filling in the missing data and creating full
trajectories, therefore, we now introduce a method based on
the standard Hungarian that allows us to treat missing data,
outliers and create complete trajectories. The general rou-
tine of the algorithm, the multi-level Hungarian, is:

• Find the matchings between particles in frames [i −
2 . . . i+2], so we know the position of each particle in
each of these frames (if present). (Section 5.2.1).

• Build a table with all these positions and fill the gaps
given some strict conditions. Let the algorithm con-
verge until no particles are added. (Section 5.2.2).

• On the same table and given some conditions, erase the
outliers. Let the algorithm converge until no particles
are deleted. (Section 5.2.2).

5.2.1 The levels of the multi-level Hungarian

The multi-level Hungarian takes advantage of the tempo-
ral information in 5 consecutive frames and is able to re-
cover from occlusions and gaps in up to two consecutive
frames. The standard Hungarian gives us the matching be-
tween the particles in frame t1 and frame t2 and we use
this to find matchings of the same particle in 5 consecutive
frames, [i− 2, . . . , i+ 2]. In order to find these matchings,
the Hungarian is applied on different levels. The first two
levels, represented in Figure 5 by red arrows, are created
to find the matching of the particles in the frame of study,
frame i. But it can also be the case that a particle is not
present in frame i but is present in the other frames. To
solve all the possible combinations given this fact, we use
Levels 3, 4 and 5, represented in Figure 5 by green arrows.
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Figure 5: Represented frames: [i-2,i-1,i,i+1,i+2]. Levels of
the multi-level Hungarian.

Below we show a detailed description and purpose of
each level of the multi-level Hungarian:

• Level 1: Matches particles in frame iwith frames i±1.

• Level 2: Matches particles in frame iwith frames i±2.
With the first two levels, we know, for all the particles
in frame i, their position in the neighboring frames (if
they appear).

• Level 3: Matches particles in frame i − 1 with frame
i+ 1.

• Level 4: Matches particles in frame i±1 with frame i∓
2. Level 3 and 4 solve the detection of matchings when
a particle appears in frames i ± 1 and might appear in
i± 2, but is not present in frame i.

• Level 5: Matches particles in frame i ± 1 with frame
i± 2.

Of course, the maximum cost is proportional to the dif-
ference of frames that the Hungarian matches, e.g. if Level
1 has cost C1, Level 2 has cost 2C1 and Level 4 cost 3C1.

5.2.2 Conditions to add/delete particles

Once all the levels are applied hierarchically, a table with
the matching information is created. On one axis we have
the number of particles and on the other the 5 frames from
[i− 2 . . . i+ 2], as shown in Figure 6.

To change the table information, we use two iterations:
the adding iteration and the deleting iteration which appear
in Figure 4 as blue boxes. During the adding iteration, we
look for empty cells in the table where there is likely to be
a particle. A new particle position is added if, and only if,
two conditions are met:

1. There are at least 3 particles present in the row. Parti-
cles have continuity while noise points do not.

2. It is not the first or last particle of the row. We use this
strict condition to avoid the creation of false particle
positions or the incorrect elongation of trajectories.

Let’s look at particle 6 of the table in Figure 6. In this
case, we do not want to add any particle in frames i− 2 and
i−1, since the trajectory could be starting at frame i. In the
case of particle 4, we do not want to add a particle in frame
i+ 2 because the trajectory could be ending at i+ 1. Each
iteration repeats this process for all frames, and we iterate
until the number of particles added converges.

After convergence, the deleting iteration starts and we
erase the outliers considered as noise. A new particle posi-
tion is deleted if, and only if, two conditions are met:

1. The particle is present in the frame of study i.

2. There are less than 3 particles in the same row.

We only erase particles from the frame of study i because
it can be the case that a particle appears blurry in the first
frames but is later correctly detected and has more conti-
nuity. Therefore, we only delete particles from which we
know the complete neighborhood. Each iteration repeats
this process for all frames, and we iterate until the number
of particles deleted converges. The resulting particles are
shown in Figure 6.

i-2                  i-1                  i                  i+1                i+2

6 
   

5 
   

 4
   

 3
   

  2
   

  1


Figure 6: Table with: the initial particles detected by the
multi-level Hungarian (green ellipses), the ones added in
the adding iteration (yellow squares) and the ones deleted
in the deleting iteration (red crosses). In the blank spaces
no position has been added or deleted.

5.2.3 Missing data interpolation

During the adding iteration, in order to find the correct po-
sition of the new particle, we use the information of the fil-
tered projection (Figure 4). For example, if we are looking
to add a particle in frame i − 1, we go to the filtered pro-
jections XY, XZ, YZ in t = i − 1, take the position of the
corresponding particle in t = i or t = i − 2 and search



for the maximum value within a window w. If the position
found is already present in the candidate particles’ list of
that frame, we go back to the projection, erase that particle,
and find the position of the second maximum value. This
allows us to distinguish two close particles.

There are many studies on how to improve the particle
depth-position resolution (z-position). As in [15] we use the
traditional method of considering the maximum value of the
particle as its center. Other more complex methods [3] have
been developed which also deal with different particle sizes,
but the flexibility of using morphological filtering already
allows us to easily adapt our algorithm.

5.3. The final Hungarian

Once the final particle positions are obtained (in Figure
4, orange box labeled ”Final particles”), we perform one
last step to determine the trajectories. We use the standard
Hungarian to match particles from frame i to frame i+ 1.

6. Experimental results
In order to test our algorithm we use 6 sequences (la-

beled S1 to S6) in which the swimming motion of Ulva linza
spores is observed [8]. All the sequences have some par-
ticle positions which have been semi-automatically recon-
structed and manually labeled and inspected (our ground
truth) for later comparison with our fully-automatic results.

6.1. Performance of the standard Hungarian

First of all, we want to show the performance of the fi-
nal standard Hungarian appearing in Section 5.3. For this,
we use the ground truth particle positions and apply the
Hungarian algorithm to find the matchings and therefore the
complete trajectories. If we compare the automatic matches
to the ground truth, we can see that in 67% of all the se-
quences, the number of particles is correctly detected, while
in the remaining 33%, there is just a 5% difference in the
number of particles. The average accuracy of the matchings
reaches 96.61%.

To further test the robustness of the Hungarian algorithm,
we add random noise to each position of our particles. The
added noise is the one intrinsically present in this imaging
technique, determined experimentally in [7]. N = 100 ex-
periments are performed on each of the surfaces and the ac-
curacy is recorded. Results show that the average accuracy
of the matching is just reduced from 96.61% to 93.51%,
making the Hungarian algorithm very robust to the noise
present in the holographic images and therefore perfectly
suited to find the trajectories of the particles.

6.2. Performance of the multi-level Hungarian

To test the performance of the multi-level Hungarian we
apply the Final Hungarian on three sets of particles:

• Set A: particles determined by the threshold (pre multi-
level Hungarian)

• Set B: particles corrected after multi-level Hungarian

• Set C: ground truth particles

We then start by comparing the number of particles de-
tected, as shown in Table 2.

S1 S2 S3 S4 S5 S6
Set A 1599 1110 579 668 1148 2336
Set B 236 163 130 142 189 830
Set C 40 143 44 54 49 48

Table 2: Comparison of the number of particles detected

The number of particles detected in Set A is drastically
reduced in Set B, after applying the multi-level Hungarian,
demonstrating its abilities to compensate for missing data
and merging trajectories. If we compare it to Set C, we see
that the number is still too high, indicating possible tracks
which were not merged and so detected as independent.

Nonetheless, as we do not know exactly the amount of
particles present in a volume (not all particle positions have
been labeled), it is of great value for us to compare the av-
erage length of the trajectories, defined as the number of
frames in which the same particle is present. The results are
shown in Table 3 where we can clearly see that the average
length of a trajectory is greatly improved with the multi-
level Hungarian, which is crucial since long trajectories give
us more information on the behavior of the particles.

S1 S2 S3 S4 S5 S6
Set A 3 5 5 4 6 7
Set B 19 31 27 23 38 23
Set C 58 54 54 70 126 105

Table 3: Comparison of the trajectories’ average length

If we consider just useful trajectories for particle analy-
sis, that is, trajectories with a length of more than 25 frames,
the multi-level Hungarian allows us to extract 10% more of
useful trajectories out of each analyzed volume, as shown
in Table 4.

Set A Set B Set C
20.7% 30.1 % 69%

Table 4: Average percentage of useful trajectories
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Figure 7: (a) 3 separate trajectories are detected with the standard Hungarian (blue dashed line). Merged trajectory detected
with our method (with a smoothing term, red line). Missing data spots marked by arrows. (b),(c) Ground truth trajectories
(blue dashed line). Trajectories automatically detected with our method (red line).

Ultimately, this means that fewer volumes have to be an-
alyzed in order to have enough information to draw conclu-
sions of the behavior of a particle.

6.3. Performance of the global method

Finally, we are interested in implementing the global
method on the original projections and compare the over-
all results with the ground truth data. For this comparison,
we are going to present two values:

• Missing: percentage of ground truth particles which
are not present in the automatic determination

• Extra: percentage of automatic particles that do not
appear in the ground truth data

In Table 5 we show the detailed results for each surface.

S1 S2 S3 S4 S5 S6
Missing (%) 8.9 20.7 19.1 23.6 11.5 12.9

Extra (%) 54.9 34.1 46.5 13.3 25.8 74.6

Table 5: Missing labeled and extra automatic particles

Our automatic algorithm detects between 76% and 91%
of the particles present in the volume. This gives us a mea-
sure of how reliable our method is, since it is able to detect
most of our verified particle positions. Putting this infor-
mation together with the percentage of particles detected by
our algorithm but not labeled, we can see that our method
extracts much more information from the volume of study.
This is clear in the case of S6, where we have a volume
with many crossing particles difficult to manually label and
where our algorithm gives us almost 75% more information.

We now consider the actual trajectories and particle posi-
tion and measure the position error of our method. The error

is measured as the Euclidean distance between each point of
the ground truth and the automatic trajectories, both at time
t. In Figure 7a we can see the 3 independent trajectories
found with the standard Hungarian and the final merged tra-
jectory which proves the power of our algorithm to fill in the
gaps (pointed by arrows). In Figure 7b we can see that the
automatic trajectory is much shorter (there is a length dif-
ference of 105 frames), although the common part is very
similar with an error of just 4.2. Figure 7c on the other
hand, shows a perfectly matched trajectory with a length
difference of 8 frames and error of 6.4 for the whole trajec-
tory. This proves the determination of the particle position
is accurate but the merging of trajectories can be improved.

Finally, we present in Figure 8 a view of the complete
volume with the trajectories of the particles found in a fully
automatic way. We just represent particles with length over
40 frames to visualize the independent tracks easily.

7. Conclusions
We have presented an automatic method to track multi-

ple swimming microorganisms in 4D digital in-line holog-
raphy data. This imaging technique provides images of a
3D volume in time, which allows us to recover full trajec-
tories of microorganisms. We have focused our study on a
powerful matching tool, the Hungarian-Munkre’s matching
algorithm, to create a robust method that is able to over-
come the few disadvantages of the standard Hungarian. The
new multi-level Hungarian recovers from missing data, dis-
cards outliers and is able to incorporate geometrical infor-
mation in order to account for entering and leaving particles.
The performance of each step of the method is carefully
tested. The automatically determined trajectories are com-
pared with ground truth data, proving the method detects
between 75% and 90% of the labeled particles. Our system
is proved to be a helpful tool for biologists and physicists to
study microorganisms in an easy and fast way, providing a
vast amount of analyzed data.



Figure 8: Visualization tool for the volume under study. The
surface where spores can settle is marked in red.
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