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Abstract. This paper is about real-time refinement of the 3D positions
of a large number of stationary point-targets from a sequence of 2D im-
ages which are taken by a hand-held, calibrated camera group. To cope
with the large data quantity arriving rapidly, an efficient iterative algo-
rithm was developed. The problem and solution are expressed entirely
within the computational framework of conformal geometric algebra. The
iterative solution requires a pose estimation step of which two strategies
are investigated. Experiments are performed to evaluate the algorithm
based on synthetic and real data.
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1 Introduction

Recovering the positions of many point-targets over a large area is computa-
tionally expensive. This paper describes an efficient iterative algorithm to refine
target positions from a sequence of 2D images. The targets used in this project
are point-lights (left Figure 1) and form part of a flexible 6D positioning sys-
tem. A group of rigidly co-located calibrated cameras (right Figure 1) is moved
along an arbitrary path and takes images of the targets. The image points of
the targets are transformed to 3D lines which are used by the algorithm to up-
date the 3D positions of the targets. The algorithm is expressed entirely within
the computational framework of conformal geometric algebra (CGA). The pre-
viously developed target calibration algorithm described in [9] is non-iterative
and requires all the line data to be gathered before the algorithm can proceed. It
can be used to obtain an initial estimate of the target positions for the iterative
algorithm described in this paper. This work is a continuation of work reported
in [9] in the application of the conformal model of geometric algebra.

1.1 Geometric Algebra and Conformal Model

In this section, the basic concepts and operations of geometric algebra that
are required in this paper are briefly introduced. For a detailed introduction to
geometric algebra, refer elsewhere e.g. [1,2,3].
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Fig. 1. Left: targets; six of them are encircled. Right: camera group.

Geometric algebra (GA) is the application of Clifford algebras to geometric
problems. It integrates many concepts and techniques, such as linear algebra,
vector calculus, differential geometry, complex numbers and quaternions, into a
coherent framework. A geometric algebra over R is denoted Gp,q with p positive
and q negative basis elements. Let x1, x2, . . ., xr be vectors. X = x1 ∧ x2 ∧
. . . ∧ xr is referred to as an r-blade where ’∧’ is called outer product. r is the
grade which indicates the dimensionality of the blade. A linear combination of
multiple r-blades constructs an r-vector. Gr

p,q denotes the r-vectors in Gp,q. A
linear combination of a set of elements with different grades is a multivector. For
example, if A is a multivector then it can be written as A =

∑
r 〈A〉r where 〈A〉r

represents the grade r part of A. 〈A〉 or 〈A〉0 represents the scalar part of A. The
part of A containing the grades in another multivector B is denoted as 〈A〉B.
A�B = Σr,s 〈〈A〉r 〈B〉s〉s−r is defined as the left contract inner product of A and
B. The outer product can be related with the inner product by the following
equation: A�(B�C) = (A∧B)�C. Reverse of X is defined as X̃ = xr∧. . .∧x2∧x1.
The dual of a blade X is defined as X∗ = X�I−1, where the pseudo-scalar I is
an n-blade e1 ∧ . . .∧ en based the orthogonal basis ({ei : i = 1 . . . n}, ei · ej = 0
for i �= j, ei · ei = 1) of R

n within Gn. The norm of a multivector A can be

calculated by |A| =
√∣

∣
∣
〈
ÃA

〉∣
∣
∣. If S is a linear operator, the outermorphism S

is defined by S(X) = S(x1) ∧ S(x2) . . . ∧ S(xr). The derivative of multivector
valued function F with respect to multivector X is denoted ∂XF . ∂̇XFĠ means
differentiate G = G(X) with respect to X while regarding F as a constant. The
following result [10] is required in later developments,

∂X

〈
XY X−1Z

〉
=

〈
Y X−1Z

〉
X
− 〈

X−1ZXY X−1
〉

X

where X , Y , Z be multivectors where Y and Z are independent of X .
GA expresses a number of models of 3D Euclidean space (E3), such as 3D

Euclidean model, 4D homogeneous model and 5D conformal model. In this paper
we use the conformal model of geometric algebra (CGA) based on G4,1. G4,1 is
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based on the orthonormal basis {e1, e2, e3, e+, e−} where e2
k = e2

+ = 1 and
e2
− = −1. It is usually more convenient to use the basis {eo, e1, e2, e3, e} as it has

a better geometric interpretation, where eo = e−−e+
2 is associated with the origin

and e = e− + e+ with the point at infinity. CGA allows a diversity of objects to
be represented directly as blades (e.g. point, line, plane, circle, sphere, tangents
and orientations) and allows a variety of operations to be represented as versors
(e.g. rotor, translator, motor). A vector is represented as v = v1e1 + v2e2 + v3e3

where v1, v2, v3 are scalars. A point with location at the Euclidean point p ∈ G1
3

is represented as p = p+ eo + 1
2p 2e ∈ G1

4,1. A line is represented by Λ = p∧v∧ e
where p ∈ G1

4,1 is a point and v ∈ G1
3 is a direction vector. A line is normalised by

the mapping Λ → Λ
‖Λ‖ . A dual sphere centered at point p with radius ρ is given

by s = p− 1
2ρ2e. A Euclidean motion is represented by a motor M = exp

(− 1
2B

)

where B = B − te where B ∈ G2
3 and t ∈ G1

3 . A motor M has properties which
are important for deriving the algorithm: (i) M ∈ G0,2,4

4,1 , (ii) MM̃ = 1, (iv) if
X ∈ Gk

4,1 then the transformation of X is given by MXM̃ ∈ Gk
4,1.

1.2 Problem Description

The targets are defined in a world coordinate system denoted by CSW . Since
the geometric relationship between the individual cameras which comprise the
camera group is fixed and known, the camera group can be associated with a
single moving coordinate system denoted by CSM .

An initial estimate of the positions of n targets {p0
i ∈ G1

4,1, i = 1 . . . n} is given
[9]. The initial pose of the camera group CSM is also given and represented as
a motor Mo. The camera group CSM is moved to m positions on the path
in CSW . The movement of CSM is tracked and represented by a sequence of
motors Mk, k = 1 . . .m. At each position in CSW , a set of images are captured
and the image points of the targets are extracted and converted to normalised
lines {Λk

i ∈ G3
4,1, i = 1 . . . n, k = 1 . . .m} in CSM . These lines are processed to

refine the initial target position estimates. When CSM is moved to the next
position, the new estimate of target positions will be calculated based on the
previous estimate and a new set of lines. For m positions on the path, m updates
are performed.

The problem can now be summarised as follows: Given a group of lines in
CSM , a previous estimate of a set of points and a previous pose, we wish to
update the coordinates of these points in CSW .

2 Target Refinement Using Geometric Algebra

The solution to the problem is analysed and developed in this section. At the
beginning of the motion of the camera group we are given initial positions of
targets and the initial pose of CSM . At each position we are given a new set
of lines between optical centers and visible targets in CSM. The following steps
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need to be done during camera motion: (i) pose estimation of CSM ; (ii) trans-
formation of corresponding lines from CSM into CSW ; (iii) update of target
positions.

2.1 Pose Estimation: Objective Function Versus Point-Line
Constraint

We estimate the pose of CSM by two alternative iterative strategies (i) non-
linear optimisation of an objective “error” function. (ii) root finding of a 4-blade
point-line constraint equation.

Non-linear optimisation of an objective function. The distance d between
a point p and a line Λ is defined [10] by d2(p, Λ) = − 1

2 〈ΛpΛp〉. The total distance
between all points and their associated lines is defined as follows:

d2 =
∑

j

∑

i

αi

(
d2(pi, Λj)

)
(1)

where αi ∈ {0, 1} indicates whether the target is visible by any of the cameras.
pi is a target point and Λj is assumed to be a line which connects pi to different
cameras (i.e., their optical centers) in CSW . If the lines are given in CSM and
the pose of CSM is represented by M then Λ in Equation (1) is replaced by
MΛM̃ giving

d2(M) = −1
2

∑

i

∑

j

αi

〈
(MΛjM̃)pi(MΛjM̃)pi

〉
(2)

This objective function produces a scalar with a well-defined geometric meaning.
The poses of CSM are estimated using a Quasi-Newton optimization technique

which is described in [6] (pages 425–430). We use a non-linear minimisation rou-
tine (called ”dfpmin”) which implements the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) update.

The optimization routine requires an objective function and its gradient. The
motor M representing the pose of CSM is parameterised M = M(x) where
x ∈ R

6. We use M(x) in the objective function d2 in Equation (2) to express the
objective function as g(x) = d2(M(x)). The gradient is given by [∇xg(x))]i =
∂xig(x) = ∂xiM ∗ ∂Md2. The derivative ∂Md2 is calculated as follows:

∂Md2 = −1
2
∂M

〈
MΛM̃pMΛM̃p

〉

= −
〈
ΛM̃pMΛM̃p

〉

M
+

〈
M̃pMΛM̃pMΛM̃

〉

M
(3)

where M must be a motor so M̃ = M−1. The operator 〈. . .〉M denotes the
projection of a general multivector onto the grades being present in multivector
M . The optimisation returns the estimated parameters x of the motor M(x).
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Root finding of a point-line constraint equation. An alternative distance
measure is expressed in an implicit way by the equation

p ∧ (MΛM̃) = 0 (4)

which indicates point p is on line Λ. We call this the point-line constraint.
For all target points, the point-line constraint becomes

∑

i

αi

⎛

⎝
∑

j

pi ∧ (MΛjM̃)

⎞

⎠ = 0 (5)

where αi ∈ {0, 1} indicates whether the target is visible by any of the cam-
eras. This point-line constraint expresses a geometric distance measure and is
commonly applied in computer vision, see [5,8].

This technique uses the point-line constraint in Equation (4) for distance
measurement. Given the previous motor Mk−1, Mk can be estimated as Mk =
ΔMkMk−1. Assume the previous pose M and line Λ are known. Let us update
the current pose ΔMM . The constraint becomes

(
Δ̃Mp′ΔM

)
∧ Λ = 0 (6)

where p′ = M̃pM represents a point in the previous CSM . ΔM needs to be
estimated.

In order to solve for ΔM , it is necessary to linearise the motor part (i.e.,
Δ̃Mp′ΔM) of the equation. The motion of the camera group is considered as a
general motion, which is formulated using an exponentiated bivector (2-vector);
ΔM is expressed in the form

exp
(

−ΔB − Δte

2

)

where ΔB is a Euclidean bivector and Δt is a vector.
The Euclidean transformation (i.e., ΔM) of a point p′ can be approximated

as follows:

Δ̃Mp′ΔM = exp
(

ΔB − Δte

2

)

p′ exp
(

−ΔB − Δte

2

)

≈
(

1 +
ΔB − Δte

2

)

p′
(

1 − ΔB − Δte

2

)

≈ p′ − p′�ΔB + p′�(Δte) (7)

In Equation (7), two approximations are involved. The first approximation
involves truncating the Taylor series for exp(X) (i.e., exp(X) ≈ 1+X+ X2

2! +· · · ).
The second approximation involves removing second order terms from the final
product; this works well only when the motion ΔM is sufficiently small (say,
its rotation angle is smaller than 10 degree). This condition is satisfied when
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the camera group moves “smoothly” along its path and is sampled sufficiently
frequently.

A similar linearisation of a transformation for a single point using different
expressions is described in [8]. By substituting the approximated expression of
Δ̃Mp′ΔM given by Equation (7) back into constraint Equation (6), the con-
straint becomes

p′ ∧ Λ − (p′�ΔB) ∧ Λ + (p′�(Δte)) ∧ Λ = 0 (8)

with two unknowns: ΔB and Δt. Therefore, ΔM is calculated by estimating ΔB
and Δt. A set of point-line correspondences are required to solve for ΔB and
Δt in Equation (8). As any linear geometric algebra equation can be expressed
in matrix form, we solve the equation by solving the associated matrix system
of the form Ax = b. This can be solved by any standard technique such as LU
decomposition. From x we obtain ΔB and Δt and hence ΔM . Each calculated
ΔM provides a step towards the desired motor and this process is repeated until
convergence. The first step towards the target motor is denoted by ΔM1. By
repeating this procedure, Mk2, . . . , Mkn are estimated, which converge towards
Mk where n iterations are necessary. ΔM is calculated as ΔMn . . . ΔM2ΔM1.
The convergence rate depends on the “speed” of the expected transformation
(i.e., the movement of the cameras within the space where images are taken).
We stop the approximation (iteration) if ‖ΔMi‖ ≤ ε (e.g., ε = 10−6), which
indicates that no further improvement can be achieved. Several iterations are
usually sufficient to obtain the next pose of the camera group.

2.2 Update Target Positions

With the estimated pose M of CSM , the given lines Λ in CSM can be trans-
formed to CSW by MΛM̃ . Given all the lines in CSW for all poses, the current
target positions can be calculated by Lemma 1 [9],

Lemma 1. Let Λj ∈ G3
4,1, j ∈ J be a set of normalised lines and S(x) =∑

j∈J S(x, Λj) where S(x, Λj) = x−(x�Λj)�Λj. If SI3 �= 0 then the point q ∈ G1
4,1

closest to all the lines in the least squares sense is given by the center of the
normalised dual sphere

s = −S(I3)�I4

S(I3)�I3
(9)

where I3 = e1 ∧ e2 ∧ e3 and I4 = eo ∧ e1 ∧ e2 ∧ e3.

As the target positions are estimated in real time, an increasingly large number of
lines and frequently repeated calculations would require too much computational
resource. Rather than storing all the lines we update some summary variables
to implement an iterative algorithm.

In Lemma 1, S(I3) and S(I4) depend on all lines and vary with each update.
As S(I3) = S(e1) ∧ S(e2) ∧ S(e3) and S(I4) = S(eo) ∧ S(e1) ∧ S(e2) ∧ S(e3)
it is only necessary to store and update S(eo), S(e1), S(e2) and S(e3). During
the iterations, the information contained in the lines needed for estimating the
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target positions, are accumulated in S(eo), S(e1), S(e2) and S(e3). Recall S is
defined as S(q) =

∑n
i=1(q − (q�Λi)�Λi). The current estimate of S(ej) can be

updated based on previous Sk−1(ej), and new lines Λi, i ∈ Ik arriving at current
time k as

Sk(ej) = Sk−1(ej) +
∑

i∈Ik

(ej − (ej�Λi)�Λi) (10)

It is not necessary to update the targets on every pose update iteration. For
example, the targets may be updated after CSM has been moved by some
specified distance.

3 Experiments

Experiments were carried out using both simulated data and real data. Both
kinds of data allowed us to test the validity and performance of our algorithm
using both the point-line constraint and the objective function (Quasi-Newton
optimisation) pose update. Noise was added to test the stability of the algorithm.

3.1 Simulated Data

In order to test and evaluate the iterative algorithm for estimating target posi-
tions, we generated simulated line data. We have the ground truth target position
obtained using a total station. We generated a synthetic path for CSM in a real
scene (a lab at Industrial Research Ltd.). Synthetic lines were created using this
path and projecting the known targets through the real calibrated camera group
model. In order to test the behaviour of the algorithm in the presence of noise
we generated simulated data with different levels of noise. The stability of the
algorithm is investigated by adding Gaussian noise with deviation σ ∈ [0.2, 1.0]
pixels (see Figure 2).

With the minimum noise, the errors of estimation decrease smoothly by
around 30%. With more noise, the error curve fluctuates within a wider range.
But the error is still reduced as the update process continues. Even with the
maximum noise, the target position is refined by around 20%. We applied the
simulated data to both algorithms. Both algorithms are validated by a compar-
ison of experimental results with ground truth, and also between both. Table 1
shows comparisons for estimating different poses of CSM along a 3D path.

Comparisons showed that both pose update strategies achieve almost the
same results. The strategy using the point-line constraint was nearly twice as
fast as Quasi-Newton strategy. This can be partly attributed to the fact that
the point-line constraint method make no effort to guarantee global convergence.
The Quasi-Newton method proved more robust under all considered conditions,
and the point-line constraint method is limited to the condition that differences
between subsequent poses are small because no global convergence protection
was implemented.
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Fig. 2. The RMS (Root Mean Square) of errors in targets vs update iterations with
different levels of noise

Table 1. Comparison of results for the two alternative pose estimation strategies for
the kth pose (rotation and translation). θ1 and t1 are rotation angle (in degree) and
translation vector (in millimeter) of the pose using the quasi-Newton method; θ2 and
t2 are those for the line-target constraint method.

k (θ1 − θ2) × 10−4 |t1 − t2| × 10−4

1 1.23 1.44

5 2.11 0.84

10 0.67 2.10

15 1.01 1.25

20 0.19 0.09

26 3.61 0.56

3.2 Real Data

Real data sequences of images captured by the camera group are shown in Fig-
ure 1, right. The lab room is visualised using VRML software; see Figure 3.
Results for real data were not as good (for both pose update strategies) as for
simulated data.

We believe that this can be partially explained by small errors in the camera
group model. A better camera group calibration should reduce these errors.
During simulation the same camera group model is used for projection (targets
mapped to image points) and backprojection (image points mapped to lines) so
any calibration errors have no influence.

Estimated poses and target positions are also visualised in Figure 3. Com-
ments about performance comparisons between both estimation methods apply
qualitatively for real data the same way as for simulated data. The target up-
date algorithm run run at 30Hz on a standard 3GHz PC using either of the pose
update schemes.
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Fig. 3. A model of the lab space used. Disks are estimated targets; the figure also
shows a few CSM coordinate systems along the path of the camera group.

4 Conclusion

We developed an iterative algorithm for refining 3D target positions over a large
number of images. We acquire (from 2D images) lines pointing towards 3D tar-
gets. The use of the conformal model of geometric algebra (CGA) benefits the
development of the solution in both theory and practice. CGA provides a com-
pact symbolic representation of objects and their transformations. A variety of
objects (e.g., vectors, points, lines, spheres) and operations (e.g. motors) can
be represented in a single algebra which simplifies the implementation. The use
of a single motor element to represent a Euclidean transformation (instead of
separate rotation and translation), further simplified the implementation.

The iterative target update algorithm performed well over a wide variety of
conditions. Two iterative strategies are used for pose estimation. The point-line
constraint strategy proved to be more efficient than the Quasi-Newton optimi-
sation strategy, but less robust in stability.
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