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Abstract. Estimating the pose of a rigid body means to determine the rigid body
motion in the 3D space from 2D images. For this purpose, it is reasonable to make
use of existing knowledge of the object. Our approach exploits the 3D shape and
the texture of the tracked object in form of a 3D textured model to establish 3D-
2D correspondences for pose estimation. While the surface of the 3D free-form
model is matched to the contour extracted by segmentation, additional reliable
correspondences are obtained by matching local descriptors of interest points be-
tween the textured model and the images. The fusion of these complementary
features provides a robust pose estimation. Moreover, the initial pose is automat-
ically detected and the pose is predicted for each frame. Using the predicted pose
as shape prior makes the contour extraction less sensitive. The performance of
our method is demonstrated by stereo tracking experiments.

1 Introduction

This paper addresses the task of estimating the pose of a rigid body in the 3D space from
images captured by multiple calibrated cameras. For solving this problem it is a natural
approach to exploit the available information on the object as far as possible. In [1] the
knowledge of the 3D shape was integrated in a contour based 3D tracker. Knowing the
3D model, the estimating process relies on correspondences between some 2D features
in the images and their counterparts on the 3D model. Our approach extends the work
by incorporating also the texture of the object. The additional information allows to
extract more reliable correspondences that makes the estimation more robust.

Fig. 1. 3D mesh and rendered textured model used for tracking.

There are numerous features that have been used for establishing correspondences,
e.g., matching lines [2], blocks [3], local descriptors [4], and free-form contours [5].



They all work well under some conditions, however, none of them can handle general
situations. The most approaches assume that the corresponding image features are visi-
ble during the whole sequence. They either completely fail when the number of features
is very low caused, for example, by occlusion or they reinitialize the pose after some
frames when enough features are again detected [6]. Whereas the contour extraction as
described in [1] is robust to occlusions. However, the contour does not provide enough
information for smooth and convex objects to estimate the pose uniquely. Furthermore,
the contour extraction is only suitable for movements that are slow enough such that
the segmentation does not get stuck in a local optimum. Hence, more than one feature
is needed for robust tracking.

Combining the object contour with the optical flow between successive frames has
been proposed in [7]. Although it performs well, it assumes that the initial pose is
known and cannot recover from a significant error. Furthermore, the optical flow is
easily distracted by other objects moving in front of the observed object. Our work
instead combines the object contour with image features between a frame and a 3D
textured model projected onto the image plane. We assume that the textured model
of the object is available where the lightning conditions for capturing the texture are
allowed to differ from the conditions during tracking, i.e., the model construction is
independent of the tracking sequence.

Since lightning conditions between the object and its textured model are inhomo-
geneous and the object is transformed by a rigid body motion (RBM), we use local
descriptors that provide robust matching under changes in viewpoint and illumina-
tion. A comparison of local descriptors [8] revealed that SIFT [9], PCA-SIFT [10], and
GLOH [8] perform best. The descriptors build a distinctive representation of a so-called
keypoint in an image from a patch of pixels in its neighborhood. The keypoints are local-
ized by an interest point detector. We use the detector proposed by Lowe [11] based on
local 3D extrema in the scale-space pyramid built with difference-of-Gaussian filters.
It has the advantage that it runs faster than other detectors [12], e.g., like the slower
Harris-Affine detector [13]. The DoG representation, however, is not affine invariant.
Hence, we cannot use GLOH that requires an affine-invariant detector. Therefore, we
used PCA-SIFT that reduces the dimension of the descriptor by principal component
analysis. This speeds up the matching process and produces less outliers than SIFT but
also less correspondences.

In the next section, we give an overview of the whole pose estimation process that
will be discussed in detail in the following sections. Experiments in Section 5 with a
3D textured model as shown in Fig. 1 demonstrate the performance of the proposed
technique. A brief discussion is given at the end.

2 Overview

Our approach for pose estimation is illustrated by the flow chart in Fig. 2. Knowing
the pose of the object for frame t − 1, we generate a 3D textured model in the same
world coordinate system used for the calibration of the cameras, see Section 4.1. Ren-
dered images of the model are obtained by projecting the model onto the image plane
according to the calibration matrix for each camera.
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Fig. 2. Correspondences extracted by PCA-SIFT and correspondences between the contour of the
projected 3D model and the contour obtained by segmentation are used for pose estimation. If
not enough keypoints are detected by PCA-SIFT, an autoregression is performed to predict the
pose for the next frame.

In a second step, the PCA-SIFT [10] features are extracted from the rendered images
and from the new images of frame t. The features are used for establishing correspon-
dences between the 3D model and the 2D images for each view as described in Section
4.2. In [6] and [14], RANSAC is used to estimate the pose from the matches that include
outliers. RANSAC, however, is not suitable for integrating correspondences from the
contour and cannot handle inaccuracy of the keypoint localizations, e.g., arising from
texture registration. Therefore, we use a least-squares approach as used in [5], see Sec-
tion 3. If not enough correspondences are extracted by PCA-SIFT, the pose is predicted
by autoregression as discussed in Section 4.3.

The next step consists of extracting the contour by a variational model for level
set based image segmentation incorporating color and texture [15] where the predicted
pose is used as shape prior [1], see Section 4.4. New correspondences between the 3D
model and the 2D image are then established by matching the extracted contour with
the projected contour of the model via an iterated closest point algorithm [16]. Finally,
the correspondences obtained from PCA-SIFT and from the segmentation are used for
estimating the pose in frame t.

3 Pose Estimation

For pose estimation we assume that correspondences between the 3D model (Xi) and
a 2D image (xi) are already extracted and write each correspondence as pair (Xi, xi)
of homogeneous coordinates. In order to estimate the 3D rigid body motion M that fits
best the correspondences, M is represented as exponential of a twist [17]

θξ̂ = θ
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)
, ω̂ =




0 −ω3 ω2
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 , ‖ω‖2 = 1, (1)



i.e., M = exp(θξ̂). A twist with varying θ ∈ R describes a screw motion in R
3 where

θ corresponds to the rotation velocity and pitch. The function exp(θξ̂) can be efficiently
computed by the Rodriguez formula [17] and linearized by exp(θξ̂) =

∑∞
k=0

((θξ̂)k/k!) ≈

I + ξ̂, where I denotes the identity matrix.
Each image point xi defines a projection ray that can be represented as Plücker line

[17] determined by a unique vector ni and a moment mi such that x × ni − mi = 0
for all x on the 3D line. Furthermore, ‖x× ni −mi‖2 is the norm of the perpendicular
error vector between the line and a point x ∈ R

3. Hence, the pose estimation consists of
finding a twist such that the squared error for (exp(θξ̂)Xi)3×1 is minimal for all pairs,
where (·)3×1 denotes the transformation from homogeneous coordinates back to non-
homogeneous coordinates. Using the linearization, we obtain for each correspondence
the constraint equation

(exp(θξ̂)Xi)3×1 × ni − mi = 0 (2)

which can be rearranged into the form Aξ = b. The resulting overdetermined linear
system is solved by standard methods like the Householder algorithm. From the re-
sulting twist ξ, the RBM M1 is computed and applied to all Xi. The pose estimation
is iterated until the motion converges. After n iterations, usually 3-5 are sufficient, the
concatenated rigid body transformation M = Mn . . . M2M1 is the solution for the pose
estimation. In a multi-view setting as in our experiments, the correspondences for each
camera are added to one linear system and solved simultaneously. Our implementation
takes about 4ms for 200 correspondences.

4 Correspondences

4.1 Textured Model

We assume that a 3D model including textures is already constructed independently
of the tracking sequences, i.e., we do not require that the textures are extracted from
the tracking sequences. Hence, the modelling process is done only once and the model
can be reused for any sequence provided that the texture remains unchanged. In order
to render the 3D model in the same coordinate system as used for camera calibration,
the calibration matrices are converted to the modelview and projection matrix repre-
sentation of OpenGL. Since OpenGL cannot handle lens distortions directly, the image
sequences are undistorted beforehand. However, the step could also be efficiently in-
cluded by a look-up table. In a preprocessing step, PCA-SIFT is trained for the object
by building the patch eigenspace from the object textures. Moreover, we render some
initial views of the 3D model by rotating and store the extracted keypoints, strictly
speaking the PCA-SIFT descriptors of the keypoints, with the corresponding RBM.
From the data, our system automatically detects the pose in the first frame.

4.2 Matching

After the 3D model is rendered and projected onto the image plane for each camera
view, the keypoints are extracted by PCA-SIFT. The keypoints are also extracted from



Fig. 3. Initialization. Left: Both camera views of the first frame. Best initial view for initialization
is shown in top left corner. Right: Estimated pose after initialization.

the captured images. The effort is reduced by bounding cubes for each component of
the 3D model. Projecting the corners of the cubes provides a 2D bounding box for each
image. Since we track an object, we can assume that the object is near the bounding
box except for the first frame. Hence, the detector is only performed on a subimage.
2D-2D correspondences are then established by nearest neighbor distance ratio match-
ing [8], where we use as additional constraint that two different located points cannot
correspond to points with the same position. Since the set of correspondences contains
outliers, the rudest mismatches are removed by discarding correspondences with an
Euclidean distance that exceeds the average by a multiple.

Fig. 4. Left: Correspondences between projected model and image. Center: Displaying the
points of the projected model (yellow squares) corresponding to points in the image (green
crosses). Two outliers are in the set of correspondences. Right: After filtering only the outliers
are removed.

The 3D coordinate X of a 2D point x in the projected image plane of the model is
obtained as following: Each 2D point is inside or on the border of a projected triangle of
the 3D mesh with vertices v1, v2, and v3. The point can be expressed by barycentric co-
ordinates, i.e., x =

∑
i
αi vi. Assuming an affine transformation, the 3D point is given

by X =
∑

i
αi Vi. The corresponding triangle for a point can be efficiently determined

by a look-up table containing the color index and vertices for each triangle. After that
the pose is estimated from the resulting 2D-3D correspondences. In a second filtering
process, the new 3D coordinates from the estimated pose are projected back and the last
outliers are removed by thresholding according to the Euclidean distance between the
2D correspondences and the reprojected counterparts.



During initialization, the keypoints from the images are matched with the keypoints
extracted from the initial views beforehand. According to the number of matches, a best
initial view is selected and the pose is estimated from the obtained correspondences.

4.3 Prediction

The logarithm of a RBM: In [17] a constructive way is given to compute the twist
which generates a given RBM: Let R ∈ SO(3) be a rotation matrix and t ∈ R

3 a
translation vector for the RBM. For the case R = I , the twist is given by

ξ̂ =

(
0 t

‖t‖

0 0

)
, θ = ‖t‖2. (3)

For the other cases, the motion velocity θ and the rotation axis ω is given by

θ = cos−1

(
trace(R) − 1

2

)
, ω =

1

2 sin(θ)
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 . (4)

To obtain v, the matrix

A = (I − exp(θω̂))ω̂ + ωωT θ, (5)

obtained from the Rodriguez formula needs to be inverted and multiplied with the
translation vector t, i.e., v = A−1t. This follows from the fact, that the two matri-
ces which comprise A have mutually orthogonal null spaces when θ 6= 0. Hence,
Av = 0 ⇔ v = 0. We call the transformation from SE(3) to se(3) the logarithm,
log(M).

The adjoint transformation: It is not trivial to derive a formula for the velocity of a
rigid body whose motion is given by g(t), a curve parameterized by time t in SE(3),
since SE(3) is not Euclidean. In particular, ġ /∈ SE(3) and ġ /∈ se(3). But by repre-
senting a rigid body motion as a screw action, the spatial velocity can be represented by
the twist of the screw, see [17] for details. This allows for motion interpolation, damping
and prediction.

Later we will take the motion history Pi of the last N frames into account. For
a suited prediction we use a set of twists ξi = log(PiP

−1

i−1
) representing the relative

motions. To generate a suited average rigid body motion we make use of the adjoint
transformation to represent a screw motion with respect to another coordinate system:
If ξ ∈ se(3) is a twist given in a coordinate frame A, then for any G ∈ SE(3) which
transforms a coordinate frame A to B, is Gξ̂G−1 a twist with the twist coordinates
given in the coordinate frame B, see [17] for details. The mapping ξ̂ 7−→ Gξ̂G−1 is
called the adjoint transformation associated with G.

Given a set of world positions and orientations Pi the twists ξi can be used to
express the motion as local transformation in the current coordinate system M1: Let
ξ1 = log(P2P

−1

1
) be the twist representing the relative motion from P1 to P2. This
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Fig. 5. Transformation of rigid body motions from prior data Pi in a current world coordinate
system Mi. A proper scaling of the twists results in a proper damping.

transformation can be expressed as local transformation in the current coordinate sys-
tem M1 by the adjoint transformation associated with G = M1P

−1

1
. The new twist is

then given by ξ̂′
1

= Gξ̂1G
−1. The advantage of the twist representation is now that the

twists can be scaled by a factor 0 ≤ λi ≤ 1 to damp the local rigid body motion, i.e.,
ξ̂′
1

= Gλ1ξ̂1G
−1.

The average RBM from N given local rigid body motions can then be written as
consecutive evaluation of such local rigid body motions scaled with λi = 1/N .

4.4 Segmentation

The images are segmented by a level set based method incorporating color and tex-
ture [15]. It splits the image domain Ωi of each view into object region Ωi

1
and back-

ground region Ωi
2

by level set functions Φi : Ωi → R, such that Φi(x) > 0 if x ∈ Ωi
1

and Φi(x) < 0 if x ∈ Ωi
2
. The contour of an object is thus represented by the zero-level

line. The approach described in [1] uses a variational model that integrates the contour
of a prior pose Φi

0
(x̂ ) for each view 1 ≤ i ≤ r as shape prior. It minimizes the energy

functional E(x̂, Φ1, . . . , Φr) =
∑r

i=1
E(x̂, Φi) where

E(x̂, Φi) = −

∫

Ωi

H(Φi) ln pi

1
+ (1 − H(Φi)) ln pi

2
dx

+ ν

∫

Ωi

∣∣∇H(Φi)
∣∣ dx + λ

∫

Ωi

(
Φi − Φi

0
(x̂ )

)2

dx (6)

and H is a regularized version of the step function.
Minimizing the first term corresponds to maximizing the a-posteriori probability

of all pixel assignments given the probability densities pi
1

and pi
2

of Ωi
1

and Ωi
2
, re-

spectively. These densities are modeled by Gaussian densities whose parameters are
estimated from the previous level set function. The second term minimizes the length
of the contour and smoothes the resulting contour. The last one penalizes the discrep-
ancy to the shape prior that is obtained by projection of the predicted pose. The relative
influence of the three terms is controlled by the constant weighting parameters ν = 0.5
and λ = 0.06.



Fig. 6. 4 successive frames of a rotation sequence (only one view is shown). Top row: Pose is pre-
dicted by autoregression for lack of PCA-SIFT matches. Black: Predicted pose. Gray: Previous
pose. Middle row: Contour extracted by segmentation. Bottom row: Estimated pose.

After segmentation, the 3D-2D correspondences for each view are given by the
projected vertices of the 3D mesh that are part of the model contour and their closest
points of the extracted contour determined by an iterated closest point algorithm [16].

4.5 Fusion of correspondences

Although it has been shown that the segmentation as previously described is quite robust
to clutter, shadows, reflections, and noise [1], a good shape prior is essential for tracking
since both matching between the contours and the segmentation itself is prone to local
optima. The predicted pose by an autoregression usually provides a better shape prior
than the estimated pose in the previous frame. In situations, however, where the object
region and the background region are difficult to distinguish, the error of the segmenta-
tion and the error of the prediction are accumulating after some time. The shortcoming
is compensated by PCA-SIFT, but it is also clear that usually not enough keypoints
are available in each frame. Hence, the correspondences from contour matching and
from descriptor matching are added to one linear system for the pose estimation. Since
the contour provides more correspondences, the Equations (2) for the correspondences
from PCA-SIFT are weighted by ] CorrsContour/5.



Fig. 7. Rotation sequence with a moving person. Left: Number of matches from PCA-SIFT (dark
gray). After filtering the number of matches is only slightly reduced (black). When the number
is below a threshold, the pose is predicted by an autoregression (gray bars). Right: The rotating
box is occluded by a moving person.

5 Experiments

For evaluating the performance of our approach, we used the 3D textured model as
shown in Fig. 1. The textures were captured under different lightning conditions from
the conditions for the image sequences that were recorded by two calibrated cameras.
Although the size of the images is 502 × 502, the object is only about 100 × 100. The
initial position was automatically detected for each sequence as shown in Fig. 3.

Fig. 8. Pose estimates for 10 of 570 frames. The sequence contains several difficulties for track-
ing: a rich textured and non-static background, shadows, occlusions, and other moving objects.
Only one camera view is shown.

The tracked object is partially covered with two dissimilar customary fabrics and
the printed side reflects the light. It is placed on a chair that occludes the back of the
object. The background is rich textured and non-static. Shadows, dark patterns on the
texture and the black chair make contour extraction difficult even for the human eye.



Furthermore, a person moves and occludes the object. These conditions make great
demands on the method for pose estimation.

In the first sequence, the chair with the object rotates clockwise. When the back of
the chair occludes the object, there are not enough distinctive interest points for pose
estimation. Therefore, the pose is predicted by an autoregression for the next frame
as shown in Fig. 6. Due to the shape prior, the segmentation is robust to the occlu-
sion such that the estimates are still accurate. The number of matches from PCA-SIFT
with respect to time is plotted in Fig. 7. During the sequence, the object rotates counter-
clockwise while the person orbits the object clockwise. As we can see from the diagram,
PCA-SIFT produces only few outliers that are removed after the filtering. The gray bars
in the diagram indicate the frames where an autoregression was performed. Since the
number of matches range from 1 to 77, it is clear that an approach based only on the
descriptors would fail in this situation.

Fig. 9. Comparison with a contour-based method. From left to right: Pose estimates for frames
5, 50, 90, 110. Rightmost: Result of our method at frame 110.

Pose estimates for a third sequence including rotations and translations of the object
are shown in Fig. 8. When only the contour is used, the pose estimation is erroneous
since both segmentation and contour matching are distracted by local optima, see Fig. 9.
For comparison, the result of our method is also given.

Finally, we simulated disturbances of the sequence in order to obtain a quantative
error analysis. Since the object is placed on the chair, the y-coordinate of the pose is
approximately constant. During the sequence, however, the object shifts slightly on the
chair. The peak at frame 527 in the diagram of Fig. 10 is caused by a relocation of
the object. For one sequence, we added Gaussian noise with standard deviation 35 to
each color channel of a pixel. Another sequence was disturbed by 80 teapots that were
rendered in the 3D space of the tracked object. The teapots drop from the sky where the
start positions, material properties, and velocities are random. Regarding the result for
the undistorted sequence as some kind of ground truth, the diagram in Fig. 10 shows
the robustness of our approach. While an autoregression was performed only twice for
the unmodified sequence and the average number of filtered matches per frame from
PCA-SIFT was 50.9, the numbers fell down to 27.9 and 13.1 for the teapots sequence
with 132 predictions and the noisy sequence with 361 predictions.



Fig. 10. Left: Quantative error analysis for a sequence with disturbances. Black: Undisturbed
sequence. Red: Gaussian noise with standard deviation 35. Blue: 80 teapots dropping from the
sky with random start position, material properties, and velocity. Right: Top: Stereo frame 527

of the noisy sequence (image details). Bottom: Two successive frames of the teapot sequence.

6 Conclusions

In this work, we have suggested a textured model based method for 3D pose estimation.
It fuses two different features for matching, namely contour and local descriptors, where
the influence of the features is automatically adapted during tracking. The initial pose
is identified without supervision. In our experiments, we have demonstrated that our
approach overcomes the drawbacks of the single features and that it can be applied
to quite general situations. In the case of a homogeneous object without distinctive
keypoints, our approach operates as a pure contour-based method. Furthermore, we
have provided visual and quantative results showing that our approach is able to deal
with a rich textured and non-static background and multiple moving objects. Moreover,
it is robust to shadows, occlusions, and noise. Although our experiments considered
only rigid bodies with a simple geometric surface, our method works with any kind of
free-form objects. The pose estimation can be straightforward extended to articulated
objects [18]. This will be done in future.
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