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Abstract. In this article we discuss the 2D-3D pose estimation problem
of deformable 3D free-form contours. In our scenario we observe objects
of any 3D shape in an image of a calibrated camera. Pose estimation
means to estimate the relative position and orientation of the 3D object
to the reference camera system. The object itself is modeled as free-form
contour. The fusion of modeling free-form contours within the pose es-
timation problem is achieved by using the conformal geometric algebra:
Free-form contours are modeled as unique entities with 3D Fourier de-
scriptors and combined with an ICP (Iterative Closest Point) algorithm
they are embedded in the pose problem. The modeling of object defor-
mations within free-form pose estimation is achieved by a combination
of adaptive kinematic chain segments within Fourier descriptors.
Keywords: Pose estimation, Fourier descriptors, kinematic chains

1 Introduction

Pose estimation itself is one of the oldest computer vision problems. Algebraic
solutions with different camera models have been proposed for several variations
of this problem. Pose estimation means to estimate the relative position and
orientation of the 3D object to the reference camera system: We assume a 3D
object model and extracted corresponding features in an image of a calibrated
camera. The aim is to find the rotation R and translation t of the object, which
leads to the best fit of the reference model with the actually extracted entities.
Pioneering work was done in the 80’s and 90’s by Lowe [6], Grimson [5] and
others. In their work, point correspondences are used. More abstract entities can
be found in [15, 2]. In the literature we find circles, cylinders, kinematic chains or
other multi-part curved objects as entities. Works concerning free-form curves
can be found in [3, 13]. Contour point sets, affine snakes, or active contours are
used for visual servoing in these works.

To relate 2D image information to 3D entities we interpret an extracted image
entity, resulting from the perspective projection, as a one dimension higher entity,
gained through projective reconstruction from the image entity. This idea will
be used to formulate the scenario as a pure 3D problem. Our recent work [11]
concentrates on modeling objects by using features of the object (e.g. corners,
edges). Instead, we now deal with 3D contours of the object. The problem with



feature based pose estimation is that there exist many scenarios (e.g. in natural
environments) in which it is not possible to extract point-like features such
as corners or edges. In such cases there is need to deal for example with the
silhouette of the object as a whole, instead of with sparse local features of the
silhouette. In these scenarios free-form contours are applied. The motivation for
modeling object deformations within free-form contours is shown in figure 1. In

Fig. 1. Possible deformations of a sheet of paper along the y-axis and their represen-
tation as kinematic chain.

our experiments we use a planar object, which is printed on a sheet of paper. To
model deformations of the sheet of paper we combine kinematic chains within the
object contour as shown in the right image of figure 1. Another main point in this
contribution is additionally to model object deformations in an adaptive manner:
Kinematic chains are used within free-form contours. But the scenario during an
image sequence may change, so that it is not useful to take a fixed number of
joints along the kinematic chain. Instead, we present a real-time system, which
chooses the number of joints adaptively. This leads to more stable and time-
optimized algorithms.

2 The pose problem in conformal geometric algebra

This section concerns the formalization of the free-form pose estimation prob-
lem in conformal geometric algebra. Geometric algebras are the language we
use for our pose problem and the main arguments for using this language are
its possibility of coupling projective, kinematic and Euclidean geometry by us-
ing a conformal model and its dense symbolic representation. A more detailed
introduction concerning geometric algebras can be found in [12].

The main idea of geometric algebras G is to define a product on basis vec-
tors, which extends the linear vector space V of dimension n to a linear space
of dimension 2n. The elements are so-called multivectors as higher order alge-
braic entities in comparison to vectors of a vector space as first order entities. A
geometric algebra is denoted as Gp,q with n = p + q. Here p and q indicate the
numbers of basis vectors which square to +1 and −1, respectively. The product
defining a geometric algebra is called geometric product and is denoted by juxta-
position, e.g. uv for two multivectors u and v. Operations between multivectors
can be expressed by special products, called inner ·, outer ∧, commutator × and
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Fig. 2. Left: Visualization of a stereographic projection for the 1D case: Points on
the line e1 are projected on the (unit) circle. Right: Visualization of the homogeneous
model for a stereographic projection in the 1D case. All stereographic projected points
are on a cone, which is a null-cone in the Minkowski space.

anticommutator × product. The idea behind conformal geometry is to interpret
points as stereographically projected points. This means augmenting the dimen-
sion of space by one. The method used in a stereographic projection is visualized
for the 1D case in the left image of figure 2: Points x on the line e1 are mapped
to points x′ on the unit circle by intersecting the line spanned by the north pole

n and x with the circle. The basic formulas for projecting points in space on the
sphere and vice versa are for example given in [9]. Using a homogeneous model
for stereographic projected points means to augment the coordinate system by
a further additional coordinate whose unit vector now squares to minus one. In
1D this leads to a cone in space, which is visualized in the right image of figure
2. This cone is spanned by the original coordinate system, the augmented one
of the stereographic projection and the homogeneous one. This space introduces
a Minkowski metric and will lead to a representation of any Euclidean point on
a null-cone (1D case) or a hyper-null-cone (3D case). In [12] it is further shown
that the conformal group of IRn is isomorphic to the Lorentz group of IRn+1,1

which has a spinor representation in Gn+1,1. We will take advantage of both
properties of the constructed embedding which are the representation of points
as null-vectors and the spinor representation of the conformal group.

The conformal geometric algebra G4,1 (CGA) [7] is suited to describe confor-
mal geometry. It contains spheres as geometric basis entities and the conformal
transformations as geometric manipulations. The point at infinity, e ' n, and
the origin, e0 ' s, are special elements of the representation which are used
as basis vectors instead of e+ and e− because they define a null space in the
conformal geometric algebra. A Euclidean point x ∈ IR3 can be represented as a
point x on the null-cone by taking x = x+ 1

2
x2e +e0. This point representation

can be interpreted as a sphere with radius zero. A general sphere, defined by the
center p and the radius ρ, is given as s = p + 1

2
(p2 − ρ2)e + e0, and a point x is

on a sphere s iff x · s = 0. The multivector concepts of geometric algebras then



allow to define entities like points, lines, planes or circles as subspaces, generated
from spheres.

Rotations are represented by rotors, R = exp
(
− θ

2
l
)
. The parameter of a

rotor R is the rotation angle θ applied on a unit bivector l which represents
the dual of the rotation axis. The rotation of an entity can be performed by its

spinor product X ′ = RXR̃. The multivector R̃ denotes the reverse of R. A

translation can be expressed by a translator, T = (1 + et
2

) = exp
(
et
2

)
. A rigid

body motion can be expressed by a screw motion [8]. For every screw motion
g ∈ SE(3) exists a ξ ∈ se(3) and a θ ∈ IR such that g = exp(ξθ). The element ξ
is also called a twist. The motor M describing a screw motion has the general
form M = exp(− θ

2
(n+em)), with a unit bivector n and an arbitrary 3D vector

m. The triple (θ, n, m) in the exponential term represent the twist parameters.
Whereas in Euclidean geometry, Lie groups and Lie algebras are only applied on
point concepts, the motors and twists of the CGA can also be applied on other
entities like lines, planes, circles, spheres, etc.
Constraint equations for pose estimation
Now we start to express the 2D-3D pose estimation problem for pure point
correspondences: a transformed object point has to lie on a projection ray, re-
constructed from an image point. Let X be a 3D object point given in CGA. The

(unknown) transformation of the point can be described as MXM̃ . Let x be
an image point on a projective plane. The projective reconstruction of an image
point in CGA can be written as Lx = e ∧O ∧x. The line Lx is calculated from
the optical center O, the image point x and the vector e as the point at infinity.
The line Lx is given in a Plücker representation. Collinearity can be described
by the commutator product. Thus, the 2D-3D pose estimation from an image
point can be formalized as constraint equation in CGA,

(MXM̃ ) × (e ∧ O ∧ x) = 0.

Constraint equations which relate 2D image lines to 3D object points or 2D
image lines to 3D object lines can be expressed in a similar manner. Note: The
constraint equations in the unknown motor M express a distance measure which
has to be zero.
Fourier descriptors in CGA
Fourier descriptors are often used for object recognition [4] and affine pose esti-
mation [1] of closed contours. We are now concerned with the formalization of 3D
Fourier descriptors in CGA in order to combine these with our previously intro-

duced pose estimation constraints. Let R
φ
i := exp(−πuiφ/T ) l), where T ∈ IR is

the length of the closed curve, ui ∈ Z is a frequency number and l is a unit bivec-

tor which defines the rotation plane. Furthermore, R̃
φ

i = exp(πuiφ/T l). Because
l2 = −1 we can write the exponential function as exp(φl) = cos(φ) + l sin(φ).
We can now formulate any closed curve C(φ) of the Euclidean plane as a series
expansion

C(φ) = lim
N→∞

N∑

k=−N

pk exp

(
2πkφ

T
l

)
= lim

N→∞

N∑

k=−N

R
φ

k pk R̃
φ

k .

This can be interpreted as a Fourier series expansion, where we have replaced
the imaginary unit i =

√
−1 with l and the complex Fourier series coefficients



with vectors that lie in the plane spanned by l. The vectors pk are the phase
vectors. In general it may be shown that for every closed plane curve there is
a unique set of phase vectors {pk} that parameterize the curve. To represent
a general closed, discretizied 3D curve this can easily be extended to 3D by
interpreting the projections along x, y, and z as three infinite 1D-signals and
applying a DFT and an IDFT separately, leads to the representation

C(φ) =

3∑

m=1

N∑

k=−N

p
m
k exp(

2πkφ

2N + 1
lm).

This means we now replace a Fourier series development by the inverse discrete
Fourier transform.
Pose estimation of free-form contours
We assume a given closed, discretizied 3D curve, that is a 3D contour C with
2N+1 sampled points in both the spatial and spectral domain with phase vectors
pm

k of the contour. Substituting the representation of the Fourier descriptors in
the conformal space within the pose estimation constraint equations leads to

(
M (e ∧ (C(φ) + e−)) M̃

)
× (e ∧ (O ∧ x)) = 0.

To model any additional deformation, a kinematic chain is added within the
pose constraint. This means encapsulating n motors M i of the deformations
within the constraint equation,

(
M

(
n∏

i=1

M
θi

i (e ∧ (C(φ) + e−)) M̃
θi

i

)
M̃

)
× (e ∧ (O ∧ x)) = 0.

This constraint equation is easy to interpret: The inner parenthesis contains
the inverse Fourier transformed phase vectors transformed to a representation
in the conformal space. The next parenthesis contains the motors Mθi

i , which
are exponentials of twists modeling the joints of the kinematic chain. The last
parenthesis contains the motor M with the unknown pose. This is then coupled
with the reconstructed projection ray in the conformal space. The unknowns are
the pose parameters M , the angles θi of the kinematic chain and the angle φ of
the Fourier descriptors.

Solving a set of constraint equations for a free-form contour with respect
to the unknown motor M is a non-trivial task, since a motor corresponds to
a polynomial of infinite degree. In [10] we presented a method which does not
estimate the rigid body motion on the Lie group, SE(3), but the parameters
which generate their Lie algebra, se(3), comparable to the ideas, presented in
[2, 6]. Note, that though the equations are expressed in a linear manner with
respect to the group action, the equations in the unknown generators of the
group action are non-linear and in our approach they will be linearized and
iterated. This corresponds to a gradient descent method in 3D space.

3 Experiments

In this section we present experimental results of free-form pose estimation. The
algorithm for deformable free-form pose estimation is basically a modified ICP-



algorithm [14]. The convergence behavior of the ICP-algorithm during an image
sequence is shown in figure 3. As can be seen, we refine the pose results by using
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Fig. 3. Pose results of the low-pass filtered contour during the iteration.

a low-pass approximation for pose estimation and by adding successively higher
frequencies during the iteration. This is basically a multi-resolution method and
helps to avoid local minima during the iteration.

1−Twist kinematic chain 2−Twist kinematic chain 3−Twist kinematic chain

Fig. 4. Pose result of a free-form contour containing one, two or three joints.

To model object deformations, the effect of introducing different numbers
of joints (as twists) within the pose scenario is visualized in figure 4. It can
be seen, that only a few twists are needed to get a good approximation of the
deformation. There are two major problems in dealing with a fixed set of twists
modeling the object deformation: Firstly, the use of too many twists can lead to
local minima and wrong poses. This occurs for example in case of using too many
twists for modeling only a slight object deformation. Secondly does the use of
many twists increase the computing time of the pose estimation algorithm, since
additionally unknowns are modeled which are not always needed. Therefore,
a modification of the algorithm is done which chooses the number of twists
adaptively, depending on the level of deformation. An example of an image
sequence is shown in figure 5. The diagram shows the frame number during
the image sequence on the x-axis and the used number of twists on the y-axis.
The example images show that the used number of twists is consistent with the
degree of deformation. The increased time performance is shown in figure 6. The
y-axis shows on the one hand the used number of twists (consistent with figure
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Fig. 5. Adaptive choice of twists for modeling object deformations during an image
sequence. For slight deformations less twists are used then for larger ones.
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Fig. 6. Time performance for using different numbers of twists in an image sequence

5) and on the other hand the computing time for estimating one pose during the
ICP-algorithm. As can be seen, the use of more twists increases the computing
time, and the adaptive choice of the number of twists during the image sequence
leads to a situation dependent optimized time performance. Note that only the
time for estimating one pose is shown. Combined with the ICP-algorithm (which
takes between two and eight iteration steps), the overall computing time for one
frame varies between 20ms and 250ms. The adaptive behavior is achieved by
evaluating the twist angles after each processed image. If the angles are below or
above a threshold, twists are eliminated or added and rearranged, respectively.
The experiments are performed with a Linux 2 GHz machine.

4 Discussion

This work presents a novel approach to deal with plane dynamic deformations
of 3D free-form curves during pose estimation. Free-form contours are modeled



by 3D Fourier descriptors which are combined with pose estimation constraints.
This coupling of geometry with signal theory is achieved by using the conformal
geometric algebra. In this language we are able to fuse concepts, like complex
numbers, Plücker lines, twists, Lie algebras and Lie groups in a compact manner.
The chosen framework shows, that it is possible to extend scenarios to more
complex ones, without loosing the geometric oversight since the equations are
given in closed and easily interpretable forms. Our future work will concentrate
on dealing with more complex scenarios, e.g. the modeling of free-form surfaces.
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