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Abstract

In this paper we present a framework to formalize several different scenarios for pose
estimation in a unifying natural algebraic embedding by the use of conformal geometric
algebra. The main contribution of the paper is the theoretical analysis and embedding of
different pose estimation scenarios. It can be seen that the conformal geometric algebra
is more suited to describing the pose estimation scenario, than either the motor algebra
or dual quaternion algebra [11]. The different scenarios described below relate projection
rays to 3D points, projection planes to 3D points or lines, and projection rays to spheres
and circles. The constraints are mostly very compact and easy to implement.
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1 Introduction

In recent years, several mathematical frameworks have been used to describe the 2D-3D
pose estimation problem. By pose estimation we mean estimating the transformation
(the rigid body motion) between two coordinate frames of measured data and model data,
[8]. The mathematical frameworks used include matrix and vector algebra, quaternion
algebra, dualquaternion algebra and motor algebra [2, 3, 5, 6, 9]. The description in
[9] produces compact equations but much care is needed when dealing with signs in the
constraint equations - the formulation is far from natural. This is a consequence of the
embedding in an even subalgebra where all quantities have to be expressed by scalars,
bivectors and pseudoscalars. In this report we try to overcome this problem by using
the conformal geometric algebra [4] and we develop constraint equations which contain
the same information as those in the motor algebra formalism [9]. However, these are
more general and easier to handle, since the constraint equations can then be described
by just one product.

The paper is organized as follows. Section 2 gives an introduction to the pose es-
timation problem. Section 3 introduces the motor algebra and the description of the
pose estimation problem in this language. This section is a summary of the algebraic
embedding presented in [11]. Section 4 gives an introduction to the conformal geometric
algebra and explains some relations to the motor algebra. Furthermore the constraint
equations of section 3 are described in the language of conformal geometric algebra and
proofs for these connections are given. Two additional constraints are then introduced
and analysed. Section 5 ends the paper with a discussion.

2 The scenario of pose estimation

In the scenario of figure 1 we describe the following situation: We assume 3D points Y7,
and lines S; of an object or reference model. Further, we extract line subspaces I;, or
points b; in an image of a calibrated camera, whose optical centre is denoted by ¢, and
match them with the model. Three constraints are depicted:

1. 3D point 2D point correspondence: A transformed point, e.g. Xj, of the
model point Y; must lie on the projection ray Ly;, given by ¢ and the corresponding
image point b;.

2. 3D point 2D line correspondence: A transformed point, e.g. X7, of the model
point Y; must lie on the projection plane Pjs, given by ¢ and the corresponding
image line [;.

3. 3D line 2D line correspondence: A transformed line, e.g. Ly, of the model
line S1 must lie on the projection plane Pjo, given by ¢ and the corresponding
image line [;.

The aim is to embed the scenario in a suitable algebraic language. For this we
need a description of the entities, the transformation of the entities and constraints for



3 Pose estimation in the motor algebra

g observed model

Figure 1: The scenario. The solid lines on the left describe the assumptions: the camera
model, the model of the object and the initially extracted lines or points on
the image plane. The dashed lines on the right describe the pose of the model,
which leads to the best fit of the object with the actual extracted entities.

collinearity and coplanarity of involved entities. Furthermore, these constraints should
contain some kind of distance measure, so that they can be used with noisy data resulting
from discrete data and measurement errors.

3 Pose estimation in the motor algebra

This section gives an introduction to the motor algebra and the embedding of the pose
estimation scenario in the algebraic language of kinematics. A more detailed introduction
can be found in [11].

A geometric algebra G, ,, is a linear space of dimension 2", n = p + ¢ 4+ r, with
a rich subspace structure. While a vector space has vectors as first order entities, the
geometric algebra contains higher order quantities, called blades, with which we can
construct multivectors - linear combinations of blades. A geometric algebra G, ,, is
built from a vector space R", endowed with the signature (p,q,r), n = p+q+r, by
application of a geometric product. The geometric product consists of an outer (A) and
an inner (-) product, whose roles are to increase or to decrease the order of the algebraic
entities, respectively. For later computations, we will also use the commutator x and
anticommutator X product for any two multivectors,

1
AB = §(AB + BA) +
=: AxXB + AxB.

1
§(AB — BA)
For a discussion of these two products and their relation to the geometric, inner and

outer product, see [1]. Their role is to separate the symmetric part of the geometric
product from the antisymmetric part.



A motor algebra [14] is the 8D even subalgebra Gj;, derived from R*, i.e. n = 4,
p=3,q=0,r =1, with basis vectors y, k = 1, ...,4, and the property 72 = 75 = 73 =
+1 and 7 = 0. Because 7; = 0, Gy, is called a degenerate algebra. The motor algebra
g;m is of dimension eight and spanned by qualitatively different subspaces with the
following basis multivectors:

one scalar S |
six bivectors DYa3, Y31 Y12 VAVL, Va2, VAV3
one pseudoscalar : I = y17v73%.

Because 72 = 0, the unit pseudoscalar also squares to zero, i.e. I* = 0. Since the
hypercomplex algebra of quaternions, IH, represents a 4D linear space with one scalar
and three vector components, it can easily be verified that gg,,to,l is isomorphic to the

algebra of dual quaternions H [12]. We will call general elements of the motor algebra
motors. The geometric entities of points, lines, and planes have a motor representation.
Every motor can be described by two scalars ag, by and two bivectors a, b, eg a =
@173 + a27y31 + azy12 and the description of the motor is M = (ag + a) + I(by + b).
Changing the sign of the scalar and bivector in the real and the dual parts of the motor
leads to the following variants of a motor
M = (ag+a)+I(by+b M= (a—a)+I(by—b)
M:(ao-Fa)—I(bo-Fb) M:(ao—a)—I(bo—b).
In what follows we will use the term motor in a more restricted sense; we use it to denote
a screw transformation. Its constituents are rotation and translation (and dilation in the
case of non-unit motors). We represent a rotation by a rotation line axis and a rotation
angle. The corresponding entity is called a unit rotor, R, and is given by

R =19+ 117273 + r2y371 + 137172 = cos (g) + sin (g) n = exp (gn)

Here 6 is the rotation angle and m is the unit orientation vector of the rotation axis,
spanned by the bivector basis vi2, ¥31, V12-

If on the other hand, t = 17273 + t2y371 + 37172 is a translation vector in bivector
representation, it is represented in the motor algebra by the dual part of a motor, called
a translator T', where

T =1+1I%=exp(LI).
Thus, a translator is also a special kind of rotor.

Because rotation and translation concatenate multiplicatively in the motor algebra,

a motor M reads

M=TR=R+I!R=R+IR.

A motor represents a general displacement as a screw transformation. For example the
line L will be transformed to the line L' by means of a rotation R, around a line L, by
angle 6, followed by a translation t, parallel to L,. Then the screw transformation in
terms of motors reads

L'=T,R,LR,T,= MLM.
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constraint entities dual quaternion algebra | motor algebra
pomt X =l1+Iz |  py xT-0 |XL-IX=0
line L=n+1Im
point X =1+ Ix
plane P =p+ Id
line L=n+Im
plane P =p + Id

point-line

point-plane PX -XP=0 PX -XP=0

line-plane LP-PL=0 LP+PL=0

Table 1: The geometric constraints expressed in motor algebra and dual quatenion alge-
bra.

For more detailed discussions see [14] and [13]. We now introduce the description of the
most important geometric entities [14].

A point & € R?, represented in the bivector basis of g;o,l, ie. X € gg{o,l, reads
X =1+ zyam + 227472 + 237173 = 1 + I

A line L € Gy, is represented by L = n + I'm with the line direction n =
n17Y27Y3 + N2Y3Y1 + n3Y172 and the moment m = myyey3 + may3y1 + M3y1ye.

A plane P € g3+,071 will be defined by its normal p written as a bivector and by its
orthogonal distance to the origin, expressed as the scalar d = (x - p), in the following
way, P = p + Id, where x lies on the plane.

In the case of screw motions, M = TR, point and plane transformations can of
course be modelled as well as line transformations. These are

X'=MXM L'=MLM P=MPM
In this study we will use only point and line transformations since points and lines are
the entities of our object models.

Now we need only describe the constraints for collinearity and coplanarity. Table 1
gives such an overview of the formulations of the constraints for collinearity and copla-
narity in the dual quaternion algebra [7] and motor algebra. We now explicitly evaluate
these constraints, in order to simplify the connections and comparisons with the next
section.

Evaluating the XL-constraint of a point X = 14 Iz collinear with aline L = n+Im
leads to

0 = XL-LX=(01+Iz)(n+Im)—(n—Im)(1+Iz)
= n+Im+Ixn—-—n+Im—Inz=I12m+ zn— n)
= 2I(m — nxx)
<0 = I(m—nxz).
The term m — nXxx means that the moment of a line, which is generated by the outer
product of the direction of the line with a point on the line is independent of the chosen
point of the line, which is a clear fact from Pliicker representation of lines [7].

Evaluating the XP-constraint of a point X = 1+ Iz coplanar to a plane P = p+ Id
leads to

0 = PX-XP=(p+Id(1+Iz)—(1-1Ix)(p—Id



= p+Ipr+Id—p+Id+ Ixp=1(2d+ px+ xp)
<0 = I(d+pxx).

The term d + pxx describes the perpendicular distance of the point to the plane [11].
Evaluating the LP-constraint of a line L = n + I'm coplanar to a plane P = p+ Id
leads to

0 = LP+PL=(n+Im)(p+Id)+ (p+Id)(n—Im)
= np+Imp+ Ind+ pn+ Ind— Ipm
= np+pn+ I(2dn — pm + mp)
&0 = nxp+ I(dn—pxm)

Thus, the constraint of coplanarity of a line to a plane can be partitioned into a constraint
on the real part of the motor and a constraint on the dual part of the motor. The
constraint on the real part describes the angle between the direction of the line and the
normal to the plane and the dual part contains some distance measure between the line
and the plane. Indeed it can be shown, that for n L p, dn — pxm reduces to the XP
constraint, for a point on the line [11].

Using the point Y and line S from section two, the constraints for pose estimation
read

(MYM)L -Z(MYM) = 0
P(MYM) - (MYM)P = 0

(MSM)P +P(MSM) = 0.

The solution to these equations will satisfy the pose estimation problem at hand: find
the best motor M which satisfies the constraints. The constraints have the interesting
property that the perpendicular distances are the natural distance measures. They are
extremely useful in applications in digital image processing where we are dealing with
noisy data [9].

4 Pose estimation in conformal geometric algebra

In this section, we will first give an introduction to the construction of the conformal
geometric algebra (ConfGA) and introduce the entities we use in this context. A more
detailed introduction can be found in [4]. Then we describe the connection of the
description of the entities in ConfGA to their corresponding description in the motor
algebra and estimate the constraints of the previous section in this algebra.

4.1 Introduction to conformal geometric algebra

To introduce the ConfGA, we follow [4] and start with the Minkowski plane G119, which
has an orthonormal basis {e,e_}, defined by the properties
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e2=1 e =-land e;-e =0.

A Null basis can now be introduced by the vectors
ep=z3(e.—e;)and e=e +e,.

Furthermore we define
E:=eA €y.

For these additional elements the following properties are straightforward to prove and
can be summarized as

el=e’>=0, e-e=—1, E=e,e_

E?=1, Ee=—-eE =—-e, Fey=—¢eyFE =e,.

These properties will be used in the following computations. In an n-dimensional
vector space, the Minkowski model G, 111 will be used, therefore enlarging the Geo-
metric Algebra of the n-dimensional vector space by two additional basis vectors, which
define a Null space. For the interpretation of the additional basis vectors, it helps to
identify ey with the origin, and e with the point at infinity. This is also explained in [4].

The set of all null vectors is called the null cone and the surface

{exe R’ =0,z -e = -1}

is termed the horosphere: there is a 1-1 mapping between points in G, and the
horosphere. The general form of the points € € G,, o can also be described by

§=m+§m2e+e0.

Lines can be described by the outer product of two points on the line and the point
at infinity

L = eANaAbd

Since the outer product of three points determines a circle [4], the line can be interpreted
as a circle passing through the point at infinity.

Planes can be described by the outer product of three points on the plane, and the
point at infinity

P = eANaAbAc

Using e A a instead of @ (this is the so called affine representation of a point [4]),
we can write the point, line and plane as

X=eANzx = E +ex
L=eNaANb = Eb—-a)+eand =FEn+eM
P=eNaNbAhc = Eb-a)AN(c—a)+eaNbAhec = EP +edl.

Note that aAb=aA (b—a), and a AbAc = dI, with I = ejese;,d € R. It is now
easy to see the similarities between these representations and those in the motor algebra.



4.2 Formalization of the constraints in conformal geometric algebra

Notice however, that the coefficients of the entities remain in the natural environment,
so a vector is denoted by a vector, a bivector by a bivector, etc and no codings, such as
those used in the motor algebra or dual quaternion algebra approaches, are necessary.

As in the previous section, rotations can be described by rotors R. If x — Rmﬁ,
and & = F'(x) then we find that we get the rotated vector in 5D by mapping the rotated
3D vector

RF(z)R=RzR = RzR~+ %wQReﬁ + RegR
= ReR+ _2’RRe+ RRe,
= RzR+ %wQe + ey = F(RzR)
A translation can be described by a translator T'q = (1+%)e, (also similarly to section 3)

and is nothing more than a special rotor. Indeed it can be shown [15], that translations,
rotations, dilations and inversions can all be described by suitable rotors in ConfGA.

4.2 Formalization of the constraints in conformal geometric
algebra

In this section we will estimate the constraints for collinearity and coplanarity in Conf-
GA. As a result we will see that the equations contain exactly the same information as
in the motor algebra approach, but are expressed more easily.

Evaluating the commutator product of a point X and a line L leads to

1
1

= 5((E—i—ezc)(En—i—eM)—(En_|_e]\/[)(];;;_i_em))
1

= §(e:cEn + EeM + E’n —eME — nEex — n)

1
= —(exn — Me — Me — nxe)

2
= %(—(QM — (zn —nz))e)
= Z(M - (@xn))e

Comparing the resulting term with the term evaluated from the corresponding XL-motor
algebra constraint, it is easy to see, that (neglecting the sign) the two forms have the
same content. Note the change of the sign, occuring from bivectors in the motor algebra
with respect to the vectors we have in the ConfGA.

Evaluating the commutator product of a point X and a plane P leads to

1
XxP = 3(XP-PX)
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= (E+ex)(EP +edl)— (EP +edl)(E + ex)
(exEP + Eedl + P — edlE — EPex — P)

L
2
1
5(—:13Pe +dIe + P+ dlIe — Pze — P)
1

E(Zdl — (xP + Px))e

= (dI — (zxP))e

Note here that the anticommutator product of a bivector and a vector leads to a
trivector, which is subtracted from dI. Comparing the resulting term with the term
evaluated from the corresponding XP motor algebra expression, it is easy to see that
again the two have the same content.

Evaluating the anticommutator product of a line L and a plane P leads to

1

LxP = (LP+PL)

1

= 5((En+eM)(EP+edI)+(EP+edI)(En+eM))
1

= i(eMEP +nEeld+nP +eldnE + EPeM + EPnE)
1

= §(MPe+nIde+nP+Idne—PMe+Pn)

1
= 5((nP+Pn) + (2nId+ MP — PM)e)

1
= 5((nP+Pn) +2(nId+ M xP)e)
= nxP+ (nId+ MxP)e

Note that the commutator product of two bivectors leads to a bivector which is added
to nId. Comparing the resulting term with the term evaluated from the corresponding
LP motor algebra expression, we see once again that the two expressions have the same
content.

Thus, the pose estimation constraint equations reduce to setting the commutator and
anticommutator products to zero and the problem of pose estimation can be reduced to
finding the best rotor R, meaning rotation and translation, which satisfies

(RXR)
(RXR)

(RLR)

= 0

X

X| X
NN
I

Note that the representation of the entities are in general not scaled as they are in
the motor algebra (eg the direction of a line (b— a) is in general not a unit vector). The
constraints are therefore equivalent up to a scaling factor which can easily be estimated.
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4.2 Formalization of the constraints in conformal geometric algebra

In terms of the outer and inner products it can also be shown

(RXR)xL)-ey = —((ReR)AL)-E
(RXR)xP)-e = ((ReR)AP)-E
(RLR)XP)-I; = (RLR)-(PI;),
with X = e Az, and I5 = e_eeseze,. Using these formulations, it is easy to see that

the commutator and anticommutator products can also be replaced by suitable inner
and outer products. This is not possible in the motor algebra.

eNa/\bA ¢

(b-a)/ (c-a)f .

Figure 2: Relation of the XL- constraint to the plane representation: the normal of the
plane leads to an intrinsic coding of the distance from a point to a line.

It is interesting to mention the following: a plane can be described by three points
on the plane, eg a, b, c leading to P = e Aa Ab A c. This representation consists of the
volume ea AbA ¢, and the normal E(b—a) A (c—a). The normal can be interpreted as
the moment of the line Ly given by the direction (b — @) and passing through the point
(¢ — a). Since the magnitude of the moment describes the orthogonal distance of the
origin to a line, the magnitude of the normal describes exactly the orthogonal distance
of the point a to the line L, parallel-transported to pass through the point c.

Thus, within the normal of the plane we have an intrinsic coding of the distance from
a point to a line. Figure 2 visualizes this geometry.

We note here that the XP constraint can further be interpreted as a one dimensional
extension of the XL constraint, and the LP constraint uses the dual representation of a
plane, and the inner product, to relate a line to a plane. Since the information is coded
in different blades of G, 11,1, we require these different products between the terms.

11
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Compared with the formulations in the motor algebra, the constraints are much more
compact and describe the constraints using only one product (commutator, anticommu-
tator or outer and inner product). As described for the motor algebra the information
obtained in such a formulation will be close to optimal for certain problems.

4.3 Spheres and circles in conformal geometric algebra

In this section we will construct constraints for a projection ray being tangential to a
3D sphere or 3D circle. Since 3D spheres are more easily described in 3D space than
circles, we will start with spheres, and then continue with circles.

As explained in [4], spheres can be described by four points lying on the sphere,
Q=aANbAcAd Let this sphere have radius p and centre m. The distance of a
projection ray L to the sphere {2 can be described by the distance of the projection ray
L to the centre m minus the radius p. Here the t denotes tangentiality:

L
& dist(L,m) = p

The distance of a line to a point can be described by the commutator product, but
indeed it is not possible to write dist(L, m) = (Lxm)?, since the resulting error vector
is coded in the Nullspace of G,,11,1,0, i€ (Lxm)? = 0.

One of the nice features of ConfGA is that it is possible to change between the
Nullspace and the non-Nullspace, in this case by taking the inner product with e; since
e - ey = —1, a fact which is extremely useful and not possible in the motor algebra. In
the motor algebra the problem was solved by simply neglecting the pseudoscalar I. The
distance between a line and a sphere can then be described directly by

dist(L,m) =
& J(Lxm)-e)?—p = 0
& [[(Lxm)-el|—p = 0

This describes, in the context of pose estimation, an interesting extension, since now it
is also possible to estimate the relative position of a ball, or a sphere in the space.

Much harder are circles in 3D space. Circles can be described by three points lying
on the circle: w = a A b A c. The general expression leads to

w = aANbAc
= A+ A e+Atey+ AT E

with
A=aAbAc A =1(c*(anb) —b’(aAc)+a’(bAc))
At =aAb+bAc—aAlc AT = L(a(b® — ) + b(c? — a?) + c(a® — b?))

One way of describing the circle geometrically is by the plane in which the circle lies
(e Aw gives the plane) and the line which is perpendicular to the plane and meets it at

12
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the centre of the circle (A"~ contains the moment of the line). It can be shown that the
radius p can be described by

and the centre is given by

1
Mw:—p2<w+—e) or M, —eA M,
w 2

The aim is to formalize a constraint equation which leads to the orthogonal distance of
the projection ray L to the circle w.

I~

Figure 3: The orthogonal distance of the projection ray L to the circle w, is obtained by
estimating the nearest point, X, of the circle w to the line L and evaluating
this error measure.

One way to do this is to estimate the nearest point X, of the circle w to the line
L and evaluate this error measure, see figure 3. To estimate the point X, the key
ideas are to make an orthographic projection of the line L to the plane P, := e A w, to
estimate the shortest distance from the centre of the circle to the resulting line, and to
establish the point X, from this information. Suppose the following are given: the circle
w, the projection ray L, the center M, or M, of the circle, the radius p of the circle,
the normal T of the plane in which the circle lies and the direction n of the projection
ray L. These quantities are simple to extract from a given circle w and projection ray
L. The orthogonal distance, of the circle w to the line L can now be established by the
following steps:

1. Orthographic projection of the line L to the plane P, := e Aw, leads to a line L,:

BQ = LANT
L, = (P,VP,))=—(PxP,)IE

13
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2. The error vector from the centre of the circle M, to the line L,, with unit normal
N9, can be estimated via

Xa = ((M,xLy)-e)-ny
e Xdl
Xp = ——
* | X an |

3. The nearest point to the line can be established by

X, = M,+pXp

4. The error can now be described by the following equation as in the previous section

(X xL) = 0.

Though the steps themselves are very easy to implement, the substitution to the general
form of the constraint is no longer simple and it is no longer straightforward to apply
general transformations in the form of rotors. Future work will look at finding a neater,
possibly closed-form version of the constraint.

5 Discussion

In this paper we present a framework to formalize several different scenarios for pose
estimation in a unifying natural algebraic embedding by the use of conformal geometric
algebra. The main contribution of the paper is the theoretical analysis and embedding
of different pose estimation scenarios, and we hope to have shown that the conformal
geometric algebra is much more suitable in describing this scenario, than either motor
algebra or the dual quaternion algebra [11]. Since the evaluation of the XL, XP, LP
constraints leads to exactly the same information as in the motor algebra approach, no
new experiments are presented. Two additional constraints relating projection rays to
3D circles or spheres have not been implemented and such experiments are the task of
future work. Since the entities and their transformations are more naturally represented
in conformal geometric algebra, it will also be interesting, as part of future work, to
analyse existing formalizations of the dual quaternion algebra in conformal geometric
algebra.
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