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Abstract. In this paper we analyze numerical optimization procedures
in the context of level set based image segmentation. The Chan-Vese
functional for image segmentation is a general and popular variational
model. Given the corresponding Euler-Lagrange equation to the Chan-
Vese functional the region based segmentation is usually done by solving
a differential equation as an initial value problem. While most works
use the standard explicit Euler method, we analyze and compare this
method with two higher order methods (second and third order Runge-
Kutta methods). The segmentation accuracy and the dependence of these
methods on the involved parameters are analyzed by numerous experi-
ments on synthetic images as well as on real images. Furthermore, the
performance of the approaches is evaluated in a segmentation benchmark
containing 1023 images. It turns out, that our proposed higher order
methods perform more robustly, more accurately and faster compared
to the commonly used Euler method.

1 Introduction

One popular problem in the field of computer vision is image segmentation. The
problem has been formalized by Mumford and Shah as the minimization of a
functional [1]. With the use of level set representations of active contours [2] one
obtains a very efficient way to find the minimizers of such a functional. As shown
by many seminal papers and textbooks on segmentation using these variational
frameworks [2,3,4] there has been a lot of progress but it still faces several dif-
ficulties. The reason for these difficulties is in most cases a violation of model
assumptions. For example the model usually assumes to have homogeneous [2]
or smooth [1] object regions. Due to noise, occlusion, texture and shading this
model is often not appropriate to delineate object regions. A successful remedy
is the statistical modeling of regions [3] and the supplement of additional infor-
mation such as texture [5] and motion [6], which increases the number of scenes
where image segmentation can succeed.

To find a minimizer it is a common technique to numerically solve the cor-
responding Euler-Lagrange equation using the explicit Euler method for initial
value problems [2]. The main contribution of this paper is the analysis of numer-
ical methods like the explicit Euler method (EU) and higher order Runge-Kutta
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methods (RK-2 and RK-3). We will compare the segmentation accuracy and
further analyze the dependence for involved parameters like the timestep of the
numerical methods or weighting parameters. The advantages of the higher order
methods are demonstrated by several experiments on synthetic and real images.

Paper Organization. In Section 2 we continue with a short review of the varia-
tional approach for image segmentation, which is the basis for our segmentation
framework. Section 3 introduces the various numerical methods and also de-
scribes how to find a minimizer for the functional described in Section 2. Exper-
iments in Section 4 will demonstrate the advantages of the chosen higher order
numerical methods over the standard method and other segmentation methods.
The paper will finish with a short conclusion.

2 Image Segmentation Using a Variational Framework

The variational approach for image segmentation used in our framework is based
on the works of [2,7,8,9]. Using the level set formulation for the general prob-
lem of image segmentation has several advantages. To allow a convenient and
sound interaction between constraints that are imposed on the contour itself and
constraints that act on the two regions separated by the contour, the 1-D curve
is embedded into a 2-D, image-like structure. Another important advantage of
the level set representation is the natural given possibility to handel topological
changes of the 1-D curve. This is especially important if the object is particular
occluded by another object or if the object consist of multiple parts.

In the case of a two-phase segmentation, the level set function ϕ : Ω → R

splits the image domain Ω into the two regions Ω1, Ω2 ⊆ Ω with

ϕ(x) =

{
≥ 0, if x ∈ Ω1

< 0, if x ∈ Ω2

. (1)

The boundary between the object that is sought to be extracted and the back-
ground is represented by the zero-level line of the function ϕ. Like most of the
works on level set segmentation do, we focus on this special segmentation case
with two regions. The interested reader can find an extension to the presented
method on multiple regions in [10,11]. Another successful remedy to extend the
number of situations in which image segmentation can succeed is the use of
additional constraints like the restriction to a certain object shape [4,12].

The following three constraints are imposed as an optimality criterion for
contour extraction:

(i) the data within each region should be similar
(ii) the data between the object and the background should be dissimilar
(iii) the contour dividing the region should be minimal

As shown in [2] these model assumptions can be expressed by the so called
Chan-Vese energy functional that is:

E(ϕ) = −
∫

Ω

(
H(ϕ) log p1 + (1 − H(ϕ)) log p2

)
dΩ + ν

∫
Ω

|∇H(ϕ)| dΩ (2)
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where ν ≥ 0 is a weighting parameter between the three given constraints, pi

are probability densities and H(s) is a regularized Heaviside function with

(i) lim
s→−∞H(s) = 0 , (ii) lim

s→∞ H(s) = 1 , (iii)H(0) = 0.5 . (3)

The regularized Heaviside function is needed to build the Euler-Lagrange equa-
tion and to make it possible to indicate at each iteration step to which region a
pixel belongs. Minimizing the first term maximizes the total a-posteriori proba-
bility given the the two probability densities p1 and p2 of Ω1 and Ω2, i.e., pixels
are assigned to the most probable region according to the Bayes rule. The second
term minimizes the length of the contour and act as a smoothing term.

Minimization of the Chan-Vese energy functional (2) can be easily performed
by solving the corresponding Euler-Lagrange equation to ϕ

∂ϕ

∂t
= δ(ϕ)

(
log

p1

p2
+ ν div

( ∇ϕ

|∇ϕ|
))

, (4)

where δ(s) is the derivative of H(s) with respect to its argument. Starting with
some initial contour ϕ0 and given the probability densities p1 and p2 one has to
solve the following initial value problem⎧⎨

⎩
ϕ(x, 0) = ϕ0 for x ∈ Ω
∂ϕ

∂t
= δ(ϕ)

(
log

p1

p2
+ ν div

( ∇ϕ

|∇ϕ|
))

. (5)

The way the two probability densities p1 and p2 are modeled is a very important
factor for the quality of the segmentation process. In this paper we restrict to the
very simple full Gaussian density using gray values [3]. This restriction is made
because we only want to analyze several numerical methods and therefore it is
not necessary to use different statistical models. Other possibilities for image
cues to use for the density model are color and texture [5,13] or motion [6].
There are also various other possibilities to model the probability densities given
these image cues, e.g., a Gaussian density with fixed standard derivation [2], a
generalized Laplacian [14] or nonparametric Parzen estimates [5].

Let now μ1 and μ2 be the mean gray value in Ω1 or rather Ω2 and σ1 and σ2

the standard deviation of the two regions Ω1 and Ω2. Then the probability of
u(x) ∈ Ω to be in Ωi is:

pi(u(x)) =
1√

2πσi

e
− (u(x)−μi)2

2σ2
i for i ∈ {1, 2} , (6)

where the probability densities p1 and p2 have to be updated after each iteration
step. For our full Gaussian density model this comes down to updating

μ1 =

∫
Ω

u(x)H(ϕ) dΩ∫
Ω H(ϕ) dΩ

; σ1 =
(∫

Ω
(u(x) − μ1)2H(ϕ) dΩ∫

Ω H(ϕ) dΩ

)1/2

μ2 =

∫
Ω

u(x)(1 − H(ϕ)) dΩ∫
Ω(1 − H(ϕ)) dΩ

; σ2 =
(∫

Ω
(u(x) − μ2)2(1 − H(ϕ)) dΩ∫

Ω(1 − H(ϕ)) dΩ

)1/2

,

(7)

using the Heaviside function to indicate the two separated regions.
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Fig. 1. Comparison of the different numerical methods for the initial value problem
y′(t) = sin(t)2 · y(t) with y(0) = 2. The Euler method apparently fail to compute an
accurate solution whereas both Runge-Kutta methods are almost exact.

3 Numerical Methods

3.1 Euler Method

Several methods exist to numerically compute the solution of an initial value
problem of the type (5). The easiest method used by most previous works is
the simple Euler method (EU) [2], which is an explicit first order numerical
procedure for solving initial value problems. The idea of the Euler method is
to assume that the state of change is constant for an interval Δt. For a given
initial value problem y′(t) = f(t, y(t)) , y(t0) = y0 the Euler method is defined
by

yn+1 = yn + Δtf(tn, yn) for n ≥ 0 , (8)

where Δt is the timestep and tn+1 = tn +Δt. For the initial value problem given
by Equation (5) this method leads to{

ϕ0 = initial contour ,

ϕn+1 = ϕn + ΔtL(ϕn) for n ∈ N .
(9)

Where L(ϕn) is defined as the following operator:

L(ϕn) :=
[
δ(ϕn)

(
log

p1

p2
+ ν div

( ∇ϕn

|∇ϕn|
))]

for n ≥ 0 , (10)

and Δt is the timestep. To increase the accuracy of the solution one has two
possibilities. The first is to reduce Δt and the other is to choose a method with
a higher order of convergence.
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(a) (b) (c) (d) (e) (f)

Fig. 2. (a) Synthetic image and level set initialization; (b) detail of the synthetic
image; (c) detail of the final segmentation using EU and ν = 4; (d) detail of the
final segmentation using EU and ν = 10; (e) detail of the final segmentation using
RK-2 and ν = 4; (f) detail of the final segmentation using RK-2 and ν = 10

3.2 Runge-Kutta Methods

The Runge-Kutta schemes are well known methods with a higher order of con-
vergence compared to EU. The Runge-Kutta methods used in this paper are
explicit iterative methods for the approximation of solutions to initial value
problems. Consider an initial value problem (8), an explicit second order Runge-
Kutta method (RK-2), also called Heun’s method or modified Euler method, is
given by:

ỹn+1 = yn + Δtf(tn, yn) ,

yn+1 = yn +
Δt

2
(f(tn, yn) + f(tn+1, ỹn+1) for n ≥ 0 .

(11)

For the initial value problem (5) RK-2 leads to⎧⎪⎨
⎪⎩

ϕ0 = initial contour ,

ϕ̃n+1 = ϕn + Δt · L(ϕn) for n ∈ N ,

ϕn+1 = ϕn + Δt
2 · (L(ϕn) + L(ϕ̃n+1)

)
for n ∈ N .

(12)

A third order Runge-Kutta method (RK-3) for the initial value problem given
by (5) can be defined analogue to Shu and Osher [15] by:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ϕ0 = initial contour ,

ϕ̃n+1 = ϕn + Δt · L(ϕn) for n ∈ N ,

ϕ̃n+ 1
2 = ϕn + Δt

4 · (L(ϕn) + L(ϕ̃n+1)
)

for n ∈ N ,

ϕn+1 = ϕn + Δt
6 ·

(
L(ϕn) + L(ϕ̃n+1) + 2L(ϕ̃n+ 1

2 )
)

for n ∈ N .

(13)

A simple 1-D example of these methods is shown by Figure 1. Obviously the
accuracy of the solution increases with the choose of a smaller timestep and the
choose of a higher order method.

Remark: In our algorithm the spatial discretization is done using finite
differences.
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(a) (b)

Fig. 3. (a) Segmentation error in dependence of the weighting parameter ν (the seg-
mentation error of RK-2 and RK-3 is exactly the same); (b) segmentation error in
dependence of the noise level (the segmentation error of EU and RK-3 is almost the
same)

4 Experiments

In this Section we demonstrate the impact of the higher order methods RK-2 and
RK-3 applied to level set based image segmentation. Experiments are performed
on synthetic images, real images and on the segmentation-benchmark developed
by Feng Ge and Song Wang [16].

4.1 Synthetic Images

For the analysis of the three presented numerical methods, we first use the syn-
thetic image and the initialization of the level set function shown in
Figure 2a. The dimension of this image was 400 × 300 pixels. We choose this
image because the object consists of parts with high and small curvature. We
define the region-based segmentation accuracy analogue to Ge et al. [16] by

P (R; G) =
|R ∩ G|
|R ∪ G| =

|R ∩ G|
|G| + |R| − |R ∩ G| , (14)

where G is the ground-truth foreground object and the region R is the segment
derived from the segmentation result using one of the numerical methods. The
properties of this definition are discussed in [16]. Equation (14) leads to the
following definition of the segmentation error

εSE := 1 − P (R; G) . (15)

Figure 2b shows a detail of the synthetic image, while Figures 2c and 2d demon-
strate that the smoothness parameter ν has a large influence on the final seg-
mentation if EU is used. Figures 2e and 2f apparently show that ν has little
influence on using RK-2.

It can be seen from Figure 3a that for EU only choosing ν = 0 leads to
a segmentation error εSE = 0, but choosing ν = 20 results in εSE = 0, 01
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(a) (b) (c)

Fig. 4. (a) Synthetic image with noise; (b) final segmentation using EU; (c) final seg-
mentation using RK-2

corresponding to 1200 wrong segmented pixels. Conversely, RK-2 and RK-3 lead
to the segmentation error εSE = 0 for ν ∈ {0, . . . , 20}, Obviously the higher order
methods are more robust to choices of the smoothness parameter.

In Figure 3b we added Gaussian pixel noise to the synthetic image shown in
Figure 2a. It can be seen from Figure 3b that the segmentation obtained by RK-2
is more robust to noise. Figure 4 shows the final segmentation results for a noisy
synthetic image (4a) using EU (4b) and RK-2 (4c). Apparently the segmentation
method using EU converges to a local minimum of the energy functional while
RK-2 reaches the global minimum.

4.2 Real Images

To analyze the numerical methods on real images, we apply the segmentation
methods on the image benchmark presented in [16]. To demonstrate the robust-
ness of the level set based segmentation using RK-2 and RK-3 on the weighting
parameter ν, we use the real image of the benchmark shown in Figure 5a. For
RK-2 and RK-3 the segmentation error εSM is between 0.055 and 0.057 for
ν ∈ {0, . . . , 20}, which implies that the variance of the final segmentation is less
than 0.5%. Using EU the error εSM is between 0.056 and 0.1 implying a variance
bigger than 4% (see Figure 5d). Figures 5b and 5c show the final segmentation
using EU and RK-2 with the weighting parameter ν = 10. The dependence of all
methods on the timestep Δt is shown in Figure 5e. Obviously, the final segmen-
tation using RK-2 or RK-3 is almost identical for all Δt ∈ {1 . . .30}, whereas for
EU the segmentation error εSE increases with a bigger timestep Δt. We find that

Table 1. Comparison of the average performance of four image segmentation methods

Method avg. perf.
Normalized-cut method 0.39

Euler method 0.50
2nd order RK method 0.52
3rd order RK method 0.52



Analysis of Numerical Methods for Level Set Based Image Segmentation 203

(a) (b) (c)

(d) (e)

Fig. 5. (a) Real image from the segmentation benchmark presented in [16]; (b) final
segmentation using EU and ν = 10; (c) final segmentation using RK-2 and ν = 10;
(d) segmentation error in dependence of the weighting parameter ν (the segmentation
error of RK-2 and RK-3 is almost identical); (e) segmentation error in dependence of
the timestep Δt (the segmentation error of RK-2 and RK-3 is almost identical).

RK-2 converges more reliably then EU, even for large timsteps (cf. Figure 1).
This is an important fact because a bigger timestep leads to a reduction of the
total number of iterations and thereby to a reduction of the computational time
needed to segment an object.

Figure 6 shows the total segmentation accuracy of the different methods. The
curves indicate the performance distribution of the methods on all 1023 images
of the segmentation benchmark. The horizontal axis denote the proportion of
images and the y-axis indicates the segmentation accuracy p(x). A specific point
(x, p(x)) on the curve indicates that 100 ·(1−x) percent of images are segmented
with an accuracy better than p(x). The curve NC describes the performance of
the Normalized-cut method (NC) implemented by Shi et al. [17], to compare our
results to another segmentation strategy. We decided to compare our methods
to the normalized-cut method, since it was the method with the best average
performance on the segmentation benchmark [16].

Because the performance curves of EU, RK-2 and RK-3 are almost indistin-
guishable, Table 1 shows the average performance of our three segmentation
methods in comparison to NC. Apparently the average performance of the level
set based segmentation methods is saliently better than NC and RK-2 and RK-3
are slightly better than EU (the average performance increases by 4%).
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Fig. 6. Performance curve of the three numerical methods and the Normalized-cut
method (NC) on the 1032 images of the segmentation benchmark

To compare the computational time of the methods we choose 100 Images
of the segmentation benchmark where the segmentation accuracy was better
than 90% for all numerical methods. Using the same timestep Δt = 1 it took
8.4 minutes to segment the images with the Euler method and 6.8 min using
the described second order Runge-Kutta method. Choosing a bigger timestep
for RK-2 and EU farther reduces the computational time. Table 2 shows the
computational time needed to segment the 100 images for various methods and
timesteps.

Table 2. Comparison of the computational time needed to segment 103 images from
the segmentation benchmark

Method comp. time avg. perf.
Euler method, with Δt = 1 8.4 min 0,9440
Euler method, with Δt = 2 3.6 min 0,9415
Euler method, with Δt = 4 2.9 min 0,9413

2nd order RK method, with Δt = 1 6,6 min 0.9441
2nd order RK method, with Δt = 2 3,1 min 0.9415
2nd order RK method, with Δt = 4 2,5 min 0.9422

In Figure 7, we present more segmentation results on real images. We decided
for these images to show, that RK-2 is able to find the global minimum in cases
where EU converges to a local minimum (see Figures 7a - 7c). Figures 7d - 7g
shows that, using the same timestep Δt = 1 and the same smoothing parameter
ν = 4, the segmentation accuracy increases using RK-2 instead of EU. Besides
the total number of iterations is much smaller, which leads to a reduction of
the computational time by the factor 2, even if the computational time for one
iteration is bigger. These results clearly show that RK-2 more reliably achieves
accurate segmentations.
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(a) (b) (c)

(d) (e)

(f) (g)

Fig. 7. (a) Level set initialization; (b) final segmentation using EU; (c) final segmen-
tation using RK-2;(d) level set initialization; (e) segmentation result after 180 it. using
EU; (f) final segmentation using EU (900 it.); (g) final segmentation using RK-2 (180
it.) The computational time is reduced by the factor 2.
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5 Conclusion

In this paper we proposed to use higher order optimization schemes to solve
the well known variational approach to image segmentation, and we compared
our approach with the traditional method for this problem. By synthetic and
real image experiments we showed that the use of higher order Runge-Kutta
methods improves the average accuracy of the final segmentation and reduces the
dependence on the timestep and smoothing, parameters which critically influence
the performance of the Euler method. We showed that using the second order
Runge-Kutta method more reliably achieves accurate segmentations. Using our
proposed scheme increases the number of scenes in which image segmentation
using the variational approach can succeed. Furthermore, the computational
time decreases, in most cases.
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