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Summary. Human motion capturing can be regarded as an optimization problem
where one searches for the pose that minimizes a previously defined error function
based on some image features. Most approaches for solving this problem use iterative
methods like gradient descent approaches. They work quite well as long as they do
not get distracted by local optima. We introduce a novel approach for global opti-
mization that is suitable for the tasks as they occur during human motion capturing.
We call the method interacting simulated annealing since it is based on an inter-
acting particle system that converges to the global optimum similar to simulated
annealing. We provide a detailed mathematical discussion that includes convergence
results and annealing properties. Moreover, we give two examples that demonstrate
possible applications of the algorithm, namely a global optimization problem and
a multi-view human motion capturing task including segmentation, prediction, and
prior knowledge. A quantative error analysis also indicates the performance and the
robustness of the interacting simulated annealing algorithm.

13.1 Introduction

13.1.1 Motivation

Optimization problems arise in many applications of computer vision. In pose esti-
mation, e.g. [28], and human motion capturing, e.g. [31], functions are minimized at
various processing steps. For example, the marker-less motion capture system [26]
minimizes in a first step an energy function for the segmentation. In a second step,
correspondences between the segmented image and a 3D model are established. The
optimal pose is then estimated by minimizing the error given by the correspondences.
These optimization problems also occur, for instance, in model fitting [17, 31]. The
problems are mostly solved by iterative methods as gradient descent approaches.
The methods work very well as long as the starting point is near the global opti-
mum, however, they get easily stuck in a local optimum. In order to deal with it,
several random selected starting points are used and the best solution is selected in
the hope that at least one of them is near enough to the global optimum, cf. [26].
Although it improves the results in many cases, it does not ensure that the global
optimum is found.
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In this chapter, we introduce a global optimization method based on an interacting
particle system that overcomes the dilemma of local optima and that is suitable for
the optimization problems as they arise in human motion capturing. In contrast to
many other optimization algorithms, a distribution instead of a single value is ap-
proximated by a particle representation similar to particle filters [10]. This property
is beneficial, particularly, for tracking where the right parameters are not always
exact at the global optimum depending on the image features that are used.

13.1.2 Related Work

A popular global optimization method inspired by statistical mechanics is known as
simulated annealing [14, 18]. Similar to our approach, a function V ≥ 0 interpreted
as energy is minimized by means of an unnormalized Boltzmann-Gibbs measure that
is defined in terms of V and an inverse temperature β > 0 by

g(dx) = exp (−β V (x)) λ(dx), (13.1)

where λ is the Lebesgue measure. This measure has the property that the probability
mass concentrates at the global minimum of V as β →∞.
The key idea behind simulated annealing is taking a random walk through the
search space while β is successively increased. The probability of accepting a new
value in the space is given by the Boltzmann-Gibbs distribution. While values with
less energy than the current value are accepted with probability one, the probability
that values with higher energy are accepted decreases as β increases. Other related
approaches are fast simulated annealing [30] using a Cauchy-Lorentz distribution
and generalized simulated annealing [32] based on Tsallis statistics.
Interacting particle systems [19] approximate a distribution of interest by a finite
number of weighted random variablesX(i) called particles. Provided that the weights
Π(i) are normalized such that

P
Π(i) = 1, the set of weighted particles determines

a random probability measures by

nX

i=1

Π(i)δX(i) . (13.2)

Depending on the weighting function and the distribution of the particles, the mea-
sure converges to a distribution η as n tends to infinity. When the particles are
identically independently distributed according to η and uniformly weighted, i.e.
Π(i) = 1/n, the convergence follows directly from the law of large numbers [3].
Interacting particle systems are mostly known in computer vision as particle fil-
ter [10] where they are applied for solving non-linear, non-Gaussian filtering prob-
lems. However, these systems also apply for trapping analysis, evolutionary algo-
rithms, statistics [19], and optimization as we demonstrate in this chapter. They
usually consist of two steps as illustrated in Figure 13.1. During a selection step,
the particles are weighted according to a weighting function and then resampled
with respect to their weights, where particles with a great weight generate more
offspring than particles with lower weight. In a second step, the particles mutate or
are diffused.
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Fig. 13.1. Operation of an interacting particle system. After weighting the particles
(black circles), the particles are resampled and diffused (gray circles).

13.1.3 Interaction and Annealing

Simulated annealing approaches are designed for global optimization, i.e. for search-
ing the global optimum in the entire search space. Since they are not capable of
focusing the search on some regions of interest in dependency on the previous visited
values, they are not suitable for tasks in human motion capturing. Our approach,
in contrast, is based on an interacting particle system that uses Boltzmann-Gibbs
measures (13.1) similar to simulated annealing. This combination ensures not only
the annealing property as we will show, but also exploits the distribution of the par-
ticles in the space as measure for the uncertainty in an estimate. The latter allows
an automatic adaption of the search on regions of interest during the optimization
process. The principle of the annealing effect is illustrated in Figure 13.2.
A first attempt to fuse interaction and annealing strategies for human motion cap-
turing has become known as annealed particle filter [9]. Even though the heuristic is
not based on a mathematical background, it already indicates the potential of such
combination. Indeed, the annealed particle filter can be regarded as a special case
of interacting simulated annealing where the particles are predicted for each frame
by a stochastic process, see Section 13.3.1.

13.1.4 Outline

The interacting annealing algorithm is introduced in Section 13.3.1 and its asymp-
totic behavior is discussed in Section 13.3.2. The given convergence results are based
on Feynman-Kac models [19] which are outlined in Section 13.2. Since a general
treatment including proofs is out of the scope of this introduction, we refer the in-
terested reader to [11] or [19]. While our approach is evaluated for a standard global
optimization problem in Section 13.4.1, Section 13.4.2 demonstrates the performance
of interacting simulated annealing in a complete marker-less human motion capture
system that includes segmentation, pose prediction and prior knowledge.
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Fig. 13.2. Illustration of the annealing effect with three runs. Due to annealing,
the particles migrate towards the global maximum without getting stuck in the local
maximum.

13.1.5 Notations

We always regard E as a subspace of Rd, and let B(E) denote its Borel σ-algebra.
B(E) denotes the set of bounded measurable functions, δx is the Dirac measure
concentrated in x ∈ E, ‖ · ‖2 is the Euclidean norm, and ‖ · ‖∞ is the well-known
supremum norm. Let f ∈ B(E), µ be a measure on E, and let K be a Markov kernel
on E1. We write

〈µ, f〉 =

Z

E

f(x)µ(dx), 〈µ,K〉(B) =

Z

E

K(x,B)µ(dx) for B ∈ B(E).

Furthermore, U [0, 1] denotes the uniform distribution on the interval [0, 1] and

osc(ϕ) := sup
x,y∈E

{|ϕ(x)− ϕ(y)|} . (13.3)

is an upper bound for the oscillations of f .

13.2 Feynman-Kac Model

Let (Xt)t∈N0 be an E-valued Markov process with family of transition kernels
(Kt)t∈N0 and initial distribution η0. We denote by Pη0 the distribution of the Markov
process, i.e. for t ∈ N0,

Pη0 (d(x0, x1, . . . , xt)) = Kt−1(xt−1, dxt) . . . K0(x0, dx1) η0(dx0),

1 A Markov kernel is a function K : E × B(E) → [0,∞] such that K(·, B) is
B(E)-measurable ∀B and K(x, ·) is a probability measure ∀x. An example of a
Markov kernel is given in Equation (13.12). For more details on probability theory
and Markov kernels, we refer to [3].
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and by Eη0 [·] the expectation with respect to Pη0 . The sequence of distributions
(ηt)t∈N0 on E defined for any ϕ ∈ B(E) and t ∈ N0 as

〈ηt, ϕ〉 := 〈γt, ϕ〉〈γt, 1〉
, 〈γt, ϕ〉 := Eη0

"
ϕ (Xt) exp

 
−
t−1X

s=0

βs V (Xs)

!#
,

is called the Feynman-Kac model associated with the pair (exp(−βt V ), Kt).
The Feynman-Kac model as defined above satisfies the recursion relation

ηt+1 = 〈Ψt(ηt), Kt〉, (13.4)

where the Boltzmann-Gibbs transformation Ψt is defined by

Ψt (ηt) (dyt) =
Eη0

ˆ
exp

`
−Pt−1

s=0 βs V (Xs)
´˜

Eη0
ˆ
exp

`
−Pt

s=0 βs V (Xs)
´˜ exp (−βt Vt(yt)) ηt(dyt).

The particle approximation of the flow (13.4) depends on a chosen family of Markov
transition kernels (Kt,ηt)t∈N0 satisfying the compatibility condition

〈Ψt (ηt) , Kt〉 := 〈ηt, Kt,ηt 〉.

A family (Kt,ηt)t∈N0 of kernels is not uniquely determined by these conditions.
As in [19, Chapter 2.5.3], we choose

Kt,ηt = St,ηtKt, (13.5)

where

St,ηt (xt, dyt) = εt exp (−βt Vt(xt)) δxt(dyt)

+ (1 − εt exp (−βt Vt(xt))) Ψt (ηt) (dyt), (13.6)

with εt ≥ 0 and εt ‖exp(−βt V )‖∞ ≤ 1. The parameters εt may depend on the
current distribution ηt.

13.3 Interacting Simulated Annealing

Similar to simulated annealing, one can define an annealing scheme 0 ≤ β0 ≤ β1 ≤
. . . ≤ βt in order to search for the global minimum of an energy function V . Under
some conditions that will be stated in Section 13.3.2, the flow of the Feynman-Kac
distribution becomes concentrated in the region of global minima of V as t goes to
infinity. Since it is not possible to sample from the distribution directly, the flow is
approximated by a particle set as it is done by a particle filter. We call the algorithm
for the flow approximation interacting simulated annealing (ISA).

13.3.1 Algorithm

The particle approximation for the Feynman-Kac model is completely described
by the Equation (13.5). The particle system is initialized by n identically, inde-

pendently distributed random variables X
(i)
0 with common law η0 determining the
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random probability measure ηn0 :=
Pn
i=1 δX(i)

0

/n. Since Kt,ηt can be regarded as

the composition of a pair of selection and mutation Markov kernels, we split the
transitions into the following two steps

ηnt
Selection−−−−−−−−→ η̌nt

Mutation−−−−−−−−→ ηnt+1,

where

ηnt :=
1

n

nX

i=1

δ
X

(i)
t

, η̌nt :=
1

n

nX

i=1

δ
X̌

(i)
t

.

During the selection step each particle X
(i)
t evolves according to the Markov tran-

sition kernel St,ηn
t
(X

(i)
t , ·). That means X

(i)
t is accepted with probability

εt exp(−βt V (X
(i)
t )), (13.7)

and we set X̌
(i)
t = X

(i)
t . Otherwise, X̌

(i)
t is randomly selected with distribution

nX

i=1

exp(−βt V (X
(i)
t ))

Pn
j=1 exp(−βt V (X

(j)
t ))

δ
X

(i)
t

.

The mutation step consists in letting each selected particle X̌
(i)
t evolve according to

the Markov transition kernel Kt(X̌
(i)
t , ·).

Algorithm 6 Interacting Simulated Annealing Algorithm

Requires: parameters (εt)t∈N0 , number of particles n, initial distribution η0, energy
function V , annealing scheme (βt)t∈N0 and transitions (Kt)t∈N0

1. Initialization
• Sample x

(i)
0 from η0 for all i

2. Selection
• Set π(i) ← exp(−βt V (x

(i)
t )) for all i

• For i from 1 to n:
Sample κ from U [0, 1]
If κ ≤ εtπ(i) then
? Set x̌

(i)
t ← x

(i)
t

Else
? Set x̌

(i)
t ← x

(j)
t with probability π(j)

P
n
k=1

π(k)

3. Mutation
• Sample x

(i)
t+1 from Kt(x̌

(i)
t , ·) for all i and go to step 2

There are several ways to choose the parameter εt of the selection kernel (13.6) that
defines the resampling procedure of the algorithm, cf. [19]. If

εt := 0 ∀t, (13.8)

the selection can be done by multinomial resampling. Provided that2

2 The inequality satisfies the condition εt ‖exp(−βt V )‖∞ ≤ 1 for Equation (13.6).
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n ≥ sup
t

(exp(βt osc(V )) ,

another selection kernel is given by

εt(ηt) :=
1

n 〈ηt, exp(−βt V )〉 . (13.9)

In this case the expression εtπ
(i) in Algorithm 6 is replaced by π(i)/

Pn
k=1 π

(k). A
third kernel is determined by

εt(ηt) :=
1

inf {y ∈ R : ηt ({x ∈ E : exp(−βt V (x)) > y}) = 0} , (13.10)

yielding the expression π(i)/max1≤k≤n π
(k) instead of εtπ

(i).
Pierre del Moral showed in [19, Chapter 9.4] that for any t ∈ N0 and ϕ ∈ B(E) the
sequence of random variables

√
n(〈ηnt , ϕ〉 − 〈ηt, ϕ〉)

converges in law to a Gaussian random variable W when the selection kernel (13.6)
is used to approximate the flow (13.4). Moreover, it turns out that when (13.9) is
chosen, the variance of W is strictly smaller than in the case with εt = 0.
We remark that the annealed particle filter [9] relies on interacting simulated an-
nealing with εt = 0. The operation of the method is illustrated by

ηnt
Prediction−−−−−−−−→ η̂nt+1

ISA−−−−−−−−→ ηnt+1.

The ISA is initialized by the predicted particles X̂
(i)
t+1 and performs M times the

selection and mutation steps. Afterwards the particles X
(i)
t+1 are obtained by an

additional selection. This shows that the annealed particle filter uses a simulated
annealing principle to locate the global minimum of a function V at each time step.

13.3.2 Convergence

This section discusses the asymptotic behavior of the interacting simulated annealing
algorithm. For this purpose, we introduce some definitions in accordance with [19]
and [15].

Definition 1. A kernel K on E is called mixing if there exists a constant 0 < ε < 1
such that

K(x1, ·) ≥ εK(x2, ·) ∀x1, x2 ∈ E. (13.11)

The condition can typically only be established when E ⊂ R
d is a bounded subset,

which is the case in many applications like human motion capturing. For example
the (bounded) Gaussian distribution on E

K(x,B) :=
1

Z

Z

B

exp

„
−1

2
(x− y)T Σ−1 (x− y)

«
dy, (13.12)

where Z :=
R
E

exp(− 1
2

(x−y)T Σ−1 (x−y)) dy, is mixing if and only if E is bounded.
Moreover, a Gaussian with a high variance satisfies the mixing condition with a
larger ε than a Gaussian with lower variance.
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Definition 2. The Dobrushin contraction coefficient of a kernel K on E is defined
by

β(K) := sup
x1,x2∈E

sup
B∈B(E)

|K(x1, B)−K(x2, B)| . (13.13)

Furthermore, β(K) ∈ [0, 1] and β(K1K2) ≤ β(K1) β(K2).

When the kernel M is a composition of several mixing Markov kernels, i.e. M :=
KsKs+1 . . . Kt, and each kernel Kk satisfies the mixing condition for some εk, the
Dobrushin contraction coefficient can be estimated by β(M) ≤ Qt

k=s(1− εk).
The asymptotic behavior of the interacting simulated annealing algorithm is affected
by the convergence of the flow of the Feynman-Kac distribution (13.4) to the region
of global minima of V as t tends to infinity and by the convergence of the particle
approximation to the Feynman-Kac distribution at each time step t as the number
of particles n tends to infinity.

Convergence of the flow

We suppose that Kt = K is a Markov kernel satisfying the mixing condition (13.11)
for an ε ∈ (0, 1) and osc(V ) <∞. A time mesh is defined by

t(n) := n(1 + bc(ε)c) c(ε) := (1− ln(ε/2))/ε2 for n ∈ N0. (13.14)

Let 0 ≤ β0 ≤ β1 . . . be an annealing scheme such that βt = βt(n+1) is constant in the
interval (t(n), t(n+1)]. Furthermore, we denote by η̌t the Feynman-Kac distribution
after the selection step, i.e. η̌t = Ψt(ηt). According to [19, Proposition 6.3.2], we have

Theorem 1. Let b ∈ (0, 1) and βt(n+1) = (n + 1)b. Then for each δ > 0

lim
n→∞

η̌t(n) (V ≥ V? + δ) = 0,

where V? = sup{v ≥ 0; V ≥ v a.e.}.
The rate of convergence is d/n(1−b) where d is increasing with respect to b and c(ε)
but does not depend on n as given in [19, Theorem 6.3.1]. This theorem establishes
that the flow of the Feynman-Kac distribution η̌t becomes concentrated in the region
of global minima as t→ +∞.

Convergence of the particle approximation

Del Moral established the following convergence theorem [19, Theorem 7.4.4].

Theorem 2. For any ϕ ∈ B(E),

Eη0 [|〈ηnt+1, ϕ〉 − 〈ηt+1, ϕ〉|] ≤ 2 osc(ϕ)√
n

 
1 +

tX

s=0

rsβ(Ms)

!
,

where

rs := exp

 
osc(V )

tX

r=s

βr

!
,

Ms := KsKs+1 . . . Kt,

for 0 ≤ s ≤ t.
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Assuming that the kernels Ks satisfy the mixing condition with εs, we get a rough
estimate for the number of particles

n ≥ 4 osc(ϕ)2

δ2

 
1 +

tX

s=0

(
exp

 
osc(V )

tX

r=s

βr

!
tY

k=s

(1 − εk)
)!2

(13.15)

needed to achieve a mean error less than a given δ > 0.

Optimal transition kernel

Fig. 13.3. Impact of the mixing condition satisfied for εs = ε. Left: Parameter
c(ε) of the time mesh (13.14). Right: Rough estimate for the number of particles
needed to achieve a mean error less than δ = 0.1.

The mixing condition is not only essential for the convergence result of the flow as
stated in Theorem 1 but also influences the time mesh by the parameter ε. In view
of Equation (13.14), kernels with ε close to 1 are preferable, e.g. Gaussian kernels on
a bounded set with a very high variance. The right hand side of (13.15) can also be
minimized if Markov kernelsKs are chosen such that the mixing condition is satisfied
for a εs close to 1, as shown in Figure 13.3. However, we have to consider two facts.
First, the inequality in Theorem 2 provides an upper bound of the accumulated error
of the particle approximation up to time t + 1. It is clear that the accumulation of
the error is reduced when the particles are highly diffused, but it also means that
the information carried by the particles from the previous time steps is mostly lost
by the mutation. Secondly, we cannot sample from the measure η̌t directly, instead
we approximate it by n particles. Now the following problem arises. The mass of the
measure concentrates on a small region of E on one hand and, on the other hand,
the particles are spread over E if ε is large. As a result we get a degenerated system
where the weights of most of the particles are zero and thus the global minima are
estimated inaccurately, particularly for small n. If we choose a kernel with small ε
in contrast, the convergence rate of the flow is very slow. Since neither of them is
suitable in practice, we suggest a dynamic variance scheme instead of a fixed kernel
K.
It can implemented by Gaussian kernelsKt with covariance matrices Σt proportional
to the sample covariance after resampling. That is, for a constant c > 0,
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Σt :=
c

n− 1

nX

i=1

(x
(i)
t − µt)ρ (x

(i)
t − µt)Tρ , µt :=

1

n

nX

i=1

x
(i)
t , (13.16)

where ((x)ρ)k = max(xk, ρ) for a ρ > 0. The value ρ ensures that the variance does
not become zero. The elements off the diagonal are usually set to zero, in order to
reduce computation time.

Optimal parameters

The computation cost of the interacting simulated annealing algorithm with n par-
ticles and T annealing runs is O(nT ), where

nT := n · T . (13.17)

While more particles give a better particle approximation of the Feynman-Kac dis-
tribution, the flow becomes more concentrated in the region of global minima as
the number of annealing runs increases. Therefore, finding the optimal values is a
trade-off between the convergence of the flow and the convergence of the particle
approximation provided that nT is fixed.
Another important parameter of the algorithm is the annealing scheme. The scheme
given in Theorem 1 ensures convergence for any energy function V — even for the
worst one in the sense of optimization — as long as osc(V ) <∞ but is too slow for
most applications, as it is the case for simulated annealing. In our experiments the
schemes

βt = ln(t+ b) for some b > 1 (logarithmic), (13.18)

βt = (t+ 1)b for some b ∈ (0, 1) (polynomial) (13.19)

performed well. Note that in contrast to the time mesh (13.14) the schemes are not
anymore constant on a time interval.
Even though a complete evaluation of the various parameters is out of the scope of
this introduction, the examples given in the following section demonstrate settings
that perform well, in particular for human motion capturing.

13.4 Examples

13.4.1 Global Optimization

The Ackley function [2, 1]

f(x) = −20 exp

0
@−0.2

vuut1

d

dX

i=1

x2
i

1
A − exp

 
1

d

dX

i=1

cos(2π xi)

!
+ 20 + e

is a widely used multimodal test function for global optimization algorithms. As
one can see from Figure 13.4, the function has a global minimum at (0, 0) that
is surrounded by several local minima. The problem consists of finding the global
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Fig. 13.4. Ackley function. Unique global minimum at (0, 0) with several local
minima around it.

minimum in a bounded subspace E ⊂ R
d with an error less than a given δ > 0

where the initial distribution is the uniform distribution on E.
In our experiments, the maximal number of time steps were limited by 999, and
we set E = [−4, 4] × [−4, 4] and δ = 10−3. The interacting simulated annealing
algorithm was stopped when the Euclidean distance between the global minimum
and its estimate was less than δ or when the limit of time steps was exceeded. All
simulations were repeated 50 times and the average number of time steps needed
by ISA was used for evaluating the performance of the algorithm. Depending on
the chosen selection kernel (13.8), (13.9), and (13.10), we write ISAS1, ISAS2, and
ISAS3, respectively.

Fig. 13.5. Average time steps needed to find global minimum with error less than
10−3 with respect to the parameters b and c.

Using a polynomial annealing scheme (13.19), we evaluated the average time steps
needed by the ISAS1 with 50 particles to find the global minimum of the Ackley
function. The results with respect to the parameter of the annealing scheme, b ∈
[0.1, 0.999], and the parameter of the dynamic variance scheme, c ∈ [0.1, 3], are
given in Figure 13.5. The algorithm performed best with a fast increasing annealing
scheme, i.e. b > 0.9, and with c in the range 0.5 − 1.0. The plots in Figure 13.5
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also reveal that the annealing scheme has greater impact on the performance than
the factor c. When the annealing scheme increases slowly, i.e. b < 0.2, the global
minimum was actually not located within the given limit for all 50 simulations.

Ackley Ackley with noise

ISAS1 ISAS2 ISAS3 ISAS1 ISAS2 ISAS3

b 0.993 0.987 0.984 0.25 0.35 0.27

c 0.8 0.7 0.7 0.7 0.7 0.9

t 14.34 15.14 14.58 7.36 7.54 7.5

Table 13.1. Parameters b and c with lowest average time t for different selection
kernels.

The best results with parameters b and c for ISAS1, ISAS2, and ISAS3 are listed in
Table 13.1. The optimal parameters for the three selection kernels are quite similar
and the differences of the average time steps are marginal.

Fig. 13.6. Left: Average time steps needed to find global minimum with respect
to number of particles. Right: Computation cost.

In a second experiment, we fixed the parameters b and c, where we used the values
from Table 13.1, and varied the number of particles in the range 4 − 200 with step
size 2. The results for ISAS1 are shown in Figure 13.6. While the average of time
steps declines rapidly for n ≤ 20, it is hardly reduced for n ≥ 40. Hence, nt and thus
the computation cost are lowest in the range 20 − 40. This shows that a minimum
number of particles are required to achieve a success rate of 100%, i.e., the limit
was not exceeded for all simulations. In this example, the success rate was 100%
for n ≥ 10. Furthermore, it indicates that the average of time steps is significantly
higher for n less than the optimal number of particles. The results for ISAS1, ISAS2,
and ISAS3 are quite similar. The best results are listed in Table 13.2.
The ability of dealing with noisy energy functions is one of the strength of ISA
as we will demonstrate. This property is very usefull for applications where the
measurement of the energy of a particle is distorted by noise. On the left hand side
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Ackley Ackley with noise

ISAS1 ISAS2 ISAS3 ISAS1 ISAS2 ISAS3

n 30 30 28 50 50 26

t 22.4 20.3 21.54 7.36 7.54 12.54

nt 672 609 603.12 368 377 326.04

Table 13.2. Number of particles with lowest average computation cost for different
selection kernels.

of Figure 13.7, the Ackley function is distorted by Gaussian noise with standard
deviation 0.5, i.e.,

fW (x) := max {0, f(x) +W} , W ∼ N(0, 0.52).

As one can see, the noise deforms the shape of the function and changes the region
of global minima. In our experiments, the ISA was stopped when the true global
minimum at (0, 0) was found with an accuracy of δ = 0.01.
For evaluating the parameters b and c, we set n = 50. As shown on the right
hand side of Figure 13.7, the best results were obtained by annealing schemes with
b ∈ [0.22, 0.26] and c ∈ [0.6, 0.9]. In contrast to the undistorted Ackley function,
annealing schemes that increase slowly performed better than the fast one. Indeed,
the success rate dropped below 100% for b ≥ 0.5. The reason is obvious from the left
hand side of Figure 13.7. Due to the noise, the particles are more easily distracted and
a fast annealing scheme diminishes the possibility of escaping from the local minima.
The optimal parameters for the dynamic variance scheme are hardly affected by the
noise.

Fig. 13.7. Left: Ackley function distorted by Gaussian noise with standard devi-
ation 0.5. Right: Average time steps needed to find global minimum with error less
than 10−2 with respect to the parameters b and c.

The best parameters for ISAS1, ISAS2, and ISAS3 are listed in the Tables 13.1
and 13.2. Except for ISAS3, the optimal number of particles is higher than it is the
case for the simulations without noise. The minimal number of particles to achieve
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a success rate of 100% also increased, e.g. 28 for ISAS1. We remark that ISAS3

required the least number of particles for a complete success rate, namely 4 for the
undistorted energy function and 22 in the noisy case.
We finish this section by illustrating two examples of energy function where the dy-
namic variance schemes might not be suitable. On the left hand side of Figure 13.8,
an energy function with shape similar to the Ackley function is drawn. The dynamic
variance schemes perform well for this type of function with an unique global mini-
mum with several local minima around it. Due to the scheme, the search focuses on
the region near the global minimum after some time steps. The second function, see
Figure 8(b), has several, widely separated global minima yielding a high variance
of the particles even in the case that the particles are near to the global minima.
Moreover, when the region of global minima is regarded as a sum of Dirac measures,
the mean is not essentially a global minimum. In the last example shown on the
right hand side of Figure 13.8, the global minimum is a small peak far away from
a broad basin with a local minimum. When all particles fall into the basin, the dy-
namic variance schemes focus the search on the region near the local minimum and
it takes a long time to discover the global minimum.

(a) (b) (c)

Fig. 13.8. Different cases of energy functions. (a) Optimal for dynamic variance
schemes. An unique global minimum with several local minima around it. (b) Several
global minima that are widely separated. This yields a high variance even in the case
that the particles are near to the global minima. (c) The global minimum is a small
peak far away from a broad basin. When all particles fall into the basin, the dynamic
variance schemes focus the search on the basin.

In most optimization problems arising in the field of computer vision, however, the
first case occurs where the dynamic variance schemes perform well. One application
is human motion capturing which we will discuss in the next section.

13.4.2 Human Motion Capture

In our second experiment, we apply the interacting simulated annealing algorithm
to model-based 3D tracking of the lower part of a human body, see Figure 13.9(a).
This means that the 3D rigid body motion (RBM) and the joint angles, also called
the pose, are estimated by exploiting the known 3D model of the tracked object. The
mesh model illustrated in Figure 13.9(d) has 18 degrees of freedom (DoF), namely
6 for the rigid body motion and 12 for the joint angles of the hip, knees, and feet.
Although a marker-less motion capture system is discussed, markers are also sticked
to the target object in order to provide a quantitative comparison with a commercial
marker based system.
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Fig. 13.9. From left to right: (a) Original image. (b) Silhouette. (c) Estimated
pose. (d) 3D model.

Using the extracted silhouette as shown in Figure 13.9(b), one can define an energy
function V which describes the difference between the silhouette and an estimated
pose. The pose that fits the silhouette best takes the global minimum of the energy
function, which is searched by the ISA. The estimated pose projected onto the
image plane is displayed in Figure 13.9(c).

Pose representation

There are several ways to represent the pose of an object, e.g. Euler angles, quater-
nions [16], twists [20], or the axis-angle representation. The ISA requires from the
representation that primarily the mean but also the variance can be at least well
approximated. For this purpose, we have chosen the axis-angle representation of the
absolute rigid body motion M given by the 6D vector (θω, t) with

ω = (ω1, ω2, ω3), ‖ω‖2 = 1 and t = (t1, t2, t3).

Using the exponential, M is expressed by

M =

„
exp (θω̂) t

0 1

«
, ω̂ =

0
@

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

1
A . (13.20)

While t is the absolute position in the world coordinate system, the rotation vector
θω describes a rotation by an angle θ ∈ R about the rotation axis ω. The function
exp (θω̂) can be efficiently computed by the Rodriguez formula [20].
Given a rigid body motion defined by a rotation matrix R ∈ SO(3) and a translation
vector t ∈ R

3, the rotation vector is constructed according to [20] as follows: When
R is the identity matrix, θ is set to 0. For the other case, θ and the rotation axis ω
are given by

θ = cos−1

„
trace(R)− 1

2

«
, ω =

1

2 sin(θ)

0
@
r32 − r23
r13 − r31
r21 − r12

1
A . (13.21)

We write log(R) for the inverse mapping of the exponential.
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The mean of a set of rotations ri in the axis-angle representation can be computed
by using the exponential and the logarithm as described in [22, 23]. The idea is to
find a geodesic on the Riemannian manifold determined by the set of 3D rotations.
When the geodesic starting from the mean rotation in the manifold is mapped by
the logarithm onto the tangent space at the mean, it is a straight line starting at
the origin. The tangent space is called exponential chart .
Hence, using the notations

r2 ? r1 = log (exp(r2) · exp(r1)) , r−1
1 = log

“
exp(r1)

T
”

for the rotation vectors r1 and r2, the mean rotation r̄ satisfies

X

i

`
r̄−1 ? ri

´
= 0. (13.22)

Weighting each rotation with πi, yields the least squares problem:

1

2

X

i

πi
‚‚r̄−1 ? ri

‚‚2

2
→ min. (13.23)

The weighted mean can thus be estimated by

r̂t+1 = r̂t ?

 P
i πi

`
r̂−1
t ? ri

´
P
i πi

!
. (13.24)

The gradient descent method takes about 5 iterations until it converges.
The variance and the normal density on a Riemannian manifold can also be approxi-
mated, cf. [24]. Since, however, the variance is only used for diffusing the particles, a
very accurate approximation is not needed. Hence, the variance of a set of rotations
ri is calculated in the Euclidean space R

3.
The twist representation used in [7, 26] and in chapters 11 and 12 is quite similar.
Instead of a separation between the translation t and the rotation r, it describes
a screw motion where the motion velocity θ also affects the translation. A twist
ξ̂ ∈ se(3)3 is represented by

θξ̂ = θ

„
ω̂ v
0 0

«
, (13.25)

where exp(θξ̂) is a rigid body motion.
The logarithm of a rigid body motion M ∈ SE(3) is the following transformation:

θω = log(R), v = A−1t, (13.26)

where
A = (I − exp(θω̂))ω̂ + ωωT θ (13.27)

is obtained from the Rodriguez formula. This follows from the fact, that the two
matrices which comprise A have mutually orthogonal null spaces when θ 6= 0. Hence,
Av = 0⇔ v = 0.
We remark that the two representations are identical for the joints where only a ro-
tation around a known axis is performed. Furthermore, a linearization is not needed
for the ISA in contrast to the pose estimation as described in chapters 11 and 12

3 se(3) is the Lie algebra that corresponds to the Lie group SE(3).
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Pose prediction

The ISA can be combined with a pose prediction in two ways. When the dynamics
are modelled by a Markov process for example, the particles of the current frame can
be stored and predicted for the next frame according to the process as done in [12].
In this case, the ISA is already initialized by the predicted particles. But when
the prediction is time consuming or when the history of previous poses is needed,
only the estimate is predicted. The ISA is then initialized by diffusing the particles
around the predicted estimate. The reinitialization of the particles is necessary for
example when the prediction is based on local descriptors [13] or optical flow as
discussed in chapter 11 and [5].
In our example, the pose is predicted by an autoregression that takes the global rigid
body motions Pi of the last N frames into account [13]. For this purpose, we use a
set of twists ξi = log(PiP

−1
i−1) representing the relative motions. By expressing the

local rigid body motion as a screw action, the spatial velocity can be represented by
the twist of the screw, see [20] for details.

M

P P

P3

M

ξ

ξ’

O
1

ξ
1

2
2

1

1 2 ξ2
’

M3

Fig. 13.10. Transformation of rigid body motions from prior data Pi in a current
world coordinate system M1. A proper scaling of the twists results in a proper
damping.

In order to generate a suited rigid body motion from the motion history, a screw
motion needs to be represented with respect to another coordinate system. Let
ξ̂ ∈ se(3) be a twist given in a coordinate frame A. Then for any G ∈ SE(3), which
transforms a coordinate frame A to B, is Gξ̂G−1 a twist with the twist coordinates
given in the coordinate frame B, see [20] for details. The mapping ξ̂ 7−→ Gξ̂G−1 is
called the adjoint transformation associated with G.
Let ξ1 = log(P2P

−1
1 ) be the twist representing the relative motion from P1 to P2.

This transformation can be expressed as local transformation in the current coor-
dinate system M1 by the adjoint transformation associated with G = M1P

−1
1 . The

new twist is then given by ξ̂′1 = Gξ̂1G
−1. The advantage of the twist representation

is now, that the twists can be scaled by a factor 0 ≤ λi ≤ 1 to damp the local rigid
body motion, i.e. ξ̂′i = Gλiξ̂iG

−1. For given λi such that
P
i λi = 1, the predicted

pose is obtained by the rigid body transformation

exp(ξ̂′N ) exp(ξ̂′N−1) . . . exp(ξ̂′1). (13.28)
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Energy function

The energy function V of a particle x, which is used for our example, depends on
the extracted silhouette and on some learned prior knowledge as in [12], but it is
defined in a different way.
Silhouette: First of all, the silhouette is extracted from an image by a level set
based segmentation as in [8, 27]. We state the energy functional E for convenience
only and refer the reader to chapter 11 where the segmentation is described in detail.
Let Ωi be the image domain of view i and let Φi0(bx ) be the contour of the predicted
pose in Ωi. In order to obtain the silhouettes for all r views, the energy functional
E(bx, Φ1, . . . , Φr) =

Pr
i=1 E(bx, Φi) is minimzed, where

E(bx, Φi) = −
Z
H(Φi) ln pi1 + (1−H(Φi)) ln pi2 dx

+ ν

Z

Ωi

˛̨
˛∇H(Φi)

˛̨
˛ dx+ λ

Z

Ωi

“
Φi − Φi0(bx )

”2

dx. (13.29)

In our experiments, we weighted the smoothness term with ν = 4 and the shape
prior with λ = 0.04.
After the segmentation, 3D-2D correspondences between the 3D model (Xi) and a
2D image (xi) are established by the projected vertices of the 3D mesh that are
part of the model contour and their closest points of the extracted contour that
are determined by a combination of an iterated closest point algorithm [4] and an
optic flow based shape registration [25]. More details about the shape matching are
given in chapter 12. We write each correspondence as pair (Xi, xi) of homogeneous
coordinates.
Each image point xi defines a projection ray that can be represented as Plücker
line [20] determined by a unique vector ni and a momentmi such that x×ni−mi = 0
for all x on the 3D line. Furthermore,

‖x× ni −mi‖2 (13.30)

is the norm of the perpendicular error vector between the line and a point x ∈ R
3.

As we already mentioned, a joint j is represented by the rotation angle θj . Hence,
we write M(ω, t) for the rigid body motion and M(θj) for the joints. Furthermore,
we have to consider the kinematic chain of articulated objects. Let Xi be a point on
the limb ki whose position is influenced by si joints in a certain order. The inverse
order of these joints is then given by the mapping ιki

, e.g., a point on the left shank
is influenced by the left knee joint ιki

(4) and by the three joints of the left hip ιki
(3),

ιki
(2), and ιki

(1).
Hence, the pose estimation consists of finding a pose x such that the error

errS(x, i) :=

‚‚‚‚
“
M(ω, t)M(θιki

(1)) . . .M(θιki
(si))Xi

”
3×1
× ni −mi

‚‚‚‚
2

(13.31)

is minimal for all pairs, where (·)3×1 denotes the transformation from homogeneous
coordinates back to non-homogeneous coordinates.
Prior Knowledge: Using prior knowledge about the probability of a certain pose
can stabilize the pose estimation as shown in [12] and [6]. The prior ensures that
particles representing a familiar pose are favored in problematic situations, e.g.,
when the observed object is partially occluded. As discussed in chapter 11, the
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probability of the various poses is learned from N training samples, where the density
is estimated by a Parzen-Rosenblatt estimator [21, 29] with a Gaussian kernel

ppose(x) =
1

(2 π σ2)d/2N

NX

i=1

exp

„
−‖xi − x‖

2
2

2σ2

«
. (13.32)

In our experiments, we chose the window size σ as the maximum second nearest
neighbor distance between all training samples as in [12].
Incorporating the learned probability of the poses in the energy function has addi-
tional advantages. First, it already incorporates correlations between the parameters
of a pose – and thus of a particle – yielding an energy function that is closer to the
model and the observed object. Moreover, it can be regarded as a soft constraint that
includes anatomical constraints, e.g. by the limited freedom of joints movement, and
that prevents the estimates from self-intersections since unrealistic and impossible
poses cannot be contained in the training data.
Altogether, the energy function V of a particle x is defined by

V (x) :=
1

l

lX

i=1

errS(x, i)2 − η ln(ppose(x)), (13.33)

where l is the number of correspondences. In our experiments, we set η = 8.

Results

Fig. 13.11. Left: Results for a walking sequence captured by four cameras (200
frames). Right: The joint angles of the right and left knee in comparison with a
marker based system.

In our experiments, we tracked the lower part of a human body using four calibrated
and synchronized cameras. The walking sequence was simultaneously captured by a
commercial marker based system4 allowing a quantitative error analysis. The train-
ing data used for learning ppose consisted of 480 samples that were obtained from
walking sequences. The data was captured by the commercial system before record-
ing the test sequence that was not contained in the training data.

4 Motion Analysis system with 8 Falcon cameras.
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Fig. 13.12. Weighted particles at t = 0, 1, 2, 4, 8, and 14 of ISA. Particles with
a higher weight are brighter, particles with a lower weight are darker. The particles
converge to the pose with the lowest energy as t increases.

The ISA performed well for the sequence consisting of 200 frames using a polynomial
annealing scheme with b = 0.7, a dynamic variance scheme with c = 0.3, and the
selection kernel (13.9). Results are given in Figure 13.11 where the diagram shows
a comparison of the estimated knee-joint angles with the marker based system.
The convergence of the particles towards the pose with the lowest energy is illus-
trated for one frame in Figure 13.12. Moreover, it shows that variance of the particles
decreases with an increasing number of annealing steps. This can also be seen from
Figure 13.13 where the standard deviations for four parameters, which are scaled
by c, are plotted. While the variances of the hip-joint and of the knee-joint decline
rapidly, the variance of the ankle increases for the first steps before it decreases. This
behavior results from the kinematic chain of the legs. Since the ankle is the last joint
in the chain, the energy for a correct ankle is only low when also the previous joints
of the chain are well estimated.

(a) Z-coordinate. (b) Hip. (c) Knee. (d) Foot.

Fig. 13.13. Variance of the particles during ISA. The scaled standard deviations
for the z-coordinate of the position and for three joint angles are given. The variances
decrease with an increasing number of annealing steps.
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Fig. 13.14. Left: Energy of estimate for walking sequence (200 frames). Right:
Error of estimate (left and right knee).

On the right hand side of Figure 13.14, the energy of the estimate during tracking
is plotted. We also plotted the root-mean-square error of the estimated knee-angles
for comparison where we used the results from the marker based system as ground
truth with an accuracy of 3 degrees. For n = 250 and T = 15, we achieved an overall
root-mean-square error of 2.74 degrees. The error was still below 3 degrees with 375
particles and T = 7, i.e. nT = 2625. With this setting, the ISA took 7−8 seconds for
approximately 3900 correspondences that were established in the 4 images of one
frame. The whole system including segmentation, took 61 seconds for one frame.
For comparison, the iterative method as used in chapter 12 took 59 seconds with an
error of 2.4 degrees. However, we have to remark that for this sequence the iterative
method performed very well. This becomes clear from the fact that no additional
random starting points were needed. Nevertheless, it demonstrates that the ISA
can keep up even in situations that are perfect for iterative methods.

Fig. 13.15. Left: Random pixel noise. Right: Occlusions by random rectangles.

Figures 13.16 and 13.17 show the robustness in the presence of noise and occlusions.
For the first sequence, each frame was independently distorted by 70% pixel noise,
i.e., each pixel value was replaced with probability 0.7 by a value uniformly sampled
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from the interval [0, 255]. The second sequence was distorted by occluding rectangles
of random size, position, and gray value, where the edge lengths were in the range
from 1 to 40. The knee angles are plotted in Figure 13.15. The root mean-square
errors were 2.97 degrees, 4.51 degrees, and 5.21 degrees for 50% noise, 70% noise,
and 35 occluding rectangles, respectively.

Fig. 13.16. Estimates for a sequence distorted by 70% random pixel noise. One
view of frames 35, 65, 95, 125, 155, and 185 is shown.

Fig. 13.17. Estimates for a sequence with occlusions by 35 rectangles with random
size, color, and position. One view of frames 35, 65, 95, 125, 155, and 185 is shown.
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13.5 Discussion

We introduced a novel approach for global optimization, termed interacting sim-
ulated annealing (ISA), that converges to the global optimum. It is based on an
interacting particle system where the particles are weighted according to Boltzmann-
Gibbs measures determined by an energy function and an increasing annealing
scheme.
The variance of the particles provides a good measure of the confidence in the
estimate. If the particles are all near the global optimum, the variance is low and only
a low diffusion of the particles is required. The estimate, in contrast, is unreliable for
particles with an high variance. This knowledge is integrated via dynamic variance
schemes that focus the search on regions of interest depending on the confidence in
the current estimate. The performance and the potential of ISA was demonstrated
by means of two applications.
The first example showed that our approach can deal with local optima and solves
the optimization problem well even for noisy measurements. However, we also pro-
vided some limitations of the dynamic variance schemes where standard global op-
timization methods might perform better. Since a comparison with other global
optimization algorithm is out of the scope of this introduction, this will be done in
future.
The application to multi-view human motion capturing, demonstrated the embed-
ding of ISA into a complex system. The tracking system included silhouette ex-
traction by a level-set method, a pose prediction by an auto-regression, and prior
knowledge learned from training data. Providing an error analysis, we demonstrated
the accuracy and the robustness of the system in the presence of noise and occlusions.
Even though we considered only a relative simple walking sequence for demonstra-
tion, it already indicates the potential of ISA for human motion capturing. Indeed,
a comparison with an iterative approach revealed that on the one hand global op-
timization methods cannot perform better than local optimization methods when
local optima are not problematic as it is the case for the walking sequence, but on the
other hand it also showed that the ISA can keep up with the iterative method. We
expect therefore that the ISA performs better for faster movements, more complex
motion patterns, and human models with higher degrees of freedom. In addition,
the introduced implementation of the tracking system with ISA has one essential
drawback for the performance. While the pose estimation is performed by a global
optimization method, the segmentation is still susceptible to local minima since the
energy function (13.29) is minimized by a local optimization approach.
As part of future work, we will integrate ISA into the segmentation process to over-
come the local optima problem in the whole system. Furthermore, an evaluation
and a comparison with an iterative method needs to be done with sequences of dif-
ferent kinds of human motions and also when the segmentation is independent of
the pose estimation, e.g., as it is the case for background subtraction. Another im-
provement might be achieved by considering correlations between the parameters of
the particles for the dynamic variance schemes, where an optimal trade-off between
additional computation cost and increased accuracy needs to be found.
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