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Abstract

The extrinsic calibration of a stereo camera system is a

procedure that estimates the position and orientation of

a stereo camera system relative to a calibration object.

In this paper, a calibration object specified by a CAD

model of known shape and arbitrary texture is used. Based

on feature points located in the stereo image and using

triangulation, 3D object points in the camera coordinate

system are calculated. This point cloud is matched to the

surface of the CAD model to estimate the position and the

rotation of the stereo camera system relative to the object

coordinate system. In order to improve the accuracy of

known techniques for the calibration, two steps are proposed

in this paper. First, a systematic error in the standard

method of subpel feature point localization is eliminated

by replacing the parabolic interpolation by a Gaussian

regression. Second, the estimated accuracies of the 3D points

are incorporated by propagating the uncertainties of the

detected feature points in the images. To calculate the global

minimum of the cost function, an evolutionary optimizer is

combined with a two-stage strategy, refining a fast converging

approximate result. The developed procedure reduces the

error variance of observed points by a factor of about 80.

Keywords: stereo vision, camera calibration, reconstruction,

registration, uncertainty propagation

1 Introduction

The extrinsic calibration of a stereo camera system can

be done using a 3D object of known shape and arbitrary

texture. Hence, the calibration is the task of matching the

object coordinate system of the 3D CAD model to the local

coordinate system of the stereo camera. For a stereo camera

system with known intrinsic parameters and known baseline,

this problem can be solved by finding the six parameters

of a Euclidean transformation [7, 21]. These parameters

are obtained by performing the following procedures. First,

corresponding feature points are detected in the stereo image

capturing the calibration object. Then, 3D coordinates of the

feature points are calculated using triangulation. Finally, the

Euclidean transformation minimizing the distances between

the 3D points and the surface of the CAD model is estimated.

This transformation represents the mapping between the

camera coordinate system and the object coordinate system.

The matching of a point cloud to a 3D CAD model is known

as registration [16, 17].

The Canny detector [2] is still one of the most popular

techniques for detecting edges in an image with moderate

computational expense. To estimate the position of an edge

with subpel accuracy, Rockett [14] proposed an extension to

Canny’s approach. The discrete image signal gradients are

interpolated using a parabolic fitting curve to increase the

accuracy. However, it was shown [4, 11, 14] that using a

parabolic approximation of image signal gradients still leads

to a systematic error in the subpel estimation.

The registration of a point cloud to a 3D model is usually

done using the Iterative Closest Point (ICP) approach [15].

It maps each 3D feature point to a point on the 3D CAD

model while minimizing the distances iteratively. The problem

of the dependency of the results on the initial parameter

configuration was solved in [17] using the Differential

Evolution (DE) algorithm for the optimization. DE is an

efficient evolutionary algorithm, that is capable of solving

continuous global optimization problems [19]. Furthermore, a

robust cost function was introduced in [17] to be able to deal

with outliers. Outliers are 3D points that have a large distance

to the 3D CAD model caused by inaccuracies in the feature

point detection or mismatches in the correspondence analysis.

In our work, the error in the subpel feature point localization

is reduced by replacing the parabolic interpolation by a

Gaussian regression. The remaining uncertainty of a feature

point is derived from the surrounding image gradients and

the estimated Gaussian regression function. The uncertainty

is propagated using the mapping equations of the stereo

camera. Furthermore, the cost function is extented by means

of the Mahalanobis distance [9] to be able to incorporate

the uncertainties of triangulated feature points. Uncertainty

propagation has been found to be an appropriate method to

increase the accuracy of 3D reconstruction approaches [3, 18].

In the following Section the calibration procedure is briefly

presented. In Section 3, the detection of feature points and the
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usage of their uncertainties in the estimation is derived. Section

4 shows the optimization strategy. In Section 5, results of the

experiments and convergence properties of the optimization

procedure are shown, and in Section 6 the paper is concluded.

2 Calibration of a Stereo Camera System using a

Calibration Object

For the extrinsic calibration of the stereo camera using a

calibration object we need to find the mapping between the

object coordinate system of the CAD model determining the

calibration object and the camera coordinate system of the

stereo camera. Our input data is a stereo image pair capturing

the calibration object. As shown in Figure 1, we assume a

standard stereo camera configuration. This means, that both

equally oriented camera targets share the same plane. The

calibration object has known shape specified by the CAD

model. First, edges are detected in the images using the Canny

detector [2]. For the estimation of the subpel x-coordinate

of a feature point pc, a Gaussian approximation of the image

signal gradients is used (see Section 3.3). For the y-coordinate,

the fullpel position is assumed. Following from the standard

stereo approach, the y-coordinate is equal in both images

(ycl = ycr). Feature correspondences are established using

blockwise normalized cross correlation between a feature point

in the left and all candidates inside a search area in the right

camera image. As we are assuming a standard stereo camera

setup, the corresponding feature point can be found in the same

image scanline. Then, a 3D point PC is calculated using the

disparity xcl − xcr of the corresponding points pcl and pcr in

the left and right camera image (see Figure 1). The depth ZC

of PC captured by a stereo camera with the baseline | ~XB| and

the focal length f is calculated as:

ZC =
f · | ~XB|
xcl − xcr

(1)

Assuming a camera coordinate system with its origin at the

position of the left camera (see Figure 1), the vector ~PC

pointing to PC can be written as ~PC = (XC , YC , ZC)⊤. The

components XC and YC follow by means of the detected point

pcl = (xcl, ycl) in the left image:

(
XC

YC

)

=
Zc

f
~pcl =

Zc

f

(
xcl

ycl

)

(2)

The point PC described in the camera coordinate system has to

be transformed to a point PO in the object coordinate system

through a Euclidean transformation T . The point PO represents

a position on the calibration object described by the 3D CAD

model. The mapping T is:

T : ~PO = R · ~PC + ~C (3)

where R is a 3 x 3 rotation matrix and ~C = (Cx, Cy, Cz)
⊤ is

the position of the left camera in the object coordinate system.

Thus, this mapping can be described by three angles ϑ, ϕ, and ̺

left

camera centre

left

image

right

camera centre

~XB

PC

f

pcl pcr

right

image

Figure 1: Projection of a 3D point PC into the left and right

image of the stereo camera

and three position components Cx, Cy , and Cz . To obtain these

parameters, the Differential Evolution (DE) algorithm is used.

DE is a global optimization technique, that minimizes a cost

function while varying its parameters iteratively (see Section

4). The cost function to be minimized is the sum of squared

distances (dPC
)2 between each point PC of the point cloud and

the surface of the 3D CAD object [20]. In order to be able to

deal with outliers, a robust cost function is used as explained in

the next section.

2.1 Robust Cost Function

The cost function that has to be minimized, adds up all squared

distances (dPC
)2 from each of N points of the point cloud to

the CAD model of the calibration object [20]. This is done as

proposed in [17]:

Dr(R, ~C) =

N−1∑

n=0

{
1

κr
· (dn

PC
)2 , for (dn

PC
)2 ≤ κr

1 , otherwise
(4)

Here, κr is a scaling factor that controls the influence of a point

PC on the cost function. If the distance of PC is larger than a

threshold ((dPC
)2 > κr) its influence does not increase with

the distance, it stays constant. A point with a distance greater

than this threshold is considered an outlier. In [17], κr = 5 and

the Euclidean distance measure are used.

3 Evaluation of the Feature Point Position

Assuming a standard stereo setup with corresponding feature

points having the same y-coordinate, for the following only the

x-coordinate with the fullpel value nx ∈ Z and the subpel value

x0 ∈ [−0.5; 0.5] of an image point will be considered. To

calculate the gradient of the image signal, the following filter
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is used [2, 8]:

Igrad(nx) =

2∑

i=−2

I(nx − i) · −i√
2πσ3

grad

e
−i2

2σ2

grad (5)

, with σgrad = 1.0

In [11] it is shown, that using a parabolic interpolation

function for the subpel interpolation of detected feature points

leads to a systematic error of 0.025 pel at positions with a

subpixel coordinate of ±0.25 pel. This systematic error can be

avoided by replacing the parabolic interpolation by a Gaussian

regression [4, 10], as the pulse response of an image acquisition

system can be modelled by a Gaussian [1, 5]. Hence, for

the estimation of the subpel coordinate of a feature point, a

Gaussian function is fitted to the discrete gradient values in

the horizontal image scanline around an edge. The accuracy

of this coordinate determines the estimated accuracy of the 3D

point position obtained by triangulation. In this paper, five grid

points with the x-coordinates nx−2, nx−1, nx, nx+1, nx +2
are used for estimating the Gaussian regression function.

3.1 Approximation Error of the Gaussian

The regression function used for the estimation of the subpel x-

coordinate x0 of a feature point is the following Gaussian with

mean value x0, variance σg , and a scaling factor K:

G(x, σg , xo, K) = K · 1√
2πσg

e
− 1

2
(

x−x0

σg
)2

(6)

The estimated solution parameter vector ~̃v for the Gaussian

function follows through regression analysis:

~̃v =





σ̂g

x̂0

K̂



 (7)

This vector ~̃v can be written as the sum of the exact solution

~vopt and the approximation error ~ǫv:

~̃v = ~vopt + ~ǫv (8)

The covariance matrix Cǫv
of ~ǫv leads to the error variance

σ2
ǫx

of a feature point position in x-direction (Section 3.3).

This Cǫv
can be used to calculate the uncertainty of the

corresponding triangulated 3D feature point (Section 3.4).

3.2 Distortion of the Image Signal Gradient

In the following, the camera noise is modelled by the function

r with a variance σ2
r at position nx ∈ Z:

Ĩ(nx) = I(nx) + r(nx) (9)

Using a five tap Gaussian regression function, the distorted

image signal gradient Ĩgrad(nx) can be written as (see (5)):

Ĩgrad(nx) =
2∑

i=−2

Ĩ(nx − i) · −i√
2π

e
−i2

2

=
2∑

i=−2

(I(nx − i) + r(nx − i)) −i√
2π

e
−i2

2

= Igrad(nx) +
2∑

i=−2

r(nx − i) −i√
2π

e
−i2

2 (10)

So, the distortion ǫgrad(nx) of the image signal gradient is:

ǫgrad(nx) = Ĩgrad(nx) − Igrad(nx)

=

2∑

i=−2

r(nx − i) · −i√
2π

e
−i2

2 (11)

For calculating the covariance matrix

Cǫgrad
= E

[
~ǫgrad~ǫ

⊤
grad

]

= E











ǫgrad(−2)
...

ǫgrad(+2)




 · (ǫgrad(−2), . . . , ǫgrad(+2))




 (12)

we assume statistically independent noise:

E [r(ni) · r(nj)] =

{
0 , for ni 6= nj

σ2
r , for ni = nj

(13)

Here, σ2
r is the a-priori known camera noise variance. Now, the

symmetric 5 × 5-matrix Cǫgrad
can be calculated using (11),

(12), and (13).

3.3 Uncertainty of the Position of a Feature Point

The error ~ǫv in (8) can be described by the regression function

G and the distortion of the image signal gradient ~ǫgrad.

Evaluating the error function e(~Igrad, ~G) ,

e(~Igrad, ~G) =
∣
∣
∣~Igrad − ~G

∣
∣
∣

2

(14)

of the gradient grid points ~Igrad = (Igrad(−2), . . . , Igrad(2))⊤and

the values of the regression function ~G =
(G(−2, ~v⊤), . . . , G(2, ~v⊤))⊤ at its minumum ~v = ~vopt,

∇~v[e(~Igrad, ~G)]
∣
∣
∣
~v=~vopt

= ~0
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leads to the following formula [10]:

~ǫv =

([[

∇~v
~G⊤
] [

∇~v
~G⊤
]⊤]⊤

)−1

· ∇~v
~G⊤

∣
∣
∣
∣
∣
∣
~v=~vopt

︸ ︷︷ ︸

=:B

·~ǫgrad

= B · ~ǫgrad (15)

Here, ∇~v = ( ∂
∂σg

, ∂
∂x0

, ∂
∂K

)⊤ denotes the partial

derivatives of the parameter vector ~v, and ~ǫgrad =

(ǫgrad(−2), . . . , ǫgrad(+2))⊤ can be approximated using

(11).

To obtain the error variance of the feature point position σ2
ǫx

,

the covariance matrix Cǫv
is calculated using (15) and (12) as

follows:

Cǫv
= E

[
~ǫv~ǫ

⊤
v

]
= B · E

[
~ǫgrad~ǫ

⊤
grad

]
· B⊤

= B · Cǫgrad
·B⊤ (16)

with

Cǫv
=






σ2
ǫσ

· · ·
... σ2

ǫx

...

· · · σ2
ǫK




 (17)

Here, σ2
ǫx

is the variance of the position error of the feature

point in x-direction. The value σ2
ǫx

leads to the estimated

uncertainty of a 3D point as explained in the next section.

3.4 Error Approximation of a 3D Point Position

Using (1) and (2) we can write the vector ~PC to a 3D point PC

by means of the detected corresponding feature points (xl, yl)
and (xr, yr) with yl = yr (following from standard stereo) as:

~PC =
| ~XB|

xl − xr





xl

yl

f



 (18)

For small errors (ǫxl
, ǫxr

)⊤, we can approximate the erroneous

3D position of the calculated point

~PC(xl + ǫxl
, xr + ǫxr

) = ~PC(xl, xr) + JPC

(
ǫxl

ǫxr

)

(19)

with the help of the Jacobian matrix JPC
consisting of partial

derivatives ∂ ~PC

∂(xl,xr) :

JPC
=
(

∂ ~PC

∂(xl,xr)

)

=
| ~XB|

(xl − xr)2





−xr xl

−yl yl

−f f



 (20)

Assuming an equal error variance σ2
ǫx

in corresponding feature

point positions in the left and right image, we can formulate the

left

camera centre

left

image

of PC

uncertainty

right

camera centre

right

image

Figure 2: Uncertainty of the 3D point PC resulting from the

distortion of the x-coordinates of the feature point positions in

the stereo image

covariance matrix of each 3D point PC :

CǫPC
= JPC

J
⊤
PC

σ2
ǫx

(21)

Performing the matrix multiplication (21) and substituting

(xl − xr) with the help of (1), it follows:

CǫPC
= JPC

J
⊤
PC

σ2
ǫx

=
Z4

Cσ2

ǫx

f2| ~XB |2






x2

l +x2

r

f2

yl(xl+xr)
f2

xl+xr

f
yl(xl+xr)

f2

2y2

l

f2

2yl

f
xl+xr

f
2yl

f
2




 (22)

Notice, that the three diagonal matrix elements describe the

error variance in the x- , y- , and z - direction of the camera

coordinate system. For our experiments, we use a stereo

camera with a focal length of f = 30.072 mm, |xl|, |xr| <

3.437 mm, and |yl| < 1.933 mm. So, the covariances of PC in

x- and y- direction are much smaller than the covariance in z-

direction. A visualisation of the uncertainty of PC is shown in

Figure 2.

3.5 Incorporating Uncertainty Information

In order to incorporate the covariance information CǫPC
for

each point PC in our cost function, the Mahalanobis distance
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measure ξn [6, 9] in equation (4) is used:

Dm(R, ~C) =

N−1∑

n=0

{
1

κm
· (ξn

PC
)2 , for (ξn

PC
)2 ≤ κm

1 , otherwise

(23)

An appropriate value for κm is found by means of an

experiment and is set to κm = 16.3 for the experiments in

this paper. In contrast to the Euclidean distance measure, the

minimal Mahalanobis distance vector between a 3D point and

the object’s surface is usually not orthogonal to the surface.

Points of the same Mahalanobis distance from a fixed 3D point

lie on an ellipsoid with maximum extent in the direction of

the biggest uncertainty as shown in Figure 3. The ellipsoid is

defined in terms of the estimated uncertainties in x-, y-, and

z-direction in (22).

3D-CAD-model

~P

Mahalanobis
distances to ~P

distances to ~P
Euclidean

Figure 3: Comparison of the Mahalanobis distance ξ and the

Euclidean distance between a point ~P and the surface of a 3D-

CAD-model

4 Differential Evolution Optimization

For optimizing the cost function (23), the Differential

Evolution (DE) algorithm [13, 19] is used. It is known as an

efficient global optimization method for continuous problem

spaces. The optimization is based on a population of Np

solution candidates xn,i, n ∈ [1; Np], at iteration i where

each candidate is a position in the 6-dimensional search space.

Initially, the solution candidates are randomly generated within

the provided intervals of the search space. The population

improves by generating new 6-tupels iteratively for each

candidate. New positions for the iteration step i + 1 are

determined by

yn,i+1 = xk,i + F · (xl,i − xm,i) (24)

xn,i+1 = c (xn,i, yn,i+1) (25)

where k, l, m are random integers from the interval [1; Np],
F ∈ [0; 1] is a weighting scalar, yn,i+1 is a displaced xk,i by a

weighted difference vector, and c (xn,i, yn,i+1) is a crossover

operator copying coordinates from both xn,i and yn,i+1 in

order to create xn,i+1. The crossover operator c is provided

with a value Cr ∈ [0; 1] specifying the probability to copy

values either from xn,i or yn,i+1 to xn,i+1 for each component

of the vector. Only if the new candidate xn,i+1 proves to have

lower cost using a cost function it replaces xn,i, otherwise it is

discarded.

DE includes an adaptive range scaling for the generation of

solution candidates through the difference term in (24). This

enables global search in the case where the solution candidate

vectors are spread in the search space and the mean difference

vector is relatively large. In the case of a converging population

the mean difference vector becomes relatively small, and this

enables efficient fine tuning at the end phase of the optimization

process [20].

4.1 Two-stage Algorithm

Some tests with our data reveal different convergence

behaviour of DE for our application using different cost

functions. While using simple Euclidean distances in the cost

function De,

De(R, ~C) =

N−1∑

n=0

(dn
PC

)2 (26)

provides fast convergence, the robust cost functions Dr (4)

and Dm (23) lead to convergence problems, because of the

optimization algorithm getting stuck in a local minimum of the

cost function. The convergence behaviour of each cost function

presented here is discussed in Section 5.1 in detail.

In literature [16], two-stage solutions are proposed for ICP,

calculating an approximation in a first step and obtaining the

accurate result in a second refinement step. This idea can be

transfered to the DE approach by minimizing the cost function

De first to get quickly close to the global optimum. In a second

step, the cost function Dm is minimized, using the resulting

population of the first step as initial population.

The convergence behaviour of this two-stage strategy

compared to the classical one-stage DE is also shown in

Section 5.1.

5 Experimental Results

For our experiments, we use synthetic and natural image data.

The synthetic images are rendered using PovRay [12] with

a resolution of 640x480 pel. The synthetic stereo camera

captures the calibration object shown in Figure 4. An image

pair can be seen in Figure 5.

Natural images (Figure 6) are captured using two calibrated

Thomson Viper CCD-cameras with a resolution of 1920x1080
pel and a-priori known intrinsic camera parameters. The stereo

baseline is | ~XB| = 250.33 mm. The distance to the object is

about 2 m. The natural images are rectified and radial distortion

is compensated to guarantee the standard stereo assumption.

The stereo camera captures a real calibration object with the

shape of the CAD model in Figure 4.
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Figure 4: Triangulation of the calibration object

Figure 5: Left and right synthetic image of a virtual calibration

object

For the synthetic images, white Gaussian noise of different

amount is added to the rendered images. Three different noise

levels are used: 38.1 dB, 33.4 dB, and 31.1 dB. The mean noise

level of the real camera is 38.1 dB.

For the optimization with the DE algorithm, we use common

parameters [13] and choose the weighting scalar F = 0.8 and

the crossover probability Cr = 0.8. The number of particles

is set to Np = 100. In Section 5.1 we discuss the observed

convergence behaviour of the common one-stage algorithm and

the two-stage strategy developed in this paper. In Section 5.2

the accuracy of the calibration results is presented.

5.1 Convergence Properties

The following results regarding the convergence properties are

obtained using the synthetic image pair in Figure 5 with added

Figure 6: Rectified left and right camera image of the real

calibration object

Number of iterations

d 300 500 1000 2000 4000

De 90.2% 100% 100% 100% 100%
Dr 0.0% 0.0% 46.4% 83.8% 83.8%
Dm 0.0% 0.0% 0.0% 3.0% 41.0%

two-stage 0.0% 92.4% 100% 100% 100%

Table 1: Convergence rate of the Differential Evolution (DE)

algorithm using different cost functions d: De = Euclidean not

robust, Dr = Euclidean robust, Dm = Mahalanobis robust;

the proposed two-stage strategy providing the calibration

accuracy of Dm.

Gaussian noise of 38.1 dB. For all other scenes presented in

this paper we got similar convergence results.

Using a robust cost function and the Mahalanobis distance

affects the convergence behaviour of the global optimization

algorithm. A comparison of the convergence rates using

different cost functions is shown in Table 1. Therefore, for

each method the global minimum of the cost function DMIN

is determined. Then, 500 runs with random initializations are

evaluated, and the number of runs converging successfully is

counted. The convergence is deemed successful if the cost

function value is lower than 1.001 · DMIN .

With an increasing number of iterations of DE, the success

rate increases for all methods as expected. In comparison

to the non-robust Euclidean distance cost function De (26),

the robust Euclidean distance Dr (4) needs more iterations

to succeed. Furthermore, Dr does not ensure reaching the

global minimum, as the identical rates after 2000 and 4000

iterations indicate, that there will not be more success after

more than 4000 iterations. The Mahalanobis distance together

with the robust cost function Dm (23) leads to even more

iterations needed and higher uncertainty for achieving the

global minimum. It results in a success rate of only 41 % after

4000 iterations.

The influence of the robust cost function can be explained by a

major part of the search space being covered with constant cost

function values. The Mahalanobis distance measure narrows

the peak of the global optimum additionally. Note, that in our

experiments the covariance in z- direction is much higher than

in x- and y- directions (see Section 3.4). We assume that these

are the reasons for the decreasing convergence rate of the cost

functions Dr and Dm compared to the cost function De.

The proposed two-stage strategy explained in Section

4.1 provides the calibration accuracy of Dm and a good

convergence rate. It uses the Euclidean distance measure De

in the first stage until a switching criterion is achieved. In this

experiment, the switching criterion is a simple threshold value

for the cost function De, as the minimum DMIN
e of the cost

function is known. The threshold is set to 1.001 · DMIN
e as

explained above, but there are several other criteria possible

that do not need an absolute threshold [22]. For the two-stage
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Figure 7: Convergence success rate of the global optimization

for different combinations of the parameters F and Cr of the

Differential Evolution (DE) algorithm. Here, the proposed two-

stage strategy is used.

strategy, 100 % optimization success is achieved after 1000

iterations for both stages together (see Table 1, last row). The

two-stage concept needs a few iterations more than De, as the

strategy has to switch to a different cost function Dm in the

beginning of the second stage leading to more accurate results

(see Section 5.2).

In Figure 7 convergence results for the proposed strategy are

shown for all possible parameter combinations 0.1 ≤ F, Cr ≤
1 of DE, displaying the convergence rate of 500 runs. The

graph depicts the typical convergence behaviour of DE as

known from literature [13, 23], performing best and providing

convergence for the parameters 0.7 < F, Cr < 1.

5.2 Calibration Results

To evaluate the resulting parameters of the calibration, for each

setup - synthetic and natural image data - a sequence of 1000

images with constant scene content is used.

We compare the results of the calibration procedure using

a parabolic interpolation function for the feature point

localization and the robust Euclidean distance (cost function

Dr), called scheme [A], with the results of our proposal using

a Gaussian regression function for the localization of the

feature points and considering uncertainties of the 3D feature

points (cost function Dm), called scheme [C]. To evaluate the

contributions of the two proposals, in scheme [B] only the

Gaussian regression function for the localization is used, and

no covariance information of the 3D points.

For our experiments, we can assume an unbiased estimator.

This means, that the mean value of the calculated parameters

of the 1000 images are identical in all schemes [A], [B], and

[C]. So, the quality of the results can be compared by means of

the error variance (σ2
ǫθ

, σ2
ǫφ

, σ2
ǫρ

, σ2
ǫCx

, σ2
ǫCy

, σ2
ǫCz

) of the six

Figure 8: Side view of the calibration object (Figure 4) and the

resulting point cloud using the image pair shown in Figure 6.

The blue lines indicate the Mahalanobis distance used for the

calibration procedure.

parameters of the Euclidean transformation. In order to get a

value for the maximum error variance, the error variances of

the angles (σ2
ǫθ

, σ2
ǫφ

, σ2
ǫρ

) are converted to position errors in x-

, y- , and z- direction. Therefore, a point nearby the optical axis

is assumed, having a distance of 2 m from the stereo camera.

The resulting error vector is added to the position error variance

(σ2
ǫCx

, σ2
ǫCy

, σ2
ǫCz

), and the maximum σ2
max of the three values

is determined.

Im Figure 8, a resulting point cloud using the stereo image from

Figure 6 is shown in red. The blue lines indicate the distances

to the surface of the calibration object. It can be seen that the

distances used for the calibration are strongly influenced by the

optical axis of the stereo camera.

5.2.1 Natural Scene

The error variance results and the improvement in the value

σ2
max, combining all six parameters for the natural scene are

shown in Table 2. In comparison to scheme [A], scheme [C]

provides an improvement of a factor of about 80. This means

that the position accuracy σmax has improved by a factor of

about 9 from 2.28 mm to 0.25 mm.

In Figure 9, the results for all three schemes [A], [B], and [C]

are compared. This result shows, that the main contribution

to the improvement of the calibration accuracy is performed

by the usage of the knowledge of the uncertainties of the 3D

points.

5.2.2 Synthetic Scene

The results for σ2
max for the synthetic scene using different

noise levels are shown in Figure 10. The error variance for the
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[A] [C]

σ2
ǫθ

[DEG2] 4.01 · 10−3 0.0658 · 10−3

σ2
ǫφ

[DEG2] 1.79 · 10−3 0.0486 · 10−3

σ2
ǫρ

[DEG2] 11.3 · 10−3 0.211 · 10−3

σ2
ǫCx

[mm2] 3.21 0.0242

σ2
ǫCy

[mm2] 2.63 0.00892

σ2
ǫCz

[mm2] 1.27 0.0158

σ2
max[mm2] 5.18 0.063

Table 2: Error variance results of the six parameters of the

calibration of schemes [A] and [C] using 1000 natural image

pairs.
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Figure 9: Error variance σ2
max for 1000 natural image pairs

with a noise level of 38.1 dB using schemes [A], [B], and [C]

noise level of 38.1 dB is matching the result for the natural

image data (Figure 9). With an increasing noise level, our

proposal [C] yields a nearly constant error variance while the

error of the reference [A] increases.
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Figure 10: Error variance σ2
max for 1000 synthetic image

pairs with different noise levels using schemes [A] and [C]

6 Conclusions

In this paper, two techniques are proposed for improving

the accuracy of the extrinsic calibration of a stereo camera

system using a calibration object of known shape. The first

technique employs a Gaussian fitting curve for the subpel

estimation of feature points. The second is the incorporation

of the estimated accuracies of triangulated 3D points into the

registration algorithm. In order to get 100 % convergence

success, a two-stage optimization strategy is developed. It uses

the solution of a Euclidean cost function as a starting point for

the optimization with Mahalanobis distances between the 3D

points and the calibration object.

The accuracy of the calibration is improved by a factor of 80
in the error variance. This means, that the position error of a

point is improved by a factor of 9 from 2.28 mm to 0.25 mm

in a setup with a stereo camera having a distance of about 2 m

from the calibration object.
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