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Abstract. Structure from motion (SfM) comprises techniques for esti-
mating 3D structures from uncalibrated 2D image sequences. This work
focuses on two contributions: Firstly, a stability analysis is performed
and the error propagation of image noise is studied. Secondly, to stabilize
SfM, we present two optimization schemes by using a priori knowledge
about collinearity or coplanarity of feature points in the scene.

1 Introduction

Structure from motion (SfM) is an ongoing research topic in computer vision
and photogrammetry, which has a number of applications in different areas,
such as e-commerce, real estate, games and special effects. It aims at recovering
3D (shape) models of (usually rigid) objects from an (uncalibrated) sequence (or
set) of 2D images.

The original approach [5] of SfM consists of the following steps: (1) extract
corresponding points from pairs of images, (2) compute the fundamental matrix,
(3) specify the projection matrix, (4) generate a dense depth map, and (5) build
a 3D model. A brief introduction of some of those steps will be presented in
Section 2.

Errors are inevitable to every highly complex procedure depending on real-
world data, and this also holds for SfM. To improve the stabilization of SfM, two
optimizations are proposed using information from the 3D scene; see Section 3.
Section 4 presents experimental results, and Section 5 concludes the paper with
a brief summary.

2 Modules of SfM

This section gives a brief introduction for some of the SfM steps (and related al-
gorithms). For extracting correspondent points, we recall a method proposed in
[14]. Then, three methods for computing the fundamental matrix are briefly in-
troduced. To specify a projection matrix from a fundamental matrix, we describe
two common methods based on [3, 4]. In this step we also use the knowledge of
intrinsic camera parameters, which can be obtained through Tsai calibration
[12]; this calibration is performed before or after taking the pictures for the used



camera. It allows to specify the effective focal length f , the size factors ku and
kv of CCD cells (for calculating the physical size of pixels), and the coordinates
u0 and v0 of the principal point (i.e., center point) in the image plane.

2.1 Corresponding points

We need a number of at least seven pairs of corresponding points to determine
the geometric relationship between two images, caused by viewing the same
object from different view points. One way to extract those points from a pair
of images is as follows [14]:

(i) extract candidate points by using the Harris corner detector [2], (ii) utilize
a correlation technique to find matching pairs, and (iii) remove outliers by using
a LMedS (i.e., least-median-of-squares) method.

Due to the poor performance of the Harris corner detector on specular ob-
jects, this method is normally not suitable.

2.2 Fundamental and Essential matrix

A fundamental matrix is an algebraic representation of epipolar geometry [13].
It can be calculated if we have at least seven correspondences (i.e., pairs of
corresponding points), for example using linear methods (such as the 8-Point
Algorithm of [8]) or nonlinear methods (such as the RANSAC Algorithm of [1],
or the LMedS Algorithm of [14]).

In the case of a linear method, the fundamental matrix is specified through
solving an overdetermined system of linear equations utilizing the given corre-
spondences. In the case of a nonlinear method, subsets (at least seven) of cor-
respondences are chosen randomly and used to compute candidate fundamental
matrices, and then the best is selected, which causes the smallest error for all
the detected correspondences.

According to our experiments, linear methods have a more time efficient
and provide reasonably good results for large (say more than 13) numbers of
correspondences. Nonlinear methods are more time consuming, but less sensible
to noise, especially if correspondences also contain outliers.

For given intrinsic camera parameters K1 and K2, the Essential matrix E
can be derived from F by computing

E = KT
2 FK1

2.3 Projection matrix

A projection matrix P can be expressed as follows:

P = K[R | −RT ]

where K is a matrix of the intrinsic camera parameters, and R and T are the ro-
tation matrix and translation vector (the extrinsic camera parameters). Since the



intrinsic parameters are specified by calibration, relative rotation and translation
can be successfully extracted from the fundamental matrix F . When recovering
the projection matrices in reference to the first camera position, the projection
matrix of the first camera position is given as P1 = K1[I | 0], and the projection
matrix of the second camera position is given as P2 = K2[R | −RT ].

The method proposed by Hartley and Zisserman for computing rotation ma-
trix R and translation vector T (from the essential matrix E) is as follows [3]:

1. compute E by using E = KT
2 FK1, where

Ki =

fku 0 u0

0 fkv v0

0 0 1


(note: K1 = K2 if we use the same camera at view points 1 and 2),

2. perform a singular value decomposition (SVD) of E by following the template
E = Udiag(1, 1, 0)V T ,

3. compute R and T (for the second view point), where we have two options,
namely

R1 = UWV T R2 = UWT V T

T1 = u3 T2 = −u3

where u3 is the third column of U and

W =

0 −1 0
1 0 0
0 0 1


Another method for computing R and T from E (also only using elementary

matrix operations) is given in [4], which leads to almost identical results as the
method by Hartley and Zisserman.

2.4 Dense depth map

At this point, the given correspondences allow only a few points to be recon-
structed in 3D. A satisfactory 3D model of a pictured object requires a dense
map of correspondences. The epipolar constraint (as calculated above) allows
that correspondence search can be restricted to one-dimensional epipolar lines,
it supports that images are at first rectified following the method in [10], and
that correspondence matching is then done by searching along a corresponding
scan line in the rectified image. We also require a recovered base line between
both camera positions to calculate a dense depth map.

3 Optimization with Prior Knowledge

Since computations of fundamental and projection matrix are sensitive to noise,
it is necessary to apply a method for reducing the effect of noise (to stabilize
SfM). We utilize information about the given 3D scene, such as knowledge about
collinearity or coplanarity.



3.1 Knowledge about collinearity

It is not hard to detect collinear points on man-made objects, such as buildings
or furniture. Assuming ideal central projection (i.e., no lens distortion or noise),
then collinear points in object space are mapped onto one line in the image plane.
We assume that lens distortions are small enough to be ignored. Linearizing
points which are supposed to be collinear can then be seen as a way to remove
noise.

Least-square line fitting (minimizing perpendicular offsets) is used to identify
the approximating line for a set of “noisy collinear points”. Assume that we
have such a set of points P = {(xi, yi)|i = 1, . . . , n} which determines a line
l(α, β, γ) = αx+βy +γ. The coefficients α, β and γ are calculated as follows [7]:

α =
µxy√

µ2
xy + (λ∗ − µxx)2

β =
λ∗ − µxx√

µ2
xy + (λ∗ − µxx)2

γ = −(αx + βy)

where
λ∗ =

1
2
(µxx + µyy −

√
(µxx − µyy)2 + 4µxy)

µxx =
1

n − 1

n∑
i=1

(xi − x)2, µyy =
1

n − 1

n∑
i=1

(yi − y)2

µxy =
1

n − 1

n∑
i=1

(xi − x)(yi − y), x =
1
n

n∑
i=1

xi and y =
1
n

n∑
i=1

yi

After specifying the line, the points’ positions are modified through perpen-
dicular projection onto the line.

3.2 Knowledge about coplanarity

Coplanar points can be expected on rigid structures such as on walls or on a
tabletop. For a set of points, all incident with the same plane, there is a 3 × 3
matrix H called homography which defines a perspective transform of those
points into the image plane [11].

Homography Consider we have an image sequence (generalizing the two-image
situation from before) and pki is the projection of 3D point Pi into the kth image,
i.e. Pi is related to pki as follows:

pki = ωkiKkRk(Pi − Tk) (1)



where ωki is an unknown scale factor, Kk denotes the intrinsic matrix (for the
used camera), and Rk and Tk are the rotation matrix and translation vector.
Following Equation (1), Pi can be expressed as follows:

Pi = ω−1
ki R−1

k K−1
k pki + Tk (2)

Similarly, for point pli lying on the lth image, we have

Pi = ω−1
li R−1

l K−1
l pli + Tl (3)

From Equations (2) and (3), we get

pki = ωkiKkRk(ω−1
li R−1

l K−1
l pli + Tl − Tk) (4)

With Rkl = RkR−1
l we define H∞

kl = KkRklK
−1
l . We also have epipole ekl =

KkRk(Tl − Tk). Equation (4) can then be simplified to

pki = ωkiω
−1
li (H∞

kl pli + ωliekl) (5)

H∞
kl is what we call the homography which maps points at infinity (ωli = 0)

from image l to image k. Consider a point Pi on plane n̂T Pi−d = 0. Then, from
Equation (3), we have

n̂T Pi − d = n̂T ω−1
li R−1

l K−1
l pli + n̂T Tl − d = 0

Then we have

ωli =
n̂T R−1

l K−1
l pli

d − n̂T Tl

what can be rewritten as follows:

ωli = d−1
l n̂T R−1

l K−1
l pli

where d−1
l = d − n̂T Tl is the distance from the camera center (principal point)

of the lth image to the plane (n̂, d). Substituting ωli into Equation (5), finally
we have

pki = ωkiω
−1
li (H∞

kl + d−1
l ekln̂

T R−1
l K−1

l )pli

Let
H = ωkiω

−1
li (H∞

kl + d−1
l ekln̂

T R−1
l K−1

l )

This means: points lying in the same plane have identical H which can be utilized
as coplanarity constraint; see [11].

Coplanarity optimization Coplanar points satisfy the relation described by
homography. We use this relation for modifying “noisy coplanar points,” using
the following equation:

pki = Hklpli

Here, Hkl is the homography between kth and lth image in the sequence, and
pki, pli are projections of point Pi on the kth and lth image, respectively.



4 Experiments and Analysis

To analyze the influence of noise, we perform SfM in a way as shown in Figure
1. At Step 1, Gaussian noise is introduced into coordinates of detected corre-
spondences. At step 2, three different methods are compared to specify which
one is the best to compute the fundamental matrix. At Step 3, a quantitative
error analysis is performed.

Fig. 1. Basic steps of SfM.

This section shows at first experiments of the performance of different meth-
ods for computing the fundamental matrix, and second the effect of those opti-
mizations mentioned in the previous section.

4.1 Computation of fundamental matrix

Three algorithms (8-Point, RANSAC and LMedS) are compared with each other
in this section. To specify the most stable one in presence of noise, Gaussian
Noise (with mean 0 and deviation δ = 1 pixel) and one outlier are propagated to
given correspondences. Performances of the three algorithms are characterized
in Figure 2: due to the outlier, the 8-Point Algorithm is more sensible than the
other two.

4.2 Optimizations

To test the effect of the optimizations mentioned in the previous section, the
results of splitting essential matrices (rotation matrices and translation vectors)



Fig. 2. Performance of three algorithms in presence of noise.

are utilized to compare with each other. Two images of a calibration object are
used as test images (shown in Figure 3). The data got from calibration (intrinsic
parameters and extrinsic parameters of camera) are used as the ground truth.
Roll angle α, pitch angle β and yaw angle γ are used to compare the rotation
matrices in a quantitative manner. These angles can be computed from a rotation
matrix R by following equations [9]:

α = atan2( r23
sin(γ) ,

r13
sin(γ) )

β = atan2( r32
sin(γ) ,

−r31
sin(γ) )

γ = atan2(
√

r2
31 + r2

32, r33)

where rij is the element of R at ith row and jth column, and

atan2(y, x) =


atan( y

x ) (x > 0)
y
|y| · (π − atan(| y

x |)) (x < 0)
y
|y| ·

π
2 (y 6= 0, x = 0)

undefined (y = 0, x = 0)

Fig. 3. The first (left) and second (right) candidate images.



Fig. 4. Errors in rotation matrices (left) or translation vectors (right). First row: errors
from non-noisy data. Second row: noisy data. Third or fourth row: errors from noisy
data after optimization with collinearity or coplanarity knowledge, respectively.



Fig. 5. Epipolar lines result from different data sets. The green lines (dash lines) from
data without generated noise; the red lines (straight lines) are from noisy data; the
blue lines (dash-dot lines) and yellow lines (dot lines) are from noisy data which has
been optimized with collinearity and coplanarity knowledge, respectively.

Since splitting the essential matrix only results in a translation vector up to a
scale factor, all translation vectors (include the ground true one) are transformed
into a normalized vector (length equal to one unit) to compare with each other
in a quantitative manner. The comparison of rotation matrices and translation
vectors are shown in Figure 4. The errors are mean error of ten times iteration
when different number of correspondences are given. The noise propagated is
Gaussian noise (with mean 0 and deviation δ = 1 pixel). The method used
to compute the fundamental matrix is the 8-Point Algorithm, which is more
sensitive to noise than RANSAC and LMedS Algorithm. The method of Hartley
and Zisserman is used to split essential matrix.

According to the results shown in Figure 4, the coplanarity knowledge gives
a better optimization than collinearity knowledge. One possible reason is that
the collinearity optimization is performed on uncalibrated images, in which the
true correlation of collinear points are not strictly lying in a straight line.

For arbitrary images, the effect of optimizations can be seen from Figure 5
through looking at relative positions of epipolar lines computed from different
data sets. It shows that the two optimization strategies bring positive effects on



Fig. 6. Two different views of reconstructed points from the optimized SfM algorithm.

Fig. 7. Triangulated surface mesh with textures

reducing the influence of noise, and the coplanarity optimization performs better
than the collinearity optimization. Figure 6 shows the reconstructed point cloud
of the CITR-building in Auckland and Figure 7 visualizes the texture mapped
surface model. The main edges of the building are reconstructed with near-
perfect 90◦ angles. Slight image noise (less then 1 pixel) already leads to angles
between 20◦ and 140◦ which indicates the sensitivity of classic SfM approaches.
By incorporating the collinearity and coplanarity constraints, the reconstruction
quality improved.

5 Summary

Modules relating to structure from motion have been discussed in this paper.
According to experiments, structure from motion is sensitive to noise and it
is necessary to improve its stability. Two optimizations, using collinearity and
coplanarity knowledge, have been proposed, and the relating experiments show
that the two proposed optimizations, especial the coplanarity one, bring positive
effects on reducing influences of noise.
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