
Complementary Optic Flow

Henning Zimmer1,4, Andrés Bruhn1, Joachim Weickert1, Levi Valgaerts1,
Agust́ın Salgado2, Bodo Rosenhahn3, and Hans-Peter Seidel4

1 Mathematical Image Analysis Group
Faculty of Mathematics and Computer Science

Saarland University, Saarbrücken, Germany
{zimmer,bruhn,weickert,valgaerts}@mia.uni-saarland.de

2 Departamento de Informática y Sistemas
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Abstract. We introduce the concept of complementarity between data
and smoothness term in modern variational optic flow methods. First
we design a sophisticated data term that incorporates HSV colour rep-
resentation with higher order constancy assumptions, completely sepa-
rate robust penalisation, and constraint normalisation. Our anisotropic
smoothness term reduces smoothing in the data constraint direction in-
stead of the image edge direction, while enforcing a strong filling-in ef-
fect orthogonal to it. This allows optimal complementarity between both
terms and avoids undesirable interference. The high quality of our com-
plementary optic flow (COF) approach is demonstrated by the current
top ranking result at the Middlebury benchmark.

1 Introduction

In spite of the fact that variational optic flow methods are around for almost
three decades and that they mark the state-of-the-art in terms of accuracy, there
has been remarkably little reseach on the compatibility of their two ingredients:
the data term and the smoothness term. The data term models constancy as-
sumptions on certain image properties, e.g. grey value constancy in the semi-
nal Horn and Schunck model [1]. The smoothness term penalises fluctuations
in the flow field. However, these terms may contradict each other: While the
brightness constancy assumption constrains the flow only along the image gra-
dient but not across it (aperture problem), most smoothness terms enforce their
constraints also along the image gradient. One notable exception is the Nagel-
Enkelmann model [2] where the homogeneous Horn and Schunck smoothness
term is replaced by an anisotropic one. For large image gradients the latter one
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works solely orthogonal to the image gradient. Thus, both terms complement
each other without undesirable interference. The fact that the Nagel-Enkelmann
model outperforms the Horn and Schunck approach demonstrates the high po-
tential of such a complementarity.

Unfortunately, this paradigm of complementary behaviour has not been ex-
plored further after 1986. Instead of this, research has focussed on improving the
data or smoothness constraints independently. The goal of our paper is to pro-
pose a synergistic model for variational optic flow computation that integrates
state-of-the-art data and smoothness assumptions in such a way that both terms
work complementary. We will see that this can still lead to a very substantial
gain in accuracy. This is demonstrated by the fact that our so-called complemen-
tary optic flow (COF) method ranks number one in the widely-used Middlebury
benchmark.

Our paper is organised as follows: In Sec. 2 we review variational optic flow.
Our data term is derived in Sec. 3 and is then used to complement the smooth-
ness term in Sec. 4. After discussing implementation issues in Sec. 5, we show
experiments proving the favourable performance of our method in Sec. 6. We
then conclude with a summary and an outlook on future work in Sec. 7.

Related Work. Our model naturally incorporates many concepts that have
demonstrated their usefulness over the years. Therefore let us briefly sketch the
advances in data and smoothness terms that have been most influential for us.

For the data term, Black and Anandan [3] replaced the quadratic penali-
sation from [1] by a robust one which helps to cope with outliers caused by
noise or occlusions. More recently, in order to make the data term robust under
additive illumination changes, Brox et al. [4] successfully combined the classical
brightness constancy assumption (BCA) with the gradient constancy assumption
(GCA) [4–6]. Bruhn and Weickert [7] later improved this idea by introducing a
separate robust penalisation of the BCA and the GCA. This gives advantages
in those situations where one of the two constraints produces an outlier. More-
over, in realistic scenarios, one also has to deal with multiplicative illumination
changes [8]. If colour image sequences are available, one solution to this issue
can be the use of alternative colour spaces with photometric invariances, see [9]
and the references therein. Besides the discussed robustification efforts, success-
ful modifications of the data term have been reported by normalising the data
term [10, 11]. It prevents an undesirable overweighting of the data term at large
image gradient locations.

Regarding the smoothness term, first ideas go back to Horn and Schunck [1]
who used a homogeneous regulariser that does not respect any flow discontinu-
ities. However, since different image objects may move in different directions,
it is desirable to also permit discontinuities. This can for example be achieved
by using image-driven regularisers that take into account image discontinuities.
Alvarez et al. [12] proposed an isotropic model with a scalar-valued weight func-
tion that reduces the regularisation at image edges. An anisotropic counterpart
that also exploits the directional information of image discontinuities was in-
troduced by Nagel and Enkelmann [2]. Their method regularises the flow field
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along image edges but not across them. However, as not every image edge co-
incides with a flow edge, image-driven methods are prone to oversegmentation
artifacts in textured image regions. To avoid this, flow-driven regularisers have
been proposed that respect discontinuities of the evolving flow and are thus not
misled by image textures. In the isotropic setting this comes down to the use of
robust, nonquadratic penalisers, which for discrete energy functions have been
proposed by Black and Anandan [3]. In the context of rotationally invariant
variational methods they go back to Schnörr [5], and Weickert and Schnörr [13]
later presented an anisotropic extension. Nevertheless, the problem of flow-driven
regularisers lies in less sharp and badly localised flow edges compared to image-
driven approaches. The recent discrete method of Sun et al. [14] incorporates an
anisotropic regulariser based on a Steerable Random Field [15] that uses direc-
tional flow derivatives steered by image structures. It can thus be classified as
joint image- and flow-driven (JIF), allowing to obtain sharp flow edges without
oversegmentation problems.

2 Variational Optic Flow

Let f(x) be an image sequence with x := (x, y, t)⊤, where (x, y)⊤ ∈ Ω denotes
the location within a rectangular image domain Ω ⊂ IR2 and t ≥ 0 denotes time.
We further assume that f is presmoothed by a Gaussian convolution of standard
deviation σ. The optic flow field w := (u, v, 1)⊤ describes the displacement vector
field between two frames at time t and t + 1. It is found by minimising a global
energy functional of the general form

E(u, v) =

∫

Ω

[M(u, v) + α V (∇2u,∇2v)] dxdy , (1)

where ∇2 := (∂x, ∂y)⊤ denotes the spatial gradient operator. The term M(u, v)
denotes the data term, V (∇2u,∇2v) the smoothness term, and α > 0 is a
smoothness weight. According to the calculus of variations, a minimiser (u, v) of
the energy (1) necessarily has to fulfil the associated Euler-Lagrange equations

∂uM − α
(

∂x (∂ux
V ) + ∂y

(

∂uy
V

))

= 0 , (2)

∂vM − α
(

∂x (∂vx
V ) + ∂y

(

∂vy
V

))

= 0 , (3)

with homogeneous Neumann boundary conditions.

3 Data Term

Let us now derive our data term in a systematic way. The classical starting point
is the brightness constancy assumption (BCA) used by Horn and Schunck [1].
It states that image intensities remain constant under their displacement, i.e.,
f(x + w) = f(x). Assuming that the displacement is sufficiently small, we can
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perform a first-order Taylor linearisation that yields the optic flow constraint
(OFC)

0 = fx u + fy v + ft = ∇3f
⊤ w , (4)

where the subscripts denote partial derivatives and ∇3 := (∂x, ∂y, ∂t)
⊤ denotes

the spatio-temporal gradient operator. For a quadratic penalisation the corre-
sponding data term is given by

M1(u, v) =
(

∇3f
⊤ w

)2

= w⊤ J0 w , (5)

with the tensor J0 := ∇3f ∇3f
⊤.

The OFC is not sufficient to compute a unique solution (aperture problem),
but only allows to compute the flow component orthogonal to the image edges,
the so-called normal flow. It is defined as

wn :=
(

u⊤

n , 1
)⊤

:=

(

− ft

|∇2f |
∇2f

⊤

|∇2f |
, 1

)⊤

. (6)

Normalisation. Our experiments will show that normalising the data term can
be beneficial. Following [10, 11] and using the abbreviation u := (u, v)⊤, we
rewrite the data term M1 as

M1(u, v) =
(

∇2f
⊤u + ft

)2

= |∇2f |2
(

( ∇2f

|∇2f |

)⊤

(u−un)

)2

=: |∇2f |2 d 2 . (7)

The term d constitutes a projection of the difference between the estimated
flow u and the normal flow un in the direction of the image gradient ∇2f .
Hence, this rewriting allows a geometric interpretation of the data constraint in
terms of the distance from u to the line described by the OFC (4). Ideally, we
would like to penalise this distance d, but in the data term M1 it is weighted
by the squared spatial image gradient. This results in a stronger enforcement of
the data constraint at high gradient locations. Such an overweighting may be
inappropriate as large gradients can be caused by unreliable structures, such as
noise or occlusions.

As a remedy, we normalise the data term M1 by multiplying it with a fac-
tor [10, 11]

θ0 :=
1

|∇2f |2 + ζ2
, (8)

where the regularisation parameter ζ > 0 avoids division by zero. The normalised
version of M1 can be written as

M2(u, v) = w⊤ J0 w, with J0 := θ0J0 . (9)

Gradient Constancy Assumption. To cope with the problem of additive
illumination changes, the gradient constancy assumption (GCA) has been pro-
posed [4–6]. It states that image gradients remain constant under their displace-
ment, i.e., ∇2f(x + w) = ∇2f(x). A data term that combines both BCA and
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GCA is
M3(u, v) = w⊤ J w , (10)

where we use the motion tensor notation [16]

J := ∇3f ∇3f
⊤ + γ

(

∇3fx ∇3f
⊤

x + ∇3fy ∇3f
⊤

y

)

. (11)

Here, the parameter γ > 0 steers the contribution of the GCA.
To normalise M3, we replace the motion tensor J by

J̄ := θ0 ∇3f ∇3f
⊤ + γ

(

θx ∇3fx ∇3f
⊤

x + θy ∇3fy ∇3f
⊤

y

)

, (12)

and obtain the data term M4(u, v) = w⊤ J̄ w. The two additional normalisation
factors are defined as

θx :=
1

|∇2fx|2 + ζ2
, and θy :=

1

|∇2fy|2 + ζ2
. (13)

Postponing the Linearisation. Linearisation of the data term with respect
to u and v is only valid for small displacements. In order to handle large dis-
placements correctly, Brox et al. [4] postpone any linearisation to the numerical
scheme. Applying this strategy within the data term M4 yields

M5(u, v) =
∣

∣

∣

√

θ0 (f(x + w) − f(x))
∣

∣

∣

2

(14)

+ γ

(

∣

∣

∣diag
(

√

θx,
√

θy

)

(∇2f(x + w) −∇2f(x))
∣

∣

∣

2
)

,

where diag(a, b) denotes the 2 × 2 the diagonal matrix with the entries a and b.
We wish to emphasise that the numerical solution for large displacement optic

flow proceeds by computing flow increments in a multiresolution framework. The
linearisation of the data term M5 w.r.t. these small increments will give rise to
the motion tensor (12) on every image scale.

Colour Image Sequences. In a next step we extend the data term M5 to
multi-channel sequences by coupling three colour channels

(

f1(x), f2(x), f3(x)
)

.
A natural formulation for this is

M6(u, v) =
3

∑

i=1

(

∣

∣

∣

∣

√

θi
0

(

f i(x + w) − f i(x)
)

∣

∣

∣

∣

2

(15)

+ γ
∣

∣

∣ diag
(√

θi
x ,

√

θi
y

)

(

∇2f
i(x + w) −∇2f

i(x)
)

∣

∣

∣

2

)

.

Photometric Invariant Colour Spaces. Realistic illumination models en-
compass a multiplicative influence [8], which cannot be captured by the GCA.
This problem can be tackled by replacing the RGB colour space by the Hue
Saturation Value (HSV) colour space [17] instead. The hue channel is invariant
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under multiplicative illumination changes and in particular under shadow, shad-
ing, highlights and specularities. The saturation channel is only invariant w.r.t.
shadow and shading and the value channel exhibits none of these invariances.
In [9], only the hue channel was used for optic flow computation. We will addi-
tionally use the saturation and value channel, because they contain information
that is not encoded in the hue channel.

Robust Penalisers. To provide robustness of the data term against outliers
caused by noise and occlusions, Black and Anandan [3] proposed to refrain from
a quadratic penalisation. Instead they use a non-quadratic penalisation function
ΨM (s2), where s denotes the data constraint. Good results are reported in [4]
for the regularised L1-norm, ΨM (s2) :=

√
s2 + ε2, with a small regularisation

parameter ε > 0. Bruhn et al. [7] use a separate L1 penalisation of the BCA and
the GCA, which is advantageous if one assumption produces an outlier. In our
variational framework we will go further by proposing a separate robustification
of each HSV channel. It can be justified by the distinct information content of
each of the three channels that drives the optic flow estimation in different ways.

Final Data Term. Incorporating our separate robustification idea into M6

brings us to our final data term

M(u, v) =

3
∑

i=1

ΨM

(

∣

∣

∣

∣

√

θi
0

(

f i(x + w) − f i(x)
)

∣

∣

∣

∣

2
)

(16)

+ γ

( 3
∑

i=1

ΨM

(

∣

∣

∣diag
(√

θi
x ,

√

θi
y

)

(

∇2f
i(x + w) −∇2f

i(x)
)

∣

∣

∣

2
))

.

This data term is (i) normalised, it (ii) combines the BCA and GCA, (iii) does
not linearise the constancy assumptions and (iv) uses the HSV colour space with
(v) a separate robustification of all colour channels.

To derive the contributions of the data term (16) to the Euler-Lagrange
equations (2) and (3), we use the abbreviations from [4]:

f∗∗ := ∂∗∗f(x+w) , fz := f(x+w)−f(x) , f∗z := ∂∗f(x+w)−∂∗f(x) , (17)

where ∗∗ ∈ {x, y, xx, xy, yy} and ∗ ∈ {x, y}. Then we can write the contributions
∂uM and ∂vM as

∂uM =

3
∑

i=1

Ψ ′

M

(

θi
0

(

f i
z

)2
)

· θi
0
f i

z f i
x (18)

+ γ

(

3
∑

i=1

Ψ ′

M

(

θi
x

(

f i
xz

)2

+ θi
y

(

f i
yz

)2
)

·
(

θi
x f i

xz f i
xx + θi

y f i
yz f i

xy

)

)

,

∂vM =
3

∑

i=1

Ψ ′

M

(

θi
0

(

f i
z

)2
)

· θi
0
f i

z f i
y (19)

+ γ

(

3
∑

i=1

Ψ ′

M

(

θi
x

(

f i
xz

)2

+ θi
y

(

f i
yz

)2
)

·
(

θi
x f i

xz f i
xy + θi

y f i
yz f i

yy

)

)

,
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where Ψ ′

M (s2) denotes the derivative of ΨM (s2) w.r.t. its argument. Here we see
that the separate robustification of the HSV channels makes sense: If a specific
channel violates the imposed constancy assumption at a certain location, the
corresponding argument of the decreasing function Ψ ′

M will be large, yielding a
downweighting of this channel. The other channels that satisfy the constancy
assumption will then have a dominating influence on the solution.

4 Smoothness Term

4.1 Previous Smoothness Terms

For overcoming the aperture problem and for regularising the estimated flow
field, energy-based methods include a smoothness term (regulariser). It models
the assumption of a smooth flow field. A quadratic smoothness term as proposed
by Horn and Schunck [1] penalises the squared magnitude of the flow gradients:

V1(∇2u,∇2v) = |∇2u|2 + |∇2v|2 . (20)

In the corresponding Euler-Lagrange equations, this leads to a homogeneous
diffusion term that tends to blur important flow edges. Since it is desirable
that regularisers permit flow discontinuities, numerous discontinuity perserv-
ing smoothness terms have been proposed. They are classified as either image-
or flow-driven, depending on whether the smoothing process is adapted to im-
age edges or evolving flow edges. In addition, one can distinguish isotropic and
anisotropic strategies. Whereas the first type makes use of a scalar valued dif-
fusivity to reduce the smoothing at edges, the latter also takes into account
the directional information by means of a diffusion tensor. For an extensive and
in-depth survey on classical discontinuity preserving regularisers, we refer to [13].

Joint Image- and Flow-driven Regularisation (JIF). Recently, Sun et
al. [14] presented an anisotropic smoothness term in a discrete setting. It is
modelled by a Steerable Random Field [15] that uses directional flow deriva-
tives steered by image structures. It thus combines the advantages of image-
and flow-driven regularisers, a strategy that we will name joint image- and
flow-driven (JIF) regularisation. To obtain directional information of image
structures, the authors analyse the eigenvectors of the structure tensor [18]
Sρ := Kρ ∗

[

∇2f ∇2f
⊤

]

, where Kρ is a Gaussian of standard deviation ρ and ∗
denotes the convolution operator. The structure tensor is a symmetric, positive
semidefinite 2× 2 matrix that possesses two orthonormal eigenvectors s1 and s2

with corresponding eigenvalues µ1 ≥ µ2 ≥ 0. The vector s1 points across image
structures, whereas the vector s2 points along them. With these notations, the
regulariser from [14] can be written as

V2(∇2u,∇2v) = ΨV

(

(

s⊤
1
∇2u

)2
)

+ ΨV

(

(

s⊤
1
∇2v

)2
)

(21)

+ ΨV

(

(

s⊤
2
∇2u

)2
)

+ ΨV

(

(

s⊤
2
∇2v

)2
)

.
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The corresponding Euler-Lagrange equations are

∂uM − α div
(

Du (s1, s2,∇2u) ∇2u
)

= 0 , (22)

∂vM − α div
(

Dv (s1, s2,∇2v) ∇2v
)

= 0 , (23)

with the diffusion tensors

Dp (s1, s2,∇2p) :=
(

s1|s2

)





Ψ ′

V

(

(

s⊤
1
∇2p

)2
)

0

0 Ψ ′

V

(

(

s⊤
2
∇2p

)2
)





(

s⊤
1

s⊤
2

)

, (24)

for p ∈ {u, v}. We observe that this regulariser indeed exhibits the desired image-
and flow-driven behaviour: The regularisation direction is adapted to the image
structure directions s1 and s2, whereas the magnitude of the regularisation de-
pends on the flow contrast encoded in ∇2p. As a result, this regulariser yields
the same sharp flow edges as image-driven methods but does not suffer from
oversegmentation problems.

4.2 Our Novel Constraint Adaptive Regulariser (CAR)

In spite of its sophistication, the JIF model still suffers from a few shortcomings.
As a remedy we will introduce three amendments that will be discussed now.

Regularisation Tensor. A first remark w.r.t. JIF regularisation is that the
directional information from the structure tensor Sρ is not consistent with the
imposed constraints of our data term (16). It is more natural to take into account
the directional information provided by the motion tensor (12) and to steer
the anisotropic regularisation process w.r.t. “constraint edges” instead of image
edges. We propose to analyse the eigenvectors r1 and r2 of the regularisation
tensor

Rρ :=
3

∑

i=1

Kρ ∗
[

θi
0
∇2f

i
(

∇2f
i
)⊤

+γ
(

θi
x∇2f

i
x

(

∇2f
i
x

)⊤

+θi
y∇2f

i
y

(

∇2f
i
y

)⊤
)]

. (25)

The regularisation tensor integrates neighbourhood information of the motion
tensor entries for every colour channel. By exploiting the invariances of the HSV
colour space, it is not prone to be misled by “phantom” edges, like shadow edges.

Rotational Invariance. Unfortunately the smoothness term V2 lacks the de-
sirable property of rotational invariance, because the projections of ∇2u and
∇2v onto the eigenvector directions are penalised separately. As a remedy we
propose to jointly penalise the projections on the eigenvector directions of the
regularisation tensor, yielding

V3(∇2u,∇2v) = ΨV

(

(

r⊤
1
∇2u

)2
+

(

r⊤
1
∇2v

)2
)

(26)

+ ΨV

(

(

r⊤
2
∇2u

)2
+

(

r⊤
2
∇2v

)2
)

.
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Single Robust Penalisation. The regulariser V3 performs a twofold robust
penalisation in both eigenvector directions. Because the data term mainly con-
straints the flow in the direction of the largest eigenvalue of the spatial motion
tensor, we propose a single robust penalisation solely in r1-direction. In the or-
thogonal r2-direction, we opt for a strong quadratic penalisation. The advantages
of this strong filling-in effect along constraint edges will be confirmed by our ex-
periments in Sec. 6. Also incorporating the single robust penalisation yields the
regulariser

V (∇2u,∇2v) = ΨV

(

(

r⊤
1
∇2u

)2
+

(

r⊤
1
∇2v

)2
)

+
(

r⊤
2
∇2u

)2
+

(

r⊤
2
∇2v

)2
, (27)

where we use the Perona-Malik regulariser (Lorentzian) [19, 20] given by
ΨV (s2) := λ2 log(1 + (s2/λ2)) with a contrast parameter λ > 0. We call the
regulariser V the constraint adaptive regulariser (CAR). It complements the
proposed robust data term M from (16) in an optimal fashion.

The corresponding Euler-Lagrange equations for are

∂uM − α div
(

D (r1, r2,∇2u,∇2v) ∇2u
)

= 0 , (28)

∂vM − α div
(

D (r1, r2,∇2u,∇2v) ∇2v
)

= 0 , (29)

where the joint diffusion tensor is given by

D (r1, r2,∇2u,∇2v) :=
(

r1|r2

)

(

Ψ ′

V

(

(

r⊤
1
∇2u

)2
+

(

r⊤
1
∇2v

)2
)

0

0 1

)(

r⊤
1

r⊤
2

)

. (30)

Comparing our joint diffusion tensor (30) to its JIF counterparts (24), the fol-
lowing innovations become apparent: (i) The smoothing direction is adapted to
constraint edges instead of image edges. (ii) We achieve rotational invariance by
coupling the two flow components in the argument of Ψ ′

V . (iii) We only reduce the
smoothing across constraint edges. Along them, always a strong diffusion with
strength 1 is performed, resembling edge-enhancing anisotropic diffusion [21].

When using ∂uM and ∂vM as given in (18) and (19) in the Euler-Lagrange
equations (28) and (29), we obtain the Euler-Lagrange equations for our pro-
posed complementarity optic flow (COF) method.

5 Implementation

To solve the Euler-Lagrange equations we use a coarse-to-fine multiscale warp-
ing approach [4]. On each warping level, small flow increments are computed
via a linearised approach, allowing to handle large displacements correctly. The
computations are speeded up by a nonlinear multigrid scheme [16] that solves
the problem at each warping level based on a Gauß-Seidel type solver with al-
ternating line relaxation [16].

Spatial image and flow derivatives are discretised via central finite differences
of fourth and second order, respectively [16]. For the motion tensor, these deriva-
tives are averaged from the two frames f(x, y, t) and f(x, y, t + 1), whereas for
the regularisation tensor, they are solely computed at the first frame.
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6 Experiments

Our first experiment shows the importance of different constituents of our model.
We compare our method to four modified versions of it where we have changed
one distinct feature: (i) No data term normalisation. (ii) Using a regulariser with
twofold instead of single robust penalisation as in V3. (iii) Using a regulariser with
single robust penalisation as in V , but based on the structure tensor instead of
the regularisation tensor. (iv) Using the RGB colour space. For the latter version,
we only separately robustify the BCA and the GCA, as a separate robustification
of the RGB channels makes no sense. In Fig. 1, we show results for the Urban3
sequence from the recent optic flow database [22] of the Middlebury University5.
To visualise flow fields, we plot the magnitude of the flow vectors. Throughout
our experiments we use the parameters ζ = 0.1, ε = 0.001, λ = 0.1. Specifically
for the Urban3 sequence, we fixed the parameters σ = 0.7, γ = 1.0, ρ = 1.5 and
only tuned the value of α, as is given in the caption of Fig. 1. There, we also
state the corresponding average angular error (AAE) measures [23] in order to
compare the quality of estimated flow fields to the ground truth. Note that the
errors were computed for the whole image, whereas for visualisation purposes,
the flow fields in Fig. 1 (c)–(h) show details. We notice a lot of artifacts for the
method without data term normalisation (Fig. 1 (d)) that severely deteriorate
the flow estimate. With a twofold robust penalisation (Fig. 1 (e)), artifacts at
flow edges emerge due to the inhibited smoothing along edges. The results for
the RGB version (Fig. 1 (f)) and our approach (Fig. 1 (h)) look rather similar
due to the uncritical illumination conditions in this synthetic sequence. How-
ever, at the connection between the two buildings in the middle of the image,
our approach performs better. When using the directional information from the
structure tensor (Fig. 1 (g)), the results look promising, but artifacts at flow
corners appear.

For a second experiment we created a real world test sequence with difficult
illumination conditions caused by pronounced shadows, see Fig. 2 (a)–(b). Using
this test sequence, we compare our method to the RGB version, the method of
Brox et al. [4] and a version of our approach with a rotationally invariant JIF
regulariser. This regulariser is similar to V3 but uses the eigenvectors s1 and s2

instead of r1 and r2. As fixed parameters we set σ = 0.5, γ = 20.0 and ρ = 2.5.
We see that the RGB method (Fig. 2 (c)) suffers from artifacts due to the shad-
ows in the marked regions. When using the JIF regulariser (Fig. 2 (d)), the flow
edges are dislocated and the shadow edges in the marked regions yield unpleas-
ant artifacts. This demonstrates the drawbacks of the use of the structure tensor
instead of the regularisation tensor, and of the twofold robust penalisation. Be-
cause of the latter, perturbing staircasing artifacts arise. The method of Brox et
al. [4] (Fig. 2 (e)), that is considered to be accurate and robust, gives poor results
for this sequence. Solely our method (Fig. 2 (f)) produces an agreeable flow field
in spite of the difficult illumination conditions and the large displacements (up
to 25 pixels) in this sequence.

5 available under http://vision.middlebury.edu/flow/data/
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Fig. 1. The Urban3 sequence. First row: (a) Frame 10. (b) Zoom in marked region.
Second row: (c) Ground truth flow magnitude plot in marked region. (d) Corre-
sponding flow magnitude plot without normalisation (α = 300.0, AAE=4.57). (e)
Twofold robust penalisation (α = 50.0, AAE=3.56). Third row: (f) RGB colour
space (α = 100.0, AAE=3.09). (g) Structure tensor (α = 50.0, AAE=2.99). (h) Our
approach (α = 75.0, AAE=2.95).

Table 1. The Top 8 of the Middlebury ranking for the AAE (as of June 12, 2009).

Method Our Adaptive Aniso. Spatially TV-L1- Occlusion Brox Multicue
Method Huber-L1 variant improved bounds et al. MRF

Avg. rank 4.8 5.0 6.5 7.1 7.9 8.6 9.2 9.2
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Fig. 2. The Snail sequence. First row: (a) Frame 1. (b) Frame 2. (c) Flow magnitude
plot with RGB colour space (α = 800.0). Second row: (d) JIF (α = 1500.0) (e) Brox
et al. [4] (α = 75.0). (f) Our approach (α = 1500.0).

For a final comparison of our method to state-of-the-art approaches, we sub-
mitted our results to the Middlebury benchmark page6. In accordance to their
guidelines, we used a fixed set of parameters for all sequences: α = 600.0, σ =
0.5, γ = 20.0 and ρ = 2.5. In Tab. 1, we show the average rank of the Top 8 meth-
ods for the AAE. With the proposed method we are able to achieve the first rank.
This shows that a sophisticated and transparent modelling allows to outperform
other well-engineered methods that incorporate many more processing steps.
The running time for the Urban sequence was 44.3 s on a standard PC (3.2 GHz
Intel Pentium 4, 256 MB RAM). This proves that the used multigrid scheme [16]
allows to obtain moderate runtimes for standard test sequences.

7 Conclusions and Outlook

We have presented a novel variational optic flow technique based on the concept
of complementarity between data and smoothness term. By refraining from the
traditional viewpoint that such terms are natural competitors within a joint
energy-based framework, we succeeded to unify their advantages and achieve
the currently most accurate results in the Middlebury benchmark.

6 available under http://vision.middlebury.edu/flow/eval/results/
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Our data term integrates sophisticated components such as embedding higher
order constancy assumptions in an HSV colour representation with a separate ro-
bust penalisation of each channel, renouncement of linearisations, and constraint
normalisation. The directional information that results from these constraints
is used in our complementary anisotropic smoothness term. This smoothness
term combines the advantages of image- and flow-driven regularisation. How-
ever, compared to the approach of Sun et al. [14], it is rotationally invariant,
respects constraint edges instead of image edges, and it restricts robust penali-
sation to the constraint direction. We have given detailed motivations showing
that these model refinements arise in a natural and systematic way. Moreover,
in the experiments we have proven that each of our amendments in the data and
smoothness term is beneficial and contributes to the favourable accuracy of our
complementary optic flow (COF) approach.

We hope that our research triggers further investigations on incorporating
complementarity concepts in image processing and computer vision. This may
allow to exploit similar synergies also in the context of other tasks that are
currently dominated by energy-based strategies.
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tern Recognition. Volume 4713 of Lecture Notes in Computer Science. Springer,
Berlin (2007) 152–162

10. Simoncelli, E.P., Adelson, E.H., Heeger, D.J.: Probability distributions of optical
flow. In: Proc. 1991 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, Maui, HI, IEEE Computer Society Press (June 1991) 310–315

11. Lai, S.H., Vemuri, B.C.: Reliable and efficient computation of optical flow. Inter-
national Journal of Computer Vision 29(2) (October 1998) 87–105
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