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Summary . Human 3D motion tracking from video is an emerging research �eld
with many applications demanding highly detailed results. This chapter surveys a
high qualit y generative method, which employs the person's silhouette extracted
from one or multiple camera views for �tting an a-priori given 3D body surface
model. A coupling betweenposeestimation and contour extraction allows for reliable
tracking in cluttered sceneswithout the need of a static background. The optic o w
computed betweentwo successive frames is usedfor poseprediction. It improvesthe
qualit y of tracking in caseof fast motion and/or low frame rates. In order to cope
with unreliable or insu�cien t data, the framework is further extended by the use of
prior knowledge on static joint angle con�gurations.

11.1 In tro duction

Tracking of humans in videos is a popular research �eld with numerous applications
ranging from automated surveillance to sports movement analysis. Depending on
applications and the qualit y of video data, there are di�eren t approaches with dif-
ferent objectiv es. In many people tracking methods, for instance, only the position
of a person in the image or a region of interest is sought. Extracting more detailed
information is often either not necessaryor very di�cult due to image resolution.
In contrast to such model-free tracking methods, the present chapter is concerned
with the detailed �tting of a given 3D model to video data. The model consistsof the
body surface and a skeleton that contains prede�ned joints [26, 8]. Given the video
data from oneor more calibrated cameras,oneis interested in estimating the person's
3D pose and the joint angles. This way, the tracking becomesan extended 2D-3D
poseestimation problem, where additionally to the person's rigid body motion one
is interested in somerestricted kind of deformation, namely the motion of limbs.
Applications of this kind of tracking are sports movement and clinical analysis, as
well as the recording of motion patterns for animations in computer graphics. The
state-of-the-art for capturing human motion is currently de�ned by large industrial
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motion capture systemswith often more than 20 cameras.These systems make use
of markers attached to the person's body in order to allow for a fast and reliable
image processing.Often the reliabilit y of the results is further improved by manually
controlling the matching of markers. Such systems are described in Chapter 16.
While results of marker-basedmotion capturing systemsare very trust worthy, mark-
ers need to be attached, which is sometimes not convenient. Moreover the manual
supervision of marker matching can be very laborious. For these reasons,one is in-
terested in marker-less motion capturing, using the appearance of the person as a
natural marker.
While markersin marker-basedsystemshavebeendesignedfor being easyto identify ,
�nding correct correspondencesof points in marker-free systems is not as simple. A
sensible selection of the right feature to be tracked is important. A typical way to
establish point correspondencesis to concentrate on distinctiv e patchesin the image
and to track thesepatches, for instance, with the KL T tracker [56] or a tracker based
on the so-called SIFT descriptor [37]. However, patch based tracking typically only
works reliably if the appearanceof the person contains su�cien tly textured areas.
An alternativ e feature, particularly for tracking people with non-textured clothing,
is the silhouette of the person. Early approaches have beenbasedon edgedetectors
and have tried to �t the 3D model to dominant edges[26]. Since image edgesare not
solely due to the person's silhouette, the most relevant problem of such approaches
is their tendency to get stuck in local optima. Sophisticated optimization techniques
have been suggestedin order to attenuate this problem [62]. Nowadays, silhouette
based tracking usually relies on background subtraction. Assuming both a static
camera and a static background, the di�erence between the current image and the
background image e�cien tly yields the foreground region. Apart from the restrictiv e
assumptions, this approach works very well and is frequently employed for human
tracking [25, 60, 1].
In [53] a contour-based method to 3D pose tracking has been suggestedthat does
not imposesuch strict assumptions on the scene.Instead, it demands dissimilarit y
of the foreground and background region, which is a typical assumption in image
segmentation. In order to deal with realistic scenarioswhere personsmay also wear
non-uniform cloths and the background is cluttered, the dissimilarit y is de�ned in a
texture feature space,and instead of homogeneousregions, the model expects only
locally homogeneousregions. The main di�erence to other pose tracking methods,
however, is the coupling between feature extraction and estimation of the posepa-
rameters. In a joint optimization one seeksthe poseparameters that lead to the best
�t of the contour in the image. Vice-versa, one seeksa segmentation that �ts the
image data and resembles the projected surface model. Due to this coupling, the
contour extraction is much more reliable than in a conventional two-step approach,
where the contour is computed independently from the pose estimation task. We
will survey the method in Section 11.3.
Although this way of integrating contours into poseestimation is more robust than
the edge-basedapproach, it is still a local optimization method that can get stuck in
local optima in caseof fast motion. To alleviate thesee�ects, it is common practice in
tracking to predict the poseof the tracked object in the coming frame. A prediction is
usually computed by simply extrapolating the motion between the last two frames
to the next frame. In a more subtle way, learning based approaches incorporate
auto-regressive models or nonlinear subspacemethods based on training sequences
to accomplish this task [57, 25, 1, 17, 65].
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Fig. 11.1. System overview: the core is the coupled contour extraction and pose
estimation. The motion betweenframes is predicted by optic o w in order to ensure
a close initialization in the next frame. Pose con�gurations are constrained by a
prior density estimated from training samples.

Another possibility to predict the poseparameters in the next frame is by the optic
o w. Optic o w basedtracking is similar to patch-based tracking, though instead of
patchesonetries to match single points under certain smoothnessassumptions.With
a reliable optic o w estimation method, one can predict rather large displacements
[10]. In combination with the contour-based method, one obtains a system that can
handle fast motions and is free from error accumulation, which is a severe problem
for optic o w or patch-based tracking. A similar concept has been presented earlier
in [21] and [38] in combination with edgesinstead of contours and di�eren t optic
o w estimation techniques. The poseprediction by meansof optic o w and how the
o w can be e�cien tly computed is explained in Section 11.4.
Since 3D human tracking is generally an ill-p osedproblem with many solutions ex-
plaining the samedata, methods su�er enormously from unreliable data. Therefore,
in recent years, it has becomemore and more popular to exploit prior assumptions
about typical human posesand motion patterns [59, 65, 11]. In Section 11.5 it will
be described how the tracking model can be constrained to prefer solutions that are
close to familiar poses.The impact of such a constraint regarding the robustness
of the technique to disturb ed image data is remarkable. See also Chapter 2 and
Chapter 8 for learning techniques in human tracking.
Although the tracking system described in this chapter comprises many advanced
methods, there is still much room for extensions or alternativ e approaches. In Sec-
tion 11.6 we discussissuessuch as running times, auto-initialization, dynamical pose
priors, and cloth tracking including cursors to other chapters in this book or to sem-
inal works in the literature. A brief summary of the chapter is given in Section 11.7.

11.2 Human Motion Represen tation with Twists and
Kinematic Chains

A human body can bemodeledquite well by meansof a kinematic chain. A kinematic
chain is a set of (usually rigid) bodies interconnected by joints. For example, an
arm consists of an upper and lower arm segment and a hand, with the shoulders,
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elbow and wrist as interconnecting joints. For a proper representation of joints and
transformations along kinematic chains in the human tracking method, we use the
exponential representation of rigid body motions [42], as suggestedin [7, 8].
Every 3D rigid motion can be represented in exponential form

M = exp(� �̂ ) = exp
�

!̂ v
03� 1 0

�
(11.1)

where � �̂ is the matrix representation of a twist � 2 se(3) = f (v ; !̂ )jv 2 R3 ; !̂ 2
so(3)g, with so(3) = f A 2 R3� 3 jA = � A T g. The Lie algebra so(3) is the tangential
spaceof the 3D rotations at the origin. Its elements are (scaled) rotation axes,which
can either be represented as a 3D vector

� ! = �

0

@
! 1

! 2

! 3

1

A ; with k! k2 = 1 (11.2)

or as a skew symmetric matrix

� !̂ = �

0

@
0 � ! 3 ! 2

! 3 0 � ! 1

� ! 2 ! 1 0

1

A : (11.3)

In fact, M is an element of the Lie group SE (3), known as the group of direct a�ne
isometries. A main result of Lie theory is that to each Lie group there exists a Lie
algebra which can be found in its tangential spaceby derivation and evaluation at
its origin. Elements of the Lie algebra therefore correspond to in�nitesimal group
transformations. See[42] for more details. The corresponding Lie algebra to SE (3)
is denoted as se(3).
A twist contains six parameters and can be scaled to � � with a unit vector ! . The
parameter � 2 R corresponds to the motion velocity (i.e., the rotation velocity
and pitch). The one-parameter subgroup � �̂ (� ) = exp(� �̂ ) generated by this twist
corresponds to a screw motion around an axis in space.The six twist components
can either be represented as a 6D vector

� � = � (! 1 ; ! 2 ; ! 3 ; v1 ; v2 ; v3)T

with k! k2 = k(! 1 ; ! 2 ; ! 3)T k2 = 1; (11.4)

or as a 4 � 4 matrix
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0
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0 0 0 0

1

C
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To reconstruct a group action M 2 SE (3) from a given twist, the exponential

function exp(� �̂ ) =
P 1

k =0
( � �̂ ) k

k ! = M 2 SE (3) must be computed. This can be done
e�cien tly by using the Rodriguez formula [42].
In this framework, joints are expressedas special screwswith no pitch. They have
the form � j �̂ j with known �̂ j (the location of the rotation axesas part of the model
representation) and unknown joint angle � j . A point on the j th joint can be repre-
sented as consecutive evaluation of exponential functions of all involved joints,
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X 0
i = exp(� �̂ RB M )(exp(� 1 �̂ 1) : : : exp(� j �̂ j )X i ) (11.6)

The human body motion is then de�ned by a parameter vector � := (� RB M ; � ) that
consistsof the 6 parameters for the global twist � RB M (3D rotation and translation)
and the joint angles � := (� 1 ; : : : ; � N ).

11.3 Con tour-based Pose Estimation

In this section, we survey the coupled extraction of the contour and the estimation
of the poseparameters by meansof this contour. For better understanding we start
in Section 11.3.1 with the simple segmentation case that is not yet related to the
poseparameters. In the end, the idea is to �nd poseparameters in such a way that
the projected surface leads to a region that is homogeneousaccording to a certain
statistical model. The statical region model will be explained and motiv ated in Sec-
tion 11.3.2. In Section 11.3.3we then bend the bow to poseestimation by intro ducing
the human model as a 3D shape prior into the segmentation functional. This leads
to a matching of 2D shapes. From the point correspondencesof this matching, one
can derive 2D-3D correspondencesand �nally estimate the pose parameters from
these.

11.3.1 Con tour Extraction with Lev el Sets

Lev el set represen tation of con tours. The contour extraction is basedon vari-
ational image segmentation with level sets [23, 44], in particular region-basedactive
contours [15, 64, 46, 20]. Level set formulations of the image segmentation problem
have several advantages. One is the convenient embedding of a 1D curve into a 2D,
image-like structure. This allows for a convenient and sound interaction between
constraints that are imposed on the contour itself and constraints that act on the
regions separated by the contour. Moreover, the level set representation yields the
inherent capabilit y to model topological changes.This can be an important issue,for
instance, when the person is partially occluded and the region is hencesplit into two
parts, or if the poseof legs or arms leads to topological changesof the background.
In the prominent caseof a segmentation into foreground and background, a level
set function � 2 
 7! R splits the image domain 
 into two regions 
 1 and 
 2 ,
with � (x) > 0 if x 2 
 1 and � (x) < 0 if x 2 
 2 . The zero-level line thus marks
the boundary betweenboth regions, i.e., it represents the person's silhouette that is
sought to be extracted.

Optimalit y criteria and corresp onding energy functional. As optimalit y cri-
teria for the contour we want the data within one region to be similar and the length
of the contour to be as small as possible. Later in Section 11.3.3 we will add simi-
larit y to the projected surface model as a further criterion. The model assumptions
can be expressedby the following energy functional [66, 15]:

E (� ) = �
Z




�
H (� ) log p1 + (1 � H (� )) log p2

�
dx + �

Z



jr H (� )j dx (11.7)

where � > 0 is parameter that weights the similarit y against the length con-
straint, and H (s) is a regularized Heaviside function with lim s!�1 H (s) = 0,
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lim s!1 H (s) = 1, and H (0) = 0:5. It indicates to which region a pixel belongs.
Chan and Vesesuggestedtwo alternativ e functions in [15]. The particular choice of
H is not decisive. We usethe error function, which has the convenient property that
its derivativ e is the Gaussian function.
Minimizing the �rst two terms in (11.7) maximizes the lik elihood given the prob-
abilit y densities p1 and p2 of values in 
 1 and 
 2 , respectively. The third term
penalizes the length of the contour, what can be interpreted as a log-prior on the
contour preferring smooth contours. Therefore, minimizing (11.7) maximizes the
total a-posteriori probabilit y of all pixel assignments.

Minimization by gradien t descen t. For energy minimization one can apply a
gradient descent. The Euler-Lagrange equation of (11.7) leads to the following up-
date equation3 :

@t � = H 0(� )
�

log
p1

p2
+ � r >

�
r �

jr � j

��
(11.8)

where H 0(s) is the derivativ e of H (s) with respect to its argument. Applying this
evolution equation to some initialization � 0 , and given the probabilit y densities
pi , which are de�ned in the next section, the contour converges to the next local
minim um for the numerical evolution parameter t ! 1 .

11.3.2 Statistical Region Mo dels

An important factor for the contour extraction processis how the probabilit y den-
sities pi : R ! [0; 1] are modeled. This model determines what is consideredsimilar
or dissimilar. There is on one hand the choice of the feature space,e.g. gray value,
RGB, texture, etc., and on the other hand the parametrization of the probabilit y
density function.

Texture features. Since uniformly colored cloths without texture are in general
not realistic, we adopt the texture feature spaceproposedin [12]. It comprisesM = 5
feature channels I j for gray scale images, and M = 7 channels if color is available.
The color channels are considered in the CIELAB color space.Additionally to gray
value and color, the texture features in [12] encode the texture magnitude, orienta-
tion, and scale, i.e., they provide basically the same information as the frequently
usedresponsesof Gabor �lters[24 ]. However, the representation is lessredundant, so
4 feature channels substitute 12-64 Gabor responses.Alternativ ely, Gabor features
can be used at the cost of larger computation times. In caseof people wearing uni-
form cloths and the background also being more or lesshomogeneous,one can also
work merely with the gray value or color in order to increasecomputation speed.

Channel indep endence. The probabilit y densities of the M feature channels are
assumedto be independent, thus the total probabilit y density can be composed of
the densities of the separate channels:

pi =
MY

j =1

pij (I j ) i = 1; 2: (11.9)

3 As the probabilit y densities in general also depend on the contour there may
appear additional terms depending on the statistical model. For global Gaussian
densities, however, the terms are zero, and for other models they have very little
inuence on the result, so they are usually neglected.
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Though assuming channel independenceis merely an approximation, it keeps the
density model tractable. This is important, as the densities have to be estimated
from a limited amount of image data.

Densit y mo dels of increasing complexit y. There are various possibilities how
to model channel densities. In [15] a simple piecewiseconstant region model is sug-
gested, which corresponds to a Gaussian density with �xed standard deviation. In
order to admit di�eren t variations in the regions, it is advisable to useat least a full
Gaussian density [66], a generalized Laplacian [28], or a Parzen estimate [54, 32].
While more complex density models can represent more general distributions, they
also imply the estimation of more parameters which generally leads to a more com-
plex objectiv e function.

Lo cal densities. Nevertheless,for the task of human tracking, we advocate the use
of a more complex region model, in particular a Gaussian density that is estimated
using only values in a local neighborhood of a point instead of valuesfrom the whole
region. Consequently , the probabilit y density is no longer �xed for one region but
varieswith the position. Local densitieshave beenproposedin [31, 53]. Segmentation
with such densities has been shown to be closely related to the piecewise smooth
Mumford-Shah model [41, 13]. Formally, the density is modeled as

pij (s; x) =
1

p
2� � ij (x)

exp
�

(s � � ij (x)) 2

2� ij (x)2

�
: (11.10)

The parameters � ij (x) and � ij (x) are computed in a local Gaussian neighborhood
K � around x by:

� ij (x) =

R

 i

K � (� � x)I j (� ) d�
R


 i
K � (� � x) d�

� ij (x) =

R

 i

K � (� � x)( I j (� ) � � ij (x)) 2 d�
R


 i
K � (� � x) d�

(11.11)
where � denotes the standard deviation of the Gaussian window. In order to have
enough data to obtain reliable estimates for the parameters � ij (x) and � ij (x), we
choose� = 12.

Taking adv antage of lo cal dissimilarit y of foreground and background.
The idea behind the local density model is the following: in realistic scenarios, the
foreground and background regions are rarely globally dissimilar. For instance, the
head may have a di�eren t color than the shirt or the trousers. If the same colors
also appear in the background, it is impossible to accurately distinguish foreground
and background by meansof a standard global region distribution. Locally, however,
foreground and background can be easily distinguished. Although the local density
model is too complex to detect the desired contour in an image without a good
contour initialization and further restrictions on the contour's shape, we are in a
tracking scenario, i.e., the result from the previous frame always provides a rather
good initialization. Moreover, in the next section a shape constraint is imposed on
the contour that keeps it close to the projection of the surface model. Also note,
that we still have a statistical region based model, which yields considerably less
local optima than previous edge-basedtechniques. The results in Figure 11.2 and
Figure 11.4 show that local region statistics provide more accurate contours and
thus allow for a more reliable estimate of the 3D pose.
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Optimization with EM. Estimating both the probabilit y densities pij and the
region contour works according to the expectation-maximization principle [22, 39].
Having the level set function initialized with some partitioning � 0 , the probabilit y
densities in theseregionscan be approximated. With the probabilit y densities,on the
other hand, one can compute an update on the contour according to (11.8), leading
to a further update of the probabilit y densities, and so on. In order to attenuate
the dependency on the initialization, one can apply a contin uation method in a
coarse-to-�ne manner [6].

11.3.3 Coupled estimation of contour and pose parameters

Ba yesian inference. So far, only the person's silhouette in the image has been
estimated, yet actually we are interested in the person's poseparameters. They can
be estimated from the contour in the image, but also vice-versa the surface model
with given poseparameters can help to determine this contour. In a Bayesiansetting
this joint estimation problem can be written as the maximization of

p(�; � jI ) =
p(I j�; � )p(� j� )p(� )

p(I )
(11.12)

where � indicates the contour given as a level set function, � the set of poseparam-
eters, and I the given image(s). This formula imposesa shape prior on � given the
poseparameters, and it imposesa prior on the poseparameters. For the moment we
will use a uniform prior for p(� ), e�ectiv ely ignoring this factor, but we will come
back to this prior later in Section 11.5.

Join t energy minimization problem. Assuming that the appearancein the im-
age is completely determined by the contour with no further (hidden) dependence
on � , we can set p(I j�; � ) � p(I j� ). Minimizing the negative logarithm of (11.12)
then leads to the following energy minimization problem:

E (�; � � ) = � log p(�; � jI )

= �
Z




�
H (� ) log p1 + (1 � H (� )) log p2

�
dx + �

Z



jr H (� )j dx

+ �
Z



(� � � 0(� )) 2 dx

| {z }
Shap e

+ const:

(11.13)

One recognizes the energy from (11.7) with an additional term that imposes the
shape constraint on the contour and relates at the same time the contour to the
sought poseparameters. The parameter � � 0 intro duced here determines the vari-
abilit y of the estimated contour � from the projected surfacemodel � 0 . � 0 is again a
level set function and it is obtained by projecting the surface to the image plane (by
meansof the known projection matrice) and by applying a signeddistance transform
to the resulting shape. The signed distance transform assignseach point x of � 0 the
Euclidean distance of x to the closest contour point. Points inside the projected
region get positive sign, points outside this region, get negative sign.

Alternating optimization. In order to minimize (11.13) for both the contour and
the poseparameters, an alternating scheme is proposed.First, the poseparameters
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are kept �xed and the energy is minimized with respect to the contour. Afterw ards,
the contour is retained and one optimizes the energy for the poseparameters. In the
tracking scenario, with the initial pose being already close to the desired solution,
only few (2-5) iterations are su�cien t for convergence.

Optimization with resp ect to the con tour. Since the shape term is modeled
in the image domain, minimization of (11.13) with respect to � is straightforw ard
and leads to the gradient descent equation

@t � = H 0(� )
�

log
p1

p2
+ � r >

�
r �

jr � j

��
+ 2� (� 0(� ) � � ): (11.14)

One can observe that the shape term pushes� towards the projected surfacemodel,
while on the other hand, � is still inuenced by the image data ensuring homogeneous
regions according to the statistical region model.

Optimization with resp ect to the pose parameters. Optimization with respect
to the poseparameters needsmore care, since the interaction of the model with the
contour in the image involves a projection. At the same time, the variation of the
projected shape with a certain 3D transformation is quite complex. Principally , the
3D transformation can be estimated from a set of 2D-3D point correspondencesin
a least squares setting, as will be explained later in this section. Since we know
how 2D points in � 0 correspond to 3D points on the surface (� 0 was constructed
by projecting these 3D points), 2D-3D point correspondencescan be established by
matching points of the two 2D shapes � and � 0 .

Shap e matc hing. For minimizing the shape term in (11.13) with respect to the
poseparameters, we look for a transformation in 2D that can account for the projec-
tions of all permitted transformations in 3D. Therefore, we choosea nonparametric
transformation, in particular a smooth displacement �eld w (x ) := (u(x ); v(x )) and
formulate the shape term as

E (u; v) =
Z



(� (x ) � � 0(x + w )) 2 + � (jr uj2 + jr vj2) dx : (11.15)

where � � 0 is a regularization parameter that steers the inuence of the regu-
larization relativ e to the matching criterion. The considered transformation is very
general and, hence, can handle the projected transformations in 3D. The regular-
ization ensuresa smooth displacement �eld, which corresponds to penalizing shape
deformations. Furthermore, it makesthe originally ill-p osedmatching problem well-
posed.

Optic o w estimation problem. A closer look at (11.15) reveals strong con-
nections to optic o w estimation. In fact, the energy is a nonlinear version of the
Horn-Schunck functional in [29]. Consequently , the matching problem can be solved
using a numerical schemeknown from optic o w estimation. We will investigate this
scheme more closely in Section 11.4.

Alternativ e matc hing via ICP . Alternativ ely, one can match the two shapes
by an iterated closest point (ICP) algorithm [4]. As � and � 0 are both Euclidean
distance images, this is closely related to minimization of (11.15) for � ! 0. In [51]
it has been shown empirically that the combination of point correspondencesfrom
both methods is bene�cial for poseestimation.
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In verse pro jection and Pl •ucker lines. After matching the 2D contours, the re-
maining task is to estimate from the nonparametric 2D transformation a 3D trans-
formation parameterized by the sought vector � = (� RB M ; � ). For this purp ose,
the 2D points are changed into 3D entities. For the points in � this means that
their projection rays need to be constructed. A projection ray contains all 3D points
that, when projected to the image plane, yield a zero distance to the contour point
there. Hence, for minimizing the distance in the image plane, one can as well min-
imize the distance between the model points and the rays reconstructed from the
corresponding points.
There exist di�eren t ways to represent projection rays. As we have to minimize dis-
tancesbetweencorrespondences,it is advantageousto usean implicit representation
for a 3D line. It allows instantaneously to determine the distance between a point
and a line.
An implicit representation of projection rays is by means of so-called Pl•ucker
lines[55, 63]. A Pl •ucker line L = (n ; m ) is given as a unit vector n and a mo-
ment m with m = x � n for a given point x on the line. The incidence of a point
x on a line L = (n ; m ) can then be expressedas

x � n � m = 0: (11.16)

Parameter estimation by nonlinear least squares. This equation provides an
error vector and we seek the transformation � = (� RB M ; � ) that minimizes the
norm of this vector over all correspondences.For j = J (x i ) being the joint index of
a model point x i , the error to be minimized can be expressedas

X

i

k�
�

exp(�̂ RB M ) exp(� 1 �̂ 1) : : : exp(� J ( x i ) �̂ J ( x i ) )x i

�
� n i � m i k2

2 ;

(11.17)

where � is the projection of the homogeneous4D vector to a 3D vector by neglecting
the homogeneouscomponent (which is 1), and the symbol � denotes the cross
product.

Linearization. The minimization problem in (11.17) is a least squares problem.
Unfortunately , however, the equations are non-quadratic due to the exponential
form of the transformation matrices. For this reason, the transformation matrix is
linearized and the poseestimation procedure is iterated, i.e., the nonlinear problem
is decomposed into a sequenceof linear problems. This is achieved by

exp(� �̂ ) =
1X

k =0

(� �̂ )k

k!
� I + � �̂ (11.18)

with I as identit y matrix.
This results in

(( I + � �̂ + � 1 �̂ 1 : : : + � J ( x i ) �̂ J ( x i ) )X i )3� 1 � n i � m i = 0 (11.19)

with the unknown poseparameters � acting as linear components. This equation can
be reordered into the form A (� � RB M ; � 1 : : : � N )T = b. Collecting a set of such equa-
tions (each is of rank two) leads to an over-determined linear system of equations,
which can be solved using, for example, the Householder algorithm. The Rodriguez
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formula can be applied to reconstruct the group action from the estimated param-
eter vector � . The 3D points can be transformed and the processis iterated until it
converges.

Multiple camera views. The method can easily be extended to make use of
multiple camera views if all cameras are calibrated to the same world coordinate
system. The point correspondences, obtained by projecting the surface model to
all images and extracting contours there, can be combined in a joint system of
equations. The solution of this system is the least squares �t of the model to the
contours in all images.Due to the coupling of contour and poseestimation, also the
contour extraction can bene�t from the multi-view setting. This is demonstrated in
the comparison depicted in Figure 11.2 and Figure 11.3.

11.4 Optic Flo w for Motion Prediction

The contour-based tracking explained in the previous section demandsa poseinitial-
ization that is close enough to obtain reasonableestimates of the region statistics.
For high frame rates and reasonably slow motion, the result from the previous frame
is a su�cien tly good initialization. For very fast motion or small frame rates, how-
ever, it may happen that limbs have moved too far and the method is not able to
recapture them starting with the result from the previous frame. This problem is
illustrated in the �rst row of Figure 11.5.
A remedy is to improve the initialization by predicting the poseparameters in the
successive frame. The most simple approach is to compute the velocity from the
results in the last two frames and to assumethat the velocity stays constant. How-
ever, it is obvious that this assumption is not satis�ed at all times and can lead to
predictions that are even much worse than the initialization with the latest result.
Auto-regressive models are much more reliable. They predict the new state from
previous ones by means of a parametric model estimated from a set of training
data.

Pose estimation from optic o w. In this chapter, we focus on an image-driven
prediction by means of optic o w. We assume that the pose has been correctly
estimated in frame t, and we are now interested in a prediction of the posein frame
t + 1 given the images in t and t + 1. For this prediction, we need to compute the
optic o w, which provides 2D-2D correspondencesbetweenpoints in the images.As
the 2D-3D correspondencesin frame t are known, we obtain a set of 2D-3D point
correspondencesbetween the new frame t + 1 and the model. From these, the pose
of the model in frame t + 1 can be computed by solving a sequenceof linear systems,
as described by equation (11.19) in the previous section.

Accum ulation of errors. The inherent assumption of knowing the correct pose
of the model in frame t is in fact not exactly satis�ed. In practice, there will be
inaccuracies in the estimated pose.This results in the accumulation of errors when
using only model-free schemesbasedon the optic o w or feature tracking. However,
the contour-based poseestimation from the previous section, which directly derives
correspondencesbetweenthe imageand the model, doesnot su�er from this problem.
It is able to correct errors from the previous frame or from the estimated optic o w.
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Fig. 11.2. Human poseestimation with the coupled contour-based approach given
two cameraviews. First ro w: Initialization of the pose.The projection to the images
is usedas contour initialization. Second ro w: Estimated contour after 5 iterations.
Third ro w: Estimated poseafter 5 iterations.

For this reason, error accumulation is not an issue in the system described here. A
result obtained with the optic o w model detailed below is shown in Figure 11.5.

Optic o w mo del. The remaining open question is how to compute the optic o w.
The main goal here is to provide a prediction that brings the initialization closer
to the correct pose in order to allow the contour-based method to converge to the
correct solution in caseof fast motion. Consequently , the optic o w method has to
be able to deal with rather large displacements.
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Fig. 11.3. Result with a two-step approach, i.e., extraction of the contours from
the imagesfollowed by contour-based poseestimation. The sameinitialization as in
Figure 11.2 was used.Top ro w: Estimated contour. Bottom ro w: Estimated pose.
As pose and contour are not coupled, the contour extraction cannot bene�t from
the two camera views. Moreover, as the contour is not bound to the surface model,
it can run away.

First assumption: gra y value constancy . The basic assumption for optic o w
estimation is the gray value constancy assumption, i.e., the gray value of a translated
point doesnot changebetweenthe frames. With w := (u; v) denoting the optic o w,
this can be expressedby

I (x + w ; t + 1) � I (x ; t) = 0: (11.20)

This equation is also called the optic ow constraint . Due to nonlinearit y in w , it is
usually linearized by a Taylor expansion to yield

I x u + I y v + I t = 0; (11.21)

where subscripts denote partial derivativ es. The linearization may be applied if
displacements are small. For larger displacements, however, the linearization is not
a good approximation anymore. Therefore, it has been suggestedto minimize the
original constraint in (11.20) [43] and to postpone all linearizations to the numerical
scheme [2, 9], which comes down to so-called warping schemes [3, 5, 40]. These
schemescan deal with rather large displacements and, therefore, are appropriate for
the problem at hand.
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Fig. 11.4. Result with a global Parzen estimator instead of the suggestedlocal
region statistics. The sameinitialization as in Figure 11.2 was used.Top ro w: Esti-
mated contour. Bottom ro w: Estimated pose.Local di�erences betweenforeground
and background are not modeled. With the global model, the right arm of the person
better �ts to the background.

Second assumption: smo oth o w �eld. The gray value constancy assumption
alone is not su�cien t for a unique solution. Additional constraints have to be intro-
duced. Here we stick to the constraint of a smooth o w �eld, as suggestedin [29].
It leads to the following energy minimization problem

E (u; v) =
Z



(I (x ; t) � I (x + w ; t + 1))2 + � (jr uj2 + jr vj2) dx ! min (11.22)

that can be solved with variational methods. Note that exactly the same problem
appeared in Section 11.3.3 for matching two contours via (11.15). Thus we can use
almost the samescheme for computing the optic o w between imagesand for shape
matching.

Noise and brigh tness changes. When matching two images, one has to expect
noise and violations of the gray value constancy assumption. These e�ects have to
be taken into account in the optic o w model. In order to deal with noise, one can
apply a robust function 	 (s2) =

p
s2 + 0:0012 to the �rst term in (11.22) [5, 40].

This has the e�ect that outliers in the data have less inuence on the estimation
result.
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Robustness to brightness changes can be obtained by assuming constancy of the
gradient [9]:

r I (x + w ; t + 1) � r I (x ; t) = 0: (11.23)

With both assumptions together, one ends up with the following energy:

E (u; v) =
Z


 1

	
�
(I (x ; t) � I (x + w ; t + 1))2 �

dx

+ 
Z


 1

	
�
(r I (x ; t) � r I (x + w ; t + 1))2 �

dx

+ �
Z


 1

(jr uj2 + jr vj2 ) dx :

(11.24)

Note that the domain is restricted to the foreground region 
 1 , since we are only
interested in correspondenceswithin this region anyway. This masking of the back-
ground region has the advantage that it considers the most dominant motion dis-
contin uities, which would otherwise violate the smoothness assumption of the optic
o w model. Moreover, it allows for cropping the imagesto reduce the computational
load.

Euler-Lagrange equations. According to the calculus of variations, a minimizer
of (11.24) must ful�ll the Euler-Lagrange equations

	 0(I 2
z )I x I z +  	 0(I 2

xz + I 2
y z )( I xx I xz + I xy I y z ) � � �u = 0

	 0(I 2
z )I y I z +  	 0(I 2

xz + I 2
y z )( I y y I y z + I xy I xz ) � � �v = 0

(11.25)

with reecting boundary conditions, � := @xx + @y y , and the following abbreviations:

I x := @x I (x + w ; t + 1),
I y := @y I (x + w ; t + 1),
I z := I (x + w ; t + 1) � I (x ; t),
I xx := @xx I (x + w ; t + 1),
I xy := @xy I (x + w ; t + 1),
I y y := @y y I (x + w ; t + 1),
I xz := @x I (x + w ; t + 1) � @x I (x ; t),
I y z := @y I (x + w ; t + 1) � @y I (x ; t).

(11.26)

Numerical scheme. The nonlinear system of equations in (11.25) can be solved
with the numerical scheme proposed in [9]. It consists of two nested �xed point
iterations for removing the nonlinearities in the equations. The outer iteration is in
w k . It is combined with a downsampling strategy in order to better approximate the
global optim um of the energy. Starting with the initialization w = 0, a new estimate
is computed as w k +1 = w k + (duk ; dvk )> . In each iteration one has to solve for the
increment (duk ; dvk ). Ignoring here the term for the gradient constancy, which can
be derived in the sameway, the system to be solved in each iteration is

	 0(I k
z )

�
I k

x duk + I k
y dvk + I k

z

�
I k

x � �� (uk + duk ) = 0

	 0(I k
z )

�
I k

x duk + I k
y dvk + I k

z

�
I k

y � �� (vk + dvk ) = 0
(11.27)
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Fig. 11.5. Motion prediction by optic o w and its relevance. First ro w: Ini-
tialization with the pose from the previous frame (left). Due to fast motion, the
initialization is far from the correct contour. Consequently , contour extraction (cen-
ter) and tracking (righ t) fail. Second ro w: Optic o w �eld as arrow (left) and color
plot (center) and prediction computed from this o w �eld (righ t). The brighter mesh
shows the old pose, the dark mesh the predicted one. Third ro w: Lik e �rst row,
but now the initialization is from the posepredicted by the optic o w.

If 	 0 is constant, this is the casefor the shape matching problem in (11.15), (11.27)
is already a linear system of equations and can be solved directly with an e�cien t
iterativ e solver lik e SOR. If 	 0 depends on (du; dv), however, we have to implement
a second �xed point iteration, now in (duk ;l ; dvk ;l ) to remove the remaining non-
linearit y. Each inner iteration computes a new estimate of 	 0 from the most recent
(duk ;l ; dvk ;l ). As 	 0 is kept �xed in each such iteration, the resulting system is linear
in (duk ;l ; dvk ;l ) and can be solved with SOR. With a faster multigrid solver, it is
even feasible to compute the optic o w in real-time [14]. However, in the scenario
here, where the contour-based part is far from real-time performance, the di�erence
to an SOR solver is probably not worth the e�ort.

11.5 Prior Kno wledge of Join t Angle Con�gurations

The method surveyed in Sections 11.3 and 11.4 incorporates, apart from the input
images,alsoprior knowledgeexplicitly given by the 3D shape model and the position
of the joints. It has beendemonstrated that this prior knowledgeplays an important
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role when seekingthe contours. This is in accordancewith �ndings in previous works
on segmentation methods incorporating 2D shape priors [36, 18, 19]. In particular
when the object of interest is partially occluded, the use of shape priors improves
the results signi�can tly .
While the method in Sections11.3 and 11.4 includes a prior on the contour (for given
poseparameters), it doesnot incorporate a prior on the poseparameters yet. Know-
ing the e�ects of prior shape knowledge, one expects similarly large improvements
when using knowledge about familiar poses.It is intuitiv ely clear that many poses
are a-priori impossible or very unlik ely, and that a successfultechnique for human
tracking should exclude such solutions. Indeed, recent works on human poseestima-
tion focus a lot on this issue [57, 59, 65, 11]. Their results con�rm the relevance of
posepriors for reliable tracking.

In tegrating the prior via the Ba yesian form ula. The Bayesian formalism in
(11.12) provides the basis for integrating such prior knowledge into the tracking
technique. For conveniencewe repeat the formula:

p(�; � jI ) =
p(I j�; � )p(� j� )p(� )

p(I )
! max : (11.28)

While the prior p(� ) has been ignored so far, the goal of this section is to learn a
probabilit y density from training samples and to employ this density in order to
constrain the poseparameters.
As the prior should be independent from the global translation and rotation of
the body in the training sequences,a uniform prior is applied to the global twist
parameters � RB M . Only the probabilit y density for the joint angle vector p(� ) is
learned and integrated into the tracking framework.

Nonparametric densit y estimation. Figure 11.6 visualizes training data for the
legs of a person from two walking sequencesobtained by a marker-based tracking
system with a total of 480 samples.Only a projection to three dimensions (the three
joint angles of the right hip) is shown.

Fig. 11.6. Left: Visualization of the training data obtained from two walking
sequences.Only a 3D projection (the three joint angles of the right hip) is shown.
Righ t: Sometraining samplesapplied to a leg model.
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There are many possibilities to model probabilit y densities from such training sam-
ples. The most common way is a parametric representation by meansof a Gaussian
density, which is fully described by the mean and covariance matrix of the train-
ing samples. Such representations, however, tend to oversimplify the sample data.
Although Figure 11.6 shows only a projection of the full con�guration space, it is
already obvious from this �gure that posecon�gurations in a walking motion cannot
be described accurately by a Gaussian density.
In order to cope with the non-Gaussian nature of the con�guration space,[11] have
advocated a nonparametric density estimate by meansof the Parzen-Rosenblatt es-
timator [50, 47]. It approximates the probabilit y density by a sum of kernel functions
centered at the training samples.A common kernel is the Gaussian function, which
leads to:

p(� ) =
1

p
2� � N

NX

i =1

exp
�

�
(� i � � )2

2� 2

�
(11.29)

where N is the number of training samples. Note that (11.29) does not involve a
projection but acts on the conjoint con�guration space of all angles. This means,
also the interdependency between joint angles is taken into account.

Choice of the kernel width. The Parzen estimator involves the kernel width �
as a tuning parameter. Small kernel sizeslead to an accurate representation of the
training data. On the other hand, unseentest samplescloseto the training samples
may be assigneda too small probabilit y. Large kernel sizesare more conservativ e,
leading to a smoother approximation of the density, which in the extreme casecomes
down to a uniform distribution. Numerous works on how to optimally choose the
kernel size are available in the statistics literature [58]. In our work, we �x � as
the maximum nearest neighbor distance between all training samples, i.e., the next
sample is always within one standard deviation. This choice is motiv ated from the
fact that our samplesstem from a smooth sequenceof poses.

Energy minimization. Taking the prior density into account leads to an addi-
tional term in the energy (11.13) that constrains the pose parameters to familiar
con�gurations:

EPrior = � log(p(� )) : (11.30)

The gradient descent of (11.30) in � reads

@t � = �
@EPrior

@�
=

P N
i =1 wi (� i � � )

� 2
P N

i =1 wi
(11.31)

wi := exp
�

�
j� i � � j2

2� 2

�
: (11.32)

Obviously, this equation draws the pose to the next local maximum of the prob-
abilit y density. It can be directly integrated into the linear system (11.19) from
Section 11.3.3. For each joint j , an additional equation � k +1

j = � k
j + � @t � k

j is ap-
pended to the linear system. In order to achieve an equal weighting of the image
against the prior, the new equations are weighted by the number of point correspon-
dencesobtained from the contours. The step size parameter � = 0:125� 2 yielded
empirically stable results.

Regularization. The prior obviously provides a regularization of the equation sys-
tem. Assume a foot is not visible in any camera view. Without prior knowledge, this
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Without prior With prior

Fig. 11.7. Relevance of the learned con�gurations for the tracking stabilit y. Oc-
clusions locally disturb the image-driven pose estimation. This can �nally causea
global tracking failure. The prior couplesthe body parts and seeksthe most familiar
con�guration given all the image data.

would automatically lead to a singular system of equations, since there are no cor-
respondencesthat generate any constraint equation with respect to the joint angles
at the foot. Due to the interdependencyof the joint angles,the prior equation draws
the joint angles of the invisible foot to the most probable solution given the angles
of all visible body parts.

Robustness to partial occlusions. Apart from providing unique solutions, the
prior also increases the robustness of the tracking in case of unreliable data, as
demonstrated in Figure 11.7. Instead of nonsensically �tting the bad data, the
method seeksa familiar solution that �ts the data best. Another example is shown
in Figure 11.8 where, additionally to 25% uniform noise, 50 rectangles of random
position, size, and gray value were placed in each image.

11.6 Discussion

The human tracking system described in the preceding sections is based only on
few assumptions on the sceneand works quite reliably, as shown for rigid bodies in
[53, 10] and humans in [52] as well as in this chapter. Further experiments with the
same technique are contained in the next chapter. Nevertheless, there are still lots
of challenges that shall be discussedin this section.

Running time. One of these challenges is a reduction of the running time. Cur-
rently , with a 2GHz laptop, the method needs around 50 secondsper frame for
384� 280 stereo images. Even though one could at least obtain a speedup of factor
4 by using faster hardware and optimizing the implementation, the method is not
adequate for real-time processing.The main computational load is caused by the
iterativ e contour and poseestimation and the approximation of region statistics in-
volved therein. More considerablespeedupsmay be achieved by using the parallelism
in these operations via an implementation on graphics hardware.
However, most applications of 3D human motion tracking do not demand real-time
performance but high accuracy. Sports movement analysis and modeling of motion
patterns for computer graphics are run in batch mode anyway. Thus, improving the
running time would mainly reduce hardware costs and improve user interaction.

Auto-initialization. Trying to automatically initialize the pose in the �rst frame
is another interesting challenge. So far, a quite accurate initialization of the poseis



288 Brox et al.

Fig. 11.8. Pose estimates in a sample frame disturb ed by 50 varying rectangles
with random position, size, and gray value and 25% uncorrelated pixel noise.

needed.For this kind of detection task, the proposedframework seemslessappropri-
ate, as it is di�cult to detect silhouettes in cluttered images. For object detection,
patch based methods have already proven their strength. Thus they can probably
solve this task more e�cien tly . Auto-initialization has, for instance, been demon-
strated in [45] for rigid bodies. Works in the scope of human tracking can be found
in [49, 25, 60, 1, 61]. Some of these approaches even use silhouettes for the initial-
ization. However, in these casesthe contour must be easyto extract from the image
data. This is feasible, for instance, with background subtraction if the background is
static. The advantage of such discriminativ e tracking is the possibility to reinitialize
after the person has been lost due to total occlusion or the person moving out of all
camera views. Combinations of discriminativ e and generative models, as suggested
in [61], are discussedin Chapter 8.

Clothed people. In nearly all setups, the subjects have to wear a body suit to
ensure an accurate matching between the silhouettes and the surface models of the
legs. Unfortunately , body suits may be uncomfortable to wear in contrast to loose
clothing (shirts, shorts, skirts etc.). The subjects also move slightly di�eren t in body
suits compared to being in clothes since all body parts (even unfavored ones) are
clearly visible. The incorporation of cloth models would easethe subjects and also
simplify the analysis of outdoor scenesand arbitrary sporting activities. A �rst
approach in this direction is presented in Chapter 12.
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Prior kno wledge on motion dynamics. In Section 11.5, a prior on the joint angle
vector has been imposed.This has lead to a signi�can t improvement in the tracking
reliabilit y given disturb ed or partially occluded input images. However, the prior is
on the static poseparameters only. It doesnot take prior information about motion
patterns, i.e. the dynamics, into account. Such dynamical priors can be modeled by
regressionmethods such as linear regressionor Gaussian processes[48]. In the ideal
case, the model yields a probabilit y density, which allows the sound integration in
a Bayesian framework [17]. Recently , nonlinear dimensionality reduction methods
have becomevery popular in the context of motion dynamics.

Subspace learning. The idea of dimensionality reduction methods is to learn a
mapping between the original, high-dimensional space of pose parameters and a
low-dimensional manifold in this space. Solutions are expected to lie only on this
manifold, i.e., the search spacehas been considerably reduced. The motiv ation for
this procedure is the expected inherent low-dimensional structure in a human motion
pattern. For instance, the pattern of walking is basically a closed one-dimensional
loop of poseswhen modeled on an adequate, however complex, manifold. Linear
projection methods lik e PCA can be supposedto only insu�cien tly capture all the
limb movements in motion patterns. Nonlinear methods lik e Gaussian processlatent
variable models (GPLVM), ISOMAP , or others havebeenshown to be more adequate
[35, 27, 25, 65]. Seealso Chapter 2 and Chapter 10 for more detailed insights.
While dimensionality reduction can successfullymodel a single motion pattern lik e
walking, running, jumping, etc., it is doubtful that the same concept still works if
the model shall contain multiple such patterns. Even though each single pattern
may be one- or two-dimensional, the combination of patterns is not. Hence, one has
to employ a mixture model with all the practical problems concerning the choice of
mixture components and optimization. In caseof multiple motion patterns, it may
thus be bene�cial to de�ne models in the original high-dimensional space,as done,
e.g., in the last chapter for static posepriors. This way, one knows for sure that all
di�eren t patterns can be distinguished. Dealing with the arising high dimensionality
when dynamics are included, however, remains a challenging open problem.

11.7 Summary

This chapter has presented a generative Bayesianmodel for human motion tracking.
It includes the joint estimation of the human silhouette and the body poseparam-
eters. The estimation is constrained by a static poseprior based on nonparametric
Parzen densities. Furthermore, the posein new frames is predicted by meansof optic
o w computed in the foreground region. The approach demands a prede�ned sur-
face model, the positions of the joints, an initialization of the posein the �rst frame,
and a calibration of all cameras to the same world coordinate system. In return
one obtains reliable estimates of all pose parameters without error accumulation.
There is no assumption of a static background involved. Instead, the foreground
and background regions are supposedto be locally di�eren t. Due to the poseprior,
the method can cope with partial occlusionsof the person.We also discussedfurther
extensions, in particular the use of image patches for initial posedetection and the
integration of dynamical priors.
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App endix: Semi-automatic Acquisition of a Bo dy Mo del

As most model-based human tracking methods, also the approach in this chapter
is based on a model that consists of multiple rigid parts interconnected by joints.
Basically, this body model has to be designed manually. Thus, often one can �nd
quite simplistic stick �gures based on ellipsoidal limbs in the literature. In this
subsection, we briey describe a method that allows to construct a more accurate
surface model by means of four key views of a person as shown in Figure11.9.

Bo dy separation. After segmentation we separate the arms from the torso of the
model. Since we only generate the upper torso, the user can de�ne a bottom line of
the torso by clicking on the image. Then we detect the arm pits and the neck joint
from the front view of the input image. The arm pits are simply given by the two
lowermost corners of the silhouette which are not at the bottom line and exceeda
preset angle threshold. The position of the neck joint can be found when moving
along the boundary of the silhouette from an upper shoulder point to the head. The
narrowest x-slice of the silhouette gives the neck joint.

Join t lo calization. After this rough segmentation of the human torso we detect
the positions of the arm joints. We use a special reference frame (joint view in
Figure11.9) that allows to extract arm segments. To gain the length of the hands,
upper arms, etc. we �rst apply a skeletonization procedure. Skeletonization [33] is a
processof reducing object pixels in a binary image to a skeletal remnant that largely
preserves the extent and connectivit y of the original region while eliminating most
of the original object pixels. Then we use the method presented in [16] to detect
corners of the skeleton to identify joint positions of the arms.

Side viewFront view Joint viewArm side view

 Torso & arm  reconstruction Determine joint locations

Fig. 11.9. Steps for semi-automatically deriving a body model from four input
images.
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Since the center of the elbow joint is not at the center of the arm but beneath, the
joint localizations need to be re�ned. For this reason, we shift the joint position
aiming at correspondence with the human anatomy. The resulting joint locations
are shown in the middle right image of Figure 11.9.

Surface mesh reconstruction. For surface mesh reconstruction we assumecali-
brated camerasin nearly orthogonal views. Then a shape-from-silhouettes approach
[34] is applied. We detect control points for each slice and interpolate them by a
B-spline curve using the DeBoor algorithm. We start with oneslice of the �rst image
and use its edge points as the �rst two referencepoints. They are then multiplied
with the fundamental matrix of the �rst to the second camera, and the resulting
epipolar lines are intersected with the secondsilhouette resulting in two more ref-
erencepoints. The referencepoints are intersected leading to four control points in
3D space.
For arm generation we use a similar scheme for building a model: We use two
other reference frames (input images 2 and 3 in Figure 11.9). Then the arms are
aligned horizontally and we use the �ngertip as starting point on both arms. These
silhouettes are sliced vertically to obtain the width and height of each arm part.
The arm patches are then connected to the mid plane of the torso.


