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Abstract. The authors of this paper adopted the characteristics of the
image of the absolute conic in terms of Pascal’s theorem to propose a new
camera calibration method. Employing this theorem in the geometric
algebra framework enables the authors to compute a projective invariant
using the conics of only two images which expressed using brackets helps
us to set enough equations to solve the calibration problem.

1 Introduction

The computation of the intrinsic camera parameters is one of the most important
issues in visual guided robotics. One important method of selfcalibration is based
on the image of the absolute conic and it requires as input only information about
the point correspondences [5, 4, 1].

In this paper we re establish the idea of the absolute conic in the context
of Pascal’s theorem and we get different equations than the Kruppa equations
[4, 1]. Although the equations are different they rely on the same principle of the
invariance of the mapped absolute conic. The consequence is that we can gen-
erate equations so that we require only a couple of images whereas the Kruppa
equation method requires at least three images [4]. As a prior knowledge the
method requires the translational motion direction of the camera and the rota-
tion about at least one fixed axis through a known angle in addition to the point
correspondences. The paper will show that although the algorithm requires the
extrinsic camera parameters in advance it has the following clear advantages: It
is derived from geometric observations, it does not stick in local minima in the
computation of the intrinsic parameters and it does not require any initializa-
tion at all. We hope that this proposed method derived from geometric thoughts
gives a new point of view to the problem of camera calibration.

In this paper we are modelling the properties of the projective space P3 using
the geometric algebra G 30 and that of the projective plane P? using G3.0,0-
Next, we will briefly outline the basic operations of projective geometry within
the geometric algebra which are used in the following sections. For a complete
introduction of geometric algebra and algebra of incidence in computer vision
the reader should consult [3].
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In an n-dimensional vector space with an orthonormal basis {eq, ..., e,} we
define an 2" dimensional space consisting of " ...e7=(m; = 0,1), where e}
is interpreted as the identity, and define a product on these basis vectors which
fulfils ™ .. .ere, ' ... el = —e'' . e, el .. .el(m, = myy1 = 1).
The element I = e ...e, 1s called unit pseudoscalar and any pseudoscalar can
be written as P = ol where a is a scalar. If 7= denotes the inverse of I, so
that 77=' = 1, then the magnitude of P relative to I will be called bracket and
is defined by PI=! = a = [P]. The bracket of the maximum grade multivector
ai...a, isdetermined by [a; ...a,] = [a1 AaaA. . . Aa,] = (a1 AasA. . Aay) 7!
and can be taken as a definition of the determinant. The dual A* of an r-vector
A is defined by A* = AI~'. In a geometric algebra of an n-dimensional vector
space one can define the join for the linearly independent r-vector A and s-
vector B by J = AAB. If A and B are not linearly independent the join is not
given simply by the wedge but by the commonly spanned subspace. If A and B
have a common factor (i.e. there exists a k-vector C such that A = A'C and
B = B'C for some A’, B') then we can define the ‘intersection’ or meet of A
and B as AV B where (AV B)* = A"AB*. Thus the dual of the meet is given
by the join of the duals.

The paper is organized as follows: Section two presents a new method for
computing the intrinsic camera parameters based on Pascal’s theorem. Section
three 1s devoted to the experimental analysis and section four to the conclusion
part.

2 Camera Calibration using Pascal’s Theorem

This section presents a new technique in the geometric algebra framework for
computing the intrinsic camera parameters. In this context we use the ideas of
Maybank, Faugeras and Luong [5, 4] to enforce an epipolar line defined by the
epipole or fundamental matrix and a point (1, 7,0)7 to be tangential to the image
of the absolute conic and analyse Pascal’s theorem in this context. Consider the
points a, a’, b, b’ and ¢’ lying on a conic, we can compute the following bracket
expression
’ (NN ot [Clab][cla/b’] \
[c'ab][c'a'b'] — p[c'ab][c'a’b] =0 = p= [cab/|[ca'D) (1)
for some p # 0. This equation is well known and represents a projective invariant
which has been used often in real applications of computer vision. Now consider
c as some other point placed on the conic, we can get a conic equation fully
represented in terms of brackets

[cab][ca’b'[ab’c'|[a’be'] — [eab'][ca’b][abc |[a'b' ¢'] = 0. (2)

For further details about describing a conic by brackets and points placed on
the conic the reader should consult [2]. Using the collinearity constraint, we can
write the geometric formulation of Pascal’s theorem

((@'Ab)V (e Ae))A((a' Aa) Vv (B Ae))A((e Aa)V (B Ab)) =0. (3)

«, Q. Qs

This theorem proves that the three intersecting points of the lines which connect
opposite vertices of a hexagon circumscribed by a conic are collinear ones. Since



equation (3) fulfills a property of any conic, it should also be possible to compute
the intrinsic camera parameters using this equation. In geometric algebra a conic
can be described by the points lying on the conic. Furthermore, the image of the
absolute conic can be described by the image of the points lying on the absolute
conic. Let us choose for all computations the following imaginary points lying
on the absolute conic

1
Ay =

,BO = (4)

O == O

i
i 0
0 1
0 0
where i2 = —1. The projected points of Ag, By, Ay, By, C} can be described by

a = K[R[t)Ao = KRA,b= K[R|{|B, = KRB, a' = K[R|{]A), = KRA' b =
K[R|#)B), = KRB' ¢ = K[R|{]C, = KRC', where

1 i i 1 0
A=|i|,B=|1]|,A=|0]|,B=]0],C' = (5)
0 0 1 i

In addition the rotated points RTA,..., RTC’ also lie at the conic. Using the
rotated points, the image of the absolute conic can be described by a = KA, b=
Kba =KA' b = Kb, ¢/ = KC'. To use a, ..., in the bracket notation of
conics we suppose an orthonormal basis of the image plane, By = {e1, e2, e3} and
formulate X as a linear combination of By, 1.e. X = 2?21 z;e; and Introduce
an operator Ke; = K(e;) = Z?:l e;k;;, with k;; the elements of the matrix of
intrinsic camera parameters, K .

Fig. 1. Pascal’s theorem in the conic images

The application of the principle of duality allows us to set ¢ = KKTl,
for a point ¢ on the image of the absolute conic. This point depends on the
intrinsic camera parameters and a line I, tangent to the image of the absolute
conic computed in terms of the epipole and a point g lying at infinity, I, =



(612/\(])1_1 = (p1e1+paea+pses)A(er +7e3)I™". The point ¢ can be described
by using the adjoint operator K of K. The above expression for the point ¢ can
thus be formulated as ¢ = KKl,.

Now we simplify equation (3) and get the bracket equation of the a’s

([a'bc']c — [a'bc]c') A ([a'ab']c — [a'ac]b') A ([c'ab']b — [c'ab]b') =0

& ([A'BC'|(Kl.) - [A'B(K1.)]C")A([A'AB'|(Kl.) — [A'A(K1.)]B') A

(821 Q

(IC'AB'|B - [C'AB]B’) = 0. (6)

Qs

The computation of the intrinsic parameters is done first if the intrinsic param-
eters remain stationary under camera motions and second if these parameters
change.

2.1 Computing stationary intrinsic parameters

We consider one camera motion. The involved projective transformations are
Rty
0l 1
the extrinsic camera parameters. The optical centres of the cameras are Cy =
(0,0,0, 1)T and Cy = DC'. In geometric algebra we use instead the notations
P, Py, Cy = e4 and Cy = DCy. Thus we can compute their epipoles as
e = PCy, e13 = P1Cs.

Next, we show by means of an example that the homogeneous coordinates of
the points a1, as, ag are entirely independent of the intrinsic parameters. This
condition is necessary for solving the problem. We choose a camera motion given

by

-1
P, = K[I|0] and P, = P; < ) = P, D~'. The 4 x 4-matrix D describes

0-10]2

[Rits]=(1 0 0]-1]. (7)
0013

For this motion the epipoles are e12 = (2k11 —k12+3k13)e1+(—kao+3kaz)es+3es

and €91 = (kll + 2]{712 - 3k13)€1 + (2k22 - 3]{723)82 - 3e3. By replacing €19 in the

equation (6), we can make explicit the a's

(—3 =+ 3i)k117)€1 =+ (3k11T — ’ik12T -+ ik22 —+ Z’ikllT — 3k12T + 3k22)€2 =+

ikllT + 3k12T — 3k22 —+ ik12T — ’ikgg)eg

3“{)11T — 2]{)12T + 2]{)22 — 2k11T)€1 + (—6i(k‘12T — k‘22))€2 +

3k11T — 4“€12T —+ 4ik22 -+ ZikllT)eg

Q3 = (1 — i)el + (1 — i)QQ —+ 263. (8)

Q] = (
(
Qo = (—
(-

Note that ag is fully independent of K.
According to Pascal’s theorem these three points are lying on the same line.

Thereto, by replacing these points in Pascal’s equation (3), we get the following
second order polynomial in 7

(—40ik3, — 521k7) 4 16ik11k12)7° + (—16ik11koz + 80ikiokoz)T — 40ik3, = 0. (9)



Solving this polynomial and choosing one of the solutions which is nothing else
than the solution for one of the two lines tangent to the conic, we get

_ 16ik11k’22 — 80ik12k22 + 24\/ 14](711](722

T - - - 10
2(—402]6’%2 - 522](7%1 + 162k11k12) ( )
Now considering the homogeneous representation of the intersecting points
a; a;
a; = ajie + ajses + aizes ~ ——e; + ——ey + e3, (11)
@53 @53
and the case of exactly orthogonal image axis, k12 = 0, we get
21— 3v/14 4+ 10 + 2:/14 2 ?
o = o =
U243V + 160+ 214 0 243iV/14 + 160 + 24/14
(1+ 4)(—2i + 3v/14) —11 + 3iV/14 — 3i — 24/14 .
a1 = o = — . (12)

st 1d—13 5i+/14— 13

The coordinates are indeed independent of the intrinsic parameters. After this
illustration which helps for the understanding we will get now the coordinates
using any camera motion. For that let us define s = sje; + ssey + szez =
[7|0] DC;. Using this value, the epipole is e;2 = K [I|0] DC; = K s. Note that
in this expression the intrinsic camera parameters are separate from the extrinsic
ones. Similar as above using the general camera motion and the epipole value,
the coordinates for the intersecting points read

. .3 . 2 . 5
(—53sls2+1331/sg(sf-l-sg-l-sg)—153—153514-51‘/sg(sf+sg+s§)—zs2sa)

a1 = — A .
(—z333132—33\/sg(sf-l-sg-l-sg)—sg—sasf-l-wl\/sg(sf-}-sg-l-sg)-}-stg)

P _ —233(354-3?)
—isasQSl—sa\/sg(sf+sg+s§)—sg—sasfﬂ-isl\/sg(sf-}-sgi-sg)-}-szsg

w - (212 (is1 2240 /T2 (T 22F4) o5
—i535152—53\/sg(sf-l-sg-l-sg)-l-s‘gsf-l-sg-l-sl\/sg(sf-l-sg-l-sg)—istg

o _ i(6533132+33\/s§(sf+s§+s§)+isl\/sg(sf+s§+s§)+szs§+isas?+isg) (13)

22 — A . .

—esasl52—53\/sg(sf-l-sg-l-sg)+S3sf+sg+sl\/sg(sf+sg+sg)—LSQSg

Note that also in the general case the intrinsic parameters are totally cancelled
out. These invariance properties can be used to obtain equations which depend
on the four unknown intrinsic camera parameters. For this we suppose point cor-
respondences between two cameras and the motion parameters. First, the values
of the invariant homogeneous «; can be calculated by the known motion and
formulas (13). Second, we calculate the epipole from the point correspondences,

calculate Kl. and solve an equation system for 7 similar to (10) to achieve a
polynomial depending on the intrinsic camera parameters which must be equal
to the calculated values of the «;’s by (13). Thus, we should find another set
of equations to solve the problem. The way to do that i1s simply to consider
the second camera with its epipole es;. Since we are assuming that the intrinsic
parameters remain constant, we can consequently gain a second set of four equa-
tions depending again of the four intrinsic parameters from the second epipole.

The interesting aspect here is that we require only one camera motion to find
a solvable equation system. Other methods gain for each camera motion only a
couple of equations, thus they require at least three camera motions to solve the
problem [4].



2.2 Computing non—stationary intrinsic parameters

As a difference we compute now the line I, using the fundamental matrix and a
point lying at infinity of the second camera which is equal to the cross product
of the second epipole with the point at infinity, namely I. = F(e; + 7'es).

Now similar as in previous case we will use an example for facilitating the
understanding. We will use the same camera motion given in equation (7) and
suppose orthogonal image axis.

Similar as above we compute the a’s and according Pascal’s theorem we gain
a polynomial similar as equation (9). We select one of both solutions of the gained
second order polynomial and substitute it in the homogeneous coordinates of the
a’s given by

i _i(=5i — 4 +iV/14) ot = —243iV/14 (14)
5142 4 213/14 514+ 2 + 21/ 14

10 — 102 8461 — 14 + 310/14 \

a1 = g9 — — . (15)

—41 — 24 31v/14 — /14 —41 — 24 31v/14 — /14

Now we will consider the general motion

r11 P12 T3
[R|t] = 91 99 Ta3 tg . (16)
T31 T32 733 13

In matrix algebra the fundamental matrix reads

-T -1
B ki1 0 kis FEq1 Er2 Fhs ki, 0 ki3
F=KTEK'"™" = 0 ko ks FEo1 Eys Eas 0 Kby khs | (17)
0 0 1 Es1 E3y Es3 0 0 1

and in geometric algebra the operator of the fundamental matrix reads F =

K_lﬂ Kl_l. The matrix E = [t]x Ry is the so called essential matrix. We can
compute the a’s using this general expression for £ and get again equations fully
independent of the intrinsic parameters. Together with the equations of the a’s
obtained using the first epipole, the intrinsic parameters can be found by solving
a quadratic equation system.

3 Experimental Analysis

In this section we present the test of the method based on Pascal’s theorem
using firstly simulated images. We will explore the effect of increasing noise in
the computation of the intrinsic camera parameters. The experiments with real
images show that the performance of the method is reliable.

3.1 Experiments with simulated images

In order to test the performance of our approach we carried out a motion of the
camera about the y—axis and a small translation along the three camera axes
by increasing noise. For the tests we used exact arithmetic instead of floating
point arithmetic. The Table 1 shows the computed intrinsic parameters. The



most right column of the table shows the value obtained by substituting these
parameters in the polynomial (9) which gives zero for the case of zero noise.
The values in this column show that by increasing noise the computed intrinsic
parameters cause a tiny deviation of the ideal value of zero. This indicates that
the procedure is relatively stable against noise. Note that there are remarkable
deviations shown by noise 1.25.

Noise(pixels)|ki1 |k1s  |k22  |k2s  |Error
0 500[256 [500 [256 [107®
0.5 504(259.5|503.5|258 |0.004897
1 4821242 (485 (254 |0.011517
1.25 4731220 440 (238 ]0.031206
1.5 517(272 |518 |266 |0.015
2 508|262.5(504 |[258.5(0.006114

Table 1. Intrinsic parameters by rotation about the y—axis and translation
along the three axes by increasing noise.

3.2 Experiments with real images

In this section we present experiments using real images with one general camera
motion as shown in Figure 2. The motion was done about the three coordinate
axes. We used a calibration dice and for comparison purposes we computed
the intrinsic parameters from the involved projective matrices by splitting the
intrinsic parameters from the extrinsic ones. The reference values were: First
camera k11 = 1200.66, ko = 1154.77, k13 = 424.49, ko3 = 264.389 and second
camera ki1 = 1187.82, koy = 1141.58, k13 = 386.797, koz = 288.492 with mean
errors of 0.688 and 0.494, respectively. Thereafter using the gained parameters
[R1|t1] and [Rz|t2] we computed the [R|t] between cameras which is required for
the Pascal’s theorem based method. The fundamental matrices were computed
using a non-linear method. Using the method of Pascal’s theorem with 12 point
correspondences unlike 160 point correspondences used by the algorithm with
the calibration dice we computed the following intrinsic parameters k17 = 1244,
kos = 1167, ki3 = 462 and ka3 = 217. These values resemble quite well to

the reference ones and cause an error of \/|eqni|? + ... + [eqns|? : 0.00496045
in the error function, where eqn; are the constraint equations depending on the
intrinsic parameters. The difference to the reference values is attributable to
inherent noise in the computation and to the fact that the reference values are
not exact, too.

Since a system of quadratic equations is to be solved we resort to an iterative
procedure for finding the solution. First, we tried the Newton-Raphson method
and the Continuation method [4]. These methods were not practicable enough
due to their complexity. We used instead a variable in size window minima
search which through the computation ensures the reduction of the quadratic
error. This simply approach worked faster and reliable.

In order to visualize how good we gain the epipolar geometry we superim-
posed the epipolar lines for some points using the reference method and method
of Pascal’s theorem. In both cases we computed the fundamental matrix in terms
of their intrinsic parameters, i.e. F = K~T([t]xR)K~!. Figure 2.r shows this
comparison. It is clear that both methods give quite similar epipolar lines and
interesting enough it is shown that the intersecting point or epipole coincides
almost exactly.




Fig. 2. Scenario and (r.) superimposed epipolar lines using the reference and Pascal’s
theorem based method.

4 Conclusions

This paper presents a geometric approach to compute the intrinsic camera pa-
rameters in the geometric algebra framework using Pascal’s theorem. We adopted
the projected characteristics of the absolute conic in terms of Pascal’s theorem to
propose a new camera calibration method based on geometric thoughts. The use
of this theorem in the geometric algebra framework allows us the computation of
a projective invariant using the conics of only two images. Then, this projective
invariant expressed in terms of brackets helps us to set enough equations to solve
the calibration problem. Our method requires to know the point correspondences
and the values of the camera motion. The method gives a new point of view for
the understanding of the problem thanks to the application of Pascal’s theorem
and it also explains the overseen role of the projective invariant in terms of the
brackets. Using synthetic and real images we show that the method performs
efficiently without any initialization or getting trapped in local minima.
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