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ABSTRACT

In today’s pest control operations large numbers of tracking
tunnels are used to estimate the number of rodents present
in the target area, providing a basis for planning the required
amount of poison. The marks left in the tunnels have to be
interpreted by trained experts. This article introduces two
methods that make a step towards automating the process of
recognizing footprints of rodents and insects. Furthermore
two classification methods (Principal Component Analysis,
a simple Näıve Bayes classifier) are studied to distinguish
the four examined insect species. Here, a combination of
both classifiers proved superior to using just one method.

1. INTRODUCTION AND BACKGROUND

We start with a brief overview on the history of rodent erad-
ication programs in New Zealand. Then we introduce the
approaches to recognize and classify rodent and insect foot-
prints in Sections 2 and 3. Section 4 ends with a brief dis-
cussion.

The four rodent species present in New Zealand are Nor-
way rats (Rattus norvegicus), ship rats (Rattus rattus), house
mice (Mus musculusor Mus domesticus), and kiore (Rat-
tus exulans). With the aid of cats (Felis catus) and stoats
(Mustela erminea) they caused the extinction of at least 45
bird species in New Zealand.

1.1. Eradication

To counter these developments New Zealand authorities in-
troduced eradication programs at the beginning of the last
century, first targeting large animals like deer, cattle and
goats. Later numbers of smaller animals, namely possums
and cats were massively reduced.

However, in those first years it was believed that it was
impossible to completely eradicate shy, nocturnal rodents
from an island. This opinion slowly changed when in the
1970s the second generation of rodenticides became avail-
able. In 1982 Ian McFadden was assigned the task to de-
velop a method to clear small islands of rodents. With Ruri-

ma Rocks in the Bay of Plenty, the new era of rat eradication
began [1].

While the first islands were cleared using hand-placed
bait stations, slowly the technique evolved to sprinkling the
poison across an island and finally to distribution of bait by
helicopters. This enabled the Department of Conservation
to target larger and larger islands, until in 2001 the largest
rat eradication programme to date was carried out on Camp-
bell Island, New Zealand. There 200,000 Norway rats were
killed on 11,300 hectares using 120 tonnes of poison. In
2003 Campbell Island was officially declared rat-free [2].
Today the eradication techniques developed in New Zealand
are exported worldwide for example to the Falkland Islands,
Hawaii, and Australia to name just a few.

1.2. Tracking Tunnels

Tracking tunnels are basically rectangular polyethylene tun-
nels designed to allow the target animal to walk through un-
hindered. A tracking card, made of an absorbent white card-
board, has an especially developed non-drying ink which
has been screened onto a sealed section of the card. On the
inked section a lure is placed (e.g., peanut butter for rats and
mice). Any animal, or insect, attracted into the tunnel after
walking across the ink leaves footprints on the absorbent
end section of the card. The oils within the ink are absorbed
into the cardboard leaving tracks which can be analysed.
They may reveal the genus or species, and possibly the sex
of the creature [3].

Tracking tunnels are used to monitor abundance of small
mammals. Typically a field study is conducted prior to an
eradication operation. Afterwards the study is repeated to
check the effectiveness of the implemented procedure. This
method was effectively implemented on the Falkland Is-
lands [4], on Maui in Hawaii [5] and in various places in
New Zealand [6]. Tracking tunnels have also been used to
investigate the enormous fluctuations of rodent populations
both between seasons and over the years. Fluctuations as
high as 90% can be observed between summer and win-
ter [7]. This observation leads directly to the question how



meaningful are measurements made with tracking tunnels.
In his field study on Maui, Hawaii Brosius et al. ob-

served a good correlation between visitation rates of the
tunnels and population density of rats [5]. However Rus-
sell notes that this linearity could not be found for mice [8].
Additionally it has to be noted that only relative numbers
can be reliably measured [9].

2. RODENTS

This section introduces approaches to identify footprints of
rodents on tracking cards and how to connect footprints to
strides.

2.1. Footprint Recognition

The footprints of rats and mice are fairly circular in shape
with the toes surrounding a central pad (see Figure 2.1.3 (a)).
So the approach is to first search for possible central pads.
These are then used to start an exhaustive search in the
neighborhood of these pads for a valid foot configuration.

(a) Rat front foot

toes

central pad

(b) Template for rodent foot

Fig. 1. Rat foot with its template

The validity of a blob configuration is determined by
comparing it to a template (see Figure 1 (b)) that was gen-
erated semi-automatically beforehand. Such a template is
comprised of minimal and maximal areas of all toes, their
distances to the central pad, and the angles to their two
neighbors. For the central pad the length and width of a
matched ellipse is also noted.

2.1.1. Implementation

We start with binarizing an image of a scanned tracking
card. (The threshold for binarisation was set to 210; con-
sidering that the values can range from 0 to 255 this is ad-
mittedly quite a high value but as the footprints especially of
mice are sometimes quite weak a high binarisation thresh-
old is rather advantageous.)

Next contours are extracted from the binary image using
a standard algorithm as described in [10].

Then all contours whose area is considered to be too
small (less than 20 pixels) are ignored for the rest of the
algorithm.

Ellipses are fitted to the remaining contours in a least-
square-error manner as described in [11].

This finishes the preprocessing. The algorithm now tries
to find central pads of all footprints. To this end the ar-
eas of all contours and the parameters of the corresponding
ellipses are compared to a lower and an upper threshold.
All blobs that satisfy this chosen criterion are then marked
for further processing. The gathered information is unfortu-
nately not sufficient in general to identify central pads at
a high rate. But it limits the number of candidates sig-
nificantly. However, in combination with toe recognition
(described in the following), reasonable results can be ob-
tained.

Around each preliminary central pad we try to identify
likely toes. A first filter that is applied uses minimal and
maximal distances for each toe to a central pad, which are
stored with the template, as its discriminating element. Only
contours that fall between these thresholds are further pro-
cessed.

If there are not enough toes in the vicinity of a poten-
tial central pad then this cannot be a footprint. It may be
possible to relax this constraint in future versions though
because, if the footprint is very faint, a toe might not show
up or get eliminated by our thresholding of regian areas. If
the rest of the footprint gives sufficient evidence to identify
it, it should be recognized even in spite of missing toes.

Next angles defined by a lines from each toe to the cen-
tral pad are calculated with respect to a reference coordinate
axes and the toes are ordered according to this angle (see
Figure 1(b)).

Finally the algorithm can attempt to find the best con-
figuration of blobs surrounding the central pad that matches
the given template. As the conducted search is exhaustive,
we are guaranteed to find the best combinations of toes.

A configuration is evaluated by comparing the distance
of every toe to the central pad and the angles with the central
pad to its neighbors with a given template. We define a
configuration’s evaluation

E =
∑

i

a(xi) (1)

with

a(xi) =

{
xi−mini

meani−mini
if xi ≤ meani

xi−meani

maxi−meani
if xi > meani

(2)

wheremini, maxi, andmeani are the parameters of the
template and thexi is the value of the potential footprint.



2.1.2. Splitted or Merged Central Pads

One of the problems encountered is illustrated in Figure 2.
On the left, the print of the central pad of a mouse hind foot
is split. In about the same number of cases the central pad
can appear to be merged. A simple and effective solution to
this problem is to introduce different templates for splitted
and merged versions.

(a) Split central pad (b) Merged central pad

Fig. 2. Hind feet of mice.

2.1.3. Right vs. Left

The same approach can be taken to distinguish left and right
footprints. Even front feet of rats which are very symmetric
(see Figure 2.1.3) can be distinguished because the pads be-
hind the central pad have a different distance to the central
pad. Front feet of mice however are even more symmetric
(compare Figure 2.1.3) and thus remain an unsolved prob-
lem.

(a) Mouse front foot (b) Rat front foot

Fig. 3. Front Feet

2.2. Making Strides

Strides are useful to determine the gender and estimate the
size of the rodent.

The idea to achieve this objective is to compare dis-
tances and orientations of footprints to connect them into
a network of strides. The relative positioning is the angle

between the connecting line of two footprints and the re-
spective orientations of the footprints. This may also be an
important property.

The implementation of this idea is fairly straight for-
ward. Firstly the two feet which form a stride have to be on
the same “corner” (i.e., left-front, right-front, left-back, or
right-back) of the animal. Furthermore the distance between
the feet must not exceed, or be inferior to some thresholds.
The two feet must also point in approximately the same di-
rection. If all these criteria are satisfied then the connecting
line between the two feet is also considered. The angles
between this line and the two feet’s direction must likewise
not surpass a threshold.

2.3. Results

The algorithm to identify rodent footprints was verified for
tracks collected on four tracking cards (two with mouse
footprints and two with rat footprints). All templates were
applied to all images. The classified footprints were manu-
ally categorized as ”correct,” ”false positive,” and “true neg-
ative”. The results are summarized in table 1.

mice rats
Correct 18 17
False positive 11 2
True negative 13 9

Table 1. Performance of Footprint Extraction

The result indicates, that the algorithm is good on identi-
fying rat footprints. A false positive rate of 11% is less than
what we have expected. However, this comes at the expense
of a higher false rejection rate. Also note that the number
of missed footprints is rather subjective. The real number
of footprints is substantially higher and the number of foot-
prints that the algorithm is expected to be able to identify
is lower because it cannot handle missing or merged toes,
or a very distorted central pad. Instead, the field indicates
the number of footprints that we were able to identify by
looking at the images.

Footprint recognition for mice proved to be more com-
plicated. The rate of false positives is high (38%) which is
especially critical since almost 42% of all footprints were
missed. However, the same hesitancy should be taken when
interpreting these results as the same procedure was used
for obtaining them as for the rat footprints.

3. INSECTS

This section describes our initial approach for identifying
insect footprints. As a first approach proved less success-
ful than expected, two different approaches to the extrac-



tion of footprints will be explored as well. Used classifiers
are briefly introduced. Then we touch on a variation of the
stride recognition algorithm. Finally we describe experi-
ments that were conducted.

3.1. Initial Approach

Our first approach was to apply the above algorithm that
was successful for rodents, with only a minor modification
for insect footprints.

As some insect’s footprints closely resemble broken straight
lines (see Figure 4) this approach focuses on recognizing
more or less straight line segments. Then properties like
area, length, and width are used to identify the species caus-
ing the print.

American
Cockroach

Black
Cockroach

Ground Weta

Fig. 4. Example insect footprints

The first two processing steps are the same as in foot-
print recognition for rodents. First, the image is binarised.
Second, small contours are filtered out (here all blobs with
an area less than 5 pixels were eliminated for most insects).

Then all contours that are within a certain distance to
each other, and that have a major axis facing in about the
same direction, are connected. A blob is defined to have
a major axis if it has a sufficiently large area and the ratio
of width divided by the length of a fitted ellipse is above
a threshold. This was necessary because if the orientation
of all blobs was taken into account, hardly any connection
could be established also allowing that small blobs can be
added even if they have a different orientation.

Next, footprints from all blobs that are not connected
are created. Every blob that is not connected features an
area that is in a specific range (for black cockroaches 700 to
1000 pixels) and has a major axis is made into a footprint.

Next more complex footprints are ’grown.’ Here adja-
cent connections are added to a footprint if they are oriented
in a similar direction.

At last, all footprints that are too small (too short, not
wide enough, or with an insufficient area), or that have an
inappropriate length-width ratio, are deleted. The remaining
footprints will be truncated if they are too big (too long,

too wide, or with a too large area). Truncation in this case
means that an area-wise smaller blob at one of the two ends
of a footprint is removed.

3.2. Second Approach

This second approach to recognizing footprints of insects
was developed because of the poor recognition performance
of the first algorithm. Specifically the greatest problem with
the first approach is that the search space can sometimes be
restricted randomly by competing footprints. This prevents
valid footprints from emerging.

The proposed procedure basically replicates the last step
of the rodent footprint recognition, after doing some prepro-
cessing. In a nutshell, an exhaustive search in blob space for
valid footprint configurations is conducted. All footprints
that match the hard criteria as specified in a template get fil-
tered by the two ’soft’ classifiers (PCA and Naı̈ve Bayes),
and only the area-wise largest of a number of overlapping
footprints is retained.

Next contours are filtered by first matching an ellipse to
them, and then comparing the length of the ellipse’s axes to
maximum and minimum allowed lengths.

Fig. 5. Handwritten label and footprint of tree weta

As the tracking cards were labeled with the insect species,
an additional step was introduced to filter out handwritten
characters. This is important because very large insects,
for example tree wetas (Hemideina thoracica) produce foot-
prints that can be as big as handwritten characters (compare
Figure 5). The relation between the area of a blob and the
area of its convex hull was chosen as discriminating crite-
rion, because most blobs of footprints are very close to con-
vex, so the area of its convex hull is very close to its area.
Handwritten characters on the other hand are rarely convex
(see, e.g., the t in Figure 5) and if they are then they have a
hole in the middle (for example the letter o).

Next, every blob is successively chosen as a seed, and a
footprint is recursively grown around it. Growing is simpler
in this approach than in the previous. All combinations of
blobs in the vicinity of the seed are evaluated.

If a configuration passes length, width, and area test,
then it is considered to be a valid footprint. The footprint
is then tested by one or both of the classifiers described be-
low. If they too accept the footprint as being valid then it is
classified. Only the best of a number of overlapping foot-
prints is retained. The rate of a footprint is simply its area,
favoring bigger footprints.



3.2.1. Classifiers

Two classifiers were employed to identify insect species.

Näıve Bayeswas our initial attempt of using a statistical
classifier to improve recognition rates. We used the
Gaussian Bayes algorithm described in [12] with a
Laplace correction in place. The feature vector was
simply comprised of the attributes length, width, area,
and length / width.

Principal Component Analysis was then added as a more
advanced (and hopefully more successful) classifier.
The principles of PCA are explained in [13]. The un-
processed section of the original image containing the
footprint is rotated and padded with its border color to
a common size (258× 514 pixels). Then it is flipped
so that the darker halves are at the top and left to align
curved footprints. This image is then used as the in-
put to the PCA. The first ten principal components
are then compared within a database to identify the
species.

A footprint is accepted if one chosen classifier or both iden-
tify it as the same species as the target species.

3.3. Results

The greatest challenge in conducting experiments with in-
sect footprints was finding the ground truth.

To test our algorithms we have run them for every com-
bination of template and image without a classifier, with just
the Näıve Bayes classifier, with the PCA classifier and with
both. When both classifiers were working together they had
to agree on the class of the tested footprint otherwise it was
rejected. This way the number of false positives was kept to
a minimum.

Table 2 shows the number of recognized footprints for
each studied species on each image. This number includes
false positives. The studied insects were American Cock-
roach (Periplaneta americana), Black Cockroach (Platyzos-
teria novaeseelandiae), Ground Weta (Hemiandrus), and
Tree Weta (Hemideina).

image
insect Am. C. Black C. G. Weta Tree W.
Am. C. 30 3 6 10
Black C. 3 57 0 0
G. Weta 4 4 12 4
Tree Weta 2 5 7 19

Table 2. Footprint counts using both classifiers

Overall this last variant proves to “possess sufficient dis-
criminating powers” to distinguish between the four targeted

insect species. However, this result must be approached
with caution as our experiments so far were only done for a
few images.

3.4. Small Steps

Footprint connection to form strides was done in a very sim-
ilar manner to the connection of rodent footprints. First
footprints on one side of the insect are grouped together.
Then connections across the body of the insect can be made.

3.4.1. Approach

Insects usually set their feet in a certain orientation relative
to the direction of travel. Two footprints on the same “cor-
ner” (or middle) of the insect will point in about the same
direction but at an angle to the direction of travel (see Fig-
ure 6). If the approximate stride length and this angle are
known then connecting them is relatively straightforward.

The connection of opposite sides of the insect can be ac-
complished because we know the direction of travel and the
corner of the animal. The opposite side we want to connect
to will have to be the same front, middle, back, at a cer-
tain distance, at a certain angle. Additionally the direction
of travel of the questioned footprint must be approximately
the direction of the current footprint mirrored on the direc-
tion of travel.

Figure 6 shows results of applying this procedure to an
actual image. It shows the trail of a black cockroach cross-
ing the image from top to bottom.

Connecting footprints of one side of the insect with those
on the other side was tuned to produce as few false connec-
tions as possible. Configuring the thresholds more broadly
results in more connections but also in a significantly in-
creased rate of false positives.

4. CONCLUSION

After giving a short overview of the history of pests and
pest control in New Zealand two methods were introduced
aiming to automate the process of footprint extraction and
recognition from tracking cards as they are used in tracking
tunnels.

The first procedure was designed to recognize footprints
of rats and mice. However it may be possible to extend it to
recognize footprints of other small mammals such as stoats
or hedgehogs just by adding more templates.

We realized that insect recognition does not follow the
principle of rodent footprint recognition. This is mostly due
to the fact that the footprints are smaller and exhibit less
developed patterns.

Insect footprints are frequently falsely spotted in areas
that a human might classify as drag marks. So another idea



Fig. 6. Connected footprints of American Cockroach.

to improve accuracy of the insect footprint extraction algo-
rithm is to identify drag marks first and then exclude them
from the search similar to the way text is excluded before
the actual footprint extraction begins.

The experiments, still limited their extent, provide al-
ready some evidence that it might be possible to automat-
ically identify marks left by small animals in tracking tun-
nels up to a reasonable percentage.
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