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Abstract. In this article we discuss the 2D-3D pose estimation problem of 3D free-form contours. In our scenario

we observe objects of any 3D shape in an image of a calibrated camera. Pose estimation means to estimate the

relative position and orientation (containing a rotation R and translation T ) of the 3D object to the reference camera

system. The fusion of modeling free-form contours within the pose estimation problem is achieved by using the

conformal geometric algebra. The conformal geometric algebra is a geometric algebra which models entities as

stereographically projected entities in a homogeneous model. This leads to a linear description of kinematics on

the one hand and projective geometry on the other hand. To model free-form contours in the conformal framework

we use twists to model cycloidal curves as twist-depending functions and interpret n-times nested twist generated

curves as functions generated by 3D Fourier descriptors. This means, we use the twist concept to apply a spectral

domain representation of 3D contours within the pose estimation problem. We will show that twist representations

of objects can be numerically efficient and easily be applied to the pose estimation problem. The pose problem

itself is formalized as implicit problem and we gain constraint equations, which have to be fulfilled with respect

to the unknown rigid body motion. Several experiments visualize the robustness and real-time performance of our

algorithms.
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1. Introduction

This contribution concerns the 2D-3D pose estimation

problem of 3D free-form contours. Pose estimation it-

self is one of the oldest computer vision problems and

algebraic solutions with different camera models have

been proposed for several variations of this problem.

Pioneering work was done in the 80’s and 90’s by Lowe

(1980, 1987) and Grimson (1990) and others. In their

work point correspondences are used. More abstract en-

tities can be found in Klingspohr et al. (1997), Zerroug

and Nevatia (1996), Kriegman et al. (1992) and Bregler

and Malik (1998). Discussed entities are circles, cylin-

ders, kinematic chains or other multi-part curved ob-

jects. Works concerning free-form curves can be found

in Drummond and Cipolla (2000) and Stark (1996).
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In their work contour point sets, affine snakes or active

contours are used for visual servoing. The investigation

of higher order curves in computer vision problems has

been increasing steadily during the recent years. See

e.g., Kaminski et al. (2001) in the context of 3D curve

reconstruction from multiple views.

An overview of free-form object representations is

given in Campbell and Flynn (2001). In this work sev-

eral mathematical forms are discussed, e.g. parametric

forms, algebraic implicit surfaces, superquadrics, gen-

eralized cylinders or polygonal meshes.

There exist two main strategies to deal with object

models: Firstly, the object can be represented by

characteristic object features (like edges or corners,

etc.) and then be applied to different problems (e.g.

pose estimation, object recognition). Secondly, the

object can be modeled as itself, e.g. in form of

an implicit or parametric contour or surface. The

main properties of these strategies are clear: If we

assume scenarios containing easy objects with easily

extractable corner or edge features (e.g. buildings or

artificial objects), there is no need to complicate the

situation by using fully parameterized models. But

especially in natural environments with curved shapes

and surfaces, feature extraction and matching is a

problem. Then there is need to deal with an object

as a whole, or as one single entity, respectively. We

want to deal with objects of general shape which we

call free-form objects as a general class of entities.

For a definition of free-form objects, we want to quote

Besl (1990):

Definition 1.1. A free-form surface has a well defined

surface that is continuous almost everywhere except at

vertices, edges and cusps.

Sculptures, car bodies, ship hulls, air planes, human

faces or organs are typical examples for free-form

objects.

The main problem we concern is the algebraic cou-

pling of free-form contours with the pose estimation

problem. Therefore we use as link between these dif-

ferent topics the twist representation. Twists are rep-

resenting rigid body motions in the framework of

Lie algebras (Gallier, 2001). They are specified in

Section 2.2. In this work we will use twists twofold,

on the one hand within our pose estimation problem

as representations of rigid body motions and on the

other hand to model the object contours as orbits gen-

erated from a set of parameterized operators for general

rotations. This unification of representations enables

a compact description of the pose estimation problem

for free-form contours in an implicit manner by using

constraint equations, which have to be fulfilled.

The ICP (Iterative Closest Point) algorithms are well

known for aligning 3D object models. Originally ICP

starts with two data sets (of points) and an initial guess

for their rigid body motion. Then the transformation is

refined by repeatedly generating pairs of correspond-

ing points of the sets and minimizing an error metric.

The ICP algorithms are mostly applied on 2D or 3D

point sets. Instead, we will later use it for comparison

of a trigonometrically interpolated function with re-

constructed projection rays. Different works concern-

ing ICP algorithms can be found in Rusinkiewicz and

Levoy (2001), Czopf et al. (1999), Huber and Hebert

(2001) and Zang (1999).

To solve the pose estimation problem of free-form

contours we will start with the pose estimation prob-

lem for entities like points, lines and planes. Then we

will continue with cycloidal curves as a special case of

algebraic curves. In general a cycloidal curve is gen-

erated by a circle rolling on a circle or a line without

slipping (Lee, 2002). We will use a twist representation

to model these curves (they are later called 3D 2twist

generated curves) and generalize them to 3D ntwist

generated curves. As shown later, special 3D twist gen-

erated curves are strongly connected to Fourier descrip-

tors (Arbter, 1989, 1990; Granlund, 1972) as spectral

representation of a contour. Fourier descriptors are of-

ten used for object recognition but are hard to connect

with the 2D-3D pose estimation problem for a full per-

spective camera model. In this work we overcome this

problem by applying Fourier descriptors in a kinematic

formalization of the pose problem. This representation

can then be used to model a 3D trigonometrically inter-

polated curve of a 3D contour. The representation of an

object shape by using twists is compact and transforma-

tions of the object can be estimated just by transforming

the generators of the entity. Furthermore, instead of es-

timating the pose for a whole 3D contour, we are able

to use a low-pass version of the contour as an approxi-

mation, leading to a speed up of the algorithm.

The paper is organized as follows: We will start with

our preliminary works in which we generated a set of

basis entities which can be used to model objects for

pose estimation. Then we continue with cycloidal and

twist generated curves and end up in free-form con-

tours as trigonometrically interpolated functions. Aim-

ing a trigonometric interpolation can be interpreted as
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constraint superposition of orbits generated by a set of

coupled twists we use for our pose estimation scenario.

The relation of twist generated curves and free-form

contours is derived in Section 3. The contribution ends

with experiments on pose estimation of free-form con-

tours and some extensions.

1.1. Preliminary Work

Our recent work (Rosenhahn et al., 2000, 2002,

2003) can be summarized in the scenario of

Fig. 1.

In these preliminary works, we assume as object fea-

tures 3D points, 3D lines, 3D spheres, 3D circles or

kinematic chain segments of a reference model (see

Fig. 2 for an example). Further, we assume extracted

corresponding features in an image of a calibrated cam-

era. The aim is to find the rotation R and translation t

of the object, which lead to the best fit of the reference

model with the actually extracted entities. To relate

2D image information to 3D entities we interpret an

extracted image entity, resulting from the perspective

projection, as a one dimension higher entity, gained

through projective reconstruction from the image en-

tity. This idea will be used to formulate the scenario as

a pure kinematic problem. As mentioned before, there

exist many scenarios (e.g. in natural environments) in

which it is not possible to extract point-like features

Figure 1. The scenario. The assumptions are the projective camera

model, the model of the object (consisting of points, lines, circles

and kinematic chains) and corresponding extracted entities on the

image plane. The aim is to find the pose (R, t) of the model, which

leads to the best fit of the object with the actually extracted entities.

Figure 2. Pose estimation by using different types of correspon-

dences.

as corners or wedges. Then there is need to deal e.g.

with the silhouette of the object as a whole entity in-

stead of sparse local features on the silhouette. Besides,

there exist 3D objects which cannot be represented ad-

equately by primitive object features as points, lines

or circles. These are the scenarios we address in this

contribution. Additionally we argue that from a statis-

tical point of view, pose estimations of global object

descriptions are more accurate and robust than those

from a sparse set of local features.

1.2. Algebraic Curves

This section gives a brief summary of algebraic curves

(Lee, 2002). There exist many ways of defining al-

gebraic curves. They can be defined as parametric

or algebraic implicit forms or polynomial equations

(Campbell and Flynn, 2001). For example a conic can

be defined as the set of intersection points of two pro-

jectively related pencils of lines (Hestenes and Ziegler,

1991). It is also possible to define a conic as intersec-

tion of a cone with a plane. Parametric, cartesian or

polar equations of a curve lead to quite different rep-

resentations. E.g., the parametric equation of a plane

cardioid is

(x, y) = (a(2 cos(t) − cos(2t)), a(sin(t) − sin(2t)),

(1.1)

a cartesian equation is

(x2 + y2 − 2ax)2 = 4a2(x2 + y2) (1.2)
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and the polar equation is

r = 2a(1 + cos(θ )). (1.3)

The resulting question is: Which representation of an

algebraic curve is well suited within the pose estima-

tion problem? As mentioned before, we want to use

concepts, which are already element of the kinematic

framework we use for the pose problem. Therefore we

prefer to describe algebraic curves as orbits of a twist

generated function. The second argument for using

twists consists in their compact representation within

the pose problem to gain small and easily interpretable

equations. More detailed information about algebraic

curves can also be found in O’Connor and Robertson

(2002).

Here we will concentrate on a subclass of the

roulettes, the cycloidal curves, which are circles rolling

on circles or lines. Figure 3 shows a subtree of the fam-

ily of algebraic curves. Cycloidal curves can be distin-

guished between epitrochoids, hypotrochoids and tro-

choids, which split to other subclasses. Figure 3 shows

examples of these curves.

Since a circle can be interpreted as a point rotating

around a line in the space, a circle rolling on a circle is

nothing more than a point rotating around two twists

in a fixed and dependent manner.

The curves are distinguished by the relative position

of the twists with respect to the starting point on the

curve and the frequency of the twists. We will now

continue to explain some curves more detailed:

Figure 3. Tree of algebraic curves.

1. A cardioid can be defined as the trace of a point on

a circle that rolls around a fixed circle of the same

size without slipping. Cardioids are double gener-

ated, which means, that a cardioid is both, an epicy-

cloid and a hypocycloid, since it can be generated

in two different ways. Cardioids were e.g. studied

by Roemer (1674).

2. A nephroid can be defined as the trace of a point

fixed on a circle of radius 1
2
r that rolls around a

fixed circle with radius r . Nephroids are also dou-

ble generated. They were studied by Huygens and

Tschirnhausen about 1679.

3. A rose is defined as a curve of epi/hypocycloids

with respect to its center. The curve has loops that

are symmetrically distributed around the pole. The

loops are called petals or leafs. They were studied

by Guido Grandi around 1723.

4. An ellipse is commonly defined as the locus of

points P such that the sum of the distances from

P to two fixed points F1, F2 (called foci) are con-

stant. The ellipses seem to have been discovered

by Menaechmus (a Greek, c.375-325 BC), tutor to

Alexander the Great.

5. A deltoid can be defined as the trace of a point on a

circle, rolling inside another circle 3 or 3
2

times as

large in radius. Deltoids were conceived by Euler in

1745 in connection with a study of caustics curves.

6. An astroid is defined as the trace of a point on a circle

of radius r rolling inside a fixed circle of radius 4r

or 4
3
r . The cycloidal curves, including the astroid,

were also discovered by Roemer (1674).
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7. A trochoid is defined as the trace of a point fixed on a

circle that rolls along a line. This curve is sometimes

called, the trace of a bike valve.

Indeed it is possible to generalize cycloidal curves

to e.g. circles rolling on circles/lines, which are again

rolling on circles/lines. This generalization of n nested

rolling circles is later achieved with ntwist generated

curves. Since these curves can be interpreted as the

sum of n phase vectors, we will later show the connec-

tion of ntwist generated curves to Fourier descriptors,

well known from signal theory. Since Fourier descrip-

tors can be used to trigonometrically interpolate func-

tions, we have then the direct link to use twist generated

curves for any free-form contour.

These curves are mostly defined in the 2D plane. For

our scenario of pose estimation we will extend these

curves to 2D or 3D curves in the 3D space.

2. Curves in Conformal Geometric Algebra

This section concerns the formalization of cycloidal

curves in conformal geometric algebra. Geometric al-

gebras are the language we use for our pose problem.

The main arguments for using this language in this con-

text are its dense symbolic representation and its cou-

pling of projective and kinematic geometry. One main

problem for 2D–3D pose estimation are the involved

mathematical spaces which are elements of the strat-

ification hierarchy proposed by Faugeras (1995). On

the one hand we are interested in estimating a special

affine transformation (a rigid body motion) and on the

other hand we observe objects in an image and there-

fore have to deal with projective geometry. To over-

come this problem we use a conformal embedding and

so we are able to deal with Euclidean, projective and

kinematic geometry in one language. We will first in-

troduce the basic notation of conformal geometric al-

gebra and the modeling of entities and their kinematic

transformations. We make use of it to model cycloidal

curves in the 3D space. Modeling cycloidal curves is

also possible in affine geometry, but in the next sec-

tion we then combine this formalization with our pose

estimation problem and then there is need for using

conformal geometry: The image entities are projec-

tively reconstructed to e.g. projection rays and are then

transformed to conformal lines (Plücker lines (Rooney,

1978)). So the projective aspect of the pose problem is

transformed to a kinematic one and then combined with

the kinematic description of the cycloidal curves.

This section gives only a brief introduction to geo-

metric algebras. The reader should consult (Hestenes

and Sobczyk, 1984; Sommer, 2001; Perwass and

Hildenbrand, 2003; Rosenhahn, 2003) for a more de-

tailed introduction.

2.1. Introduction to Conformal Geometric Algebra

In this section we introduce the main properties of the

conformal geometric algebra (CGA) (Li et al., 2001).

The aim is to clarify the notations.

In general, a geometric algebra G p,q (p, q ∈ N0)

is a linear space of dimension 2n , n = p + q , with a

subspace structure, called blades, to represent so-called

multivectors as higher order algebraic entities in com-

parison to vectors of a vector space as first order enti-

ties. A geometric algebra G p,q results in a constructive

way from a vector space R
p,q , endowed with the sig-

nature (p, q), n = p +q , by application of a geometric

product. The geometric product of two multivectors A

and B is denoted as AB.

To be more detailed, let ei and e j (ei , e j ∈ R
p,q ) be

two orthonormal basis vectors of the vector space. Then

the geometric product for these vectors of the geometric

algebra G p,q is defined as

ei e j :=





1 ∈ R for i = j ∈ {1, . . . , p}
−1 ∈ R for i = j ∈ {p + 1, . . . ,

p + q = n}
ei j for i �= j.

(2.4)

The geometric product of the same two basis vectors

leads to a scalar, whereas the geometric product of two

different basis vectors leads to a new entity, which is

called a bivector. This bivector represents the subspace,

spanned by these two vectors.

Geometric algebras can be expressed on the basis of

graded elements. Scalars are of grade zero, vectors of

grade one, bivectors of grade two, etc. A linear combi-

nation of elements of different grades is called a mul-

tivector M and can be expressed as

M =
n∑

i=0

〈M〉i , (2.5)

where the operator 〈·〉s denotes the projection of a gen-

eral multivector to the entities of grade s. A multivector

of grade i is called an i-blade if it can be written as the

outer product of i vectors. A blade A of grade i is

sometimes written as A〈i〉.
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The inner (·) and outer (∧) product of two vectors

u, v ∈ 〈G p,q〉1 ≡ R
p+q are defined as

u · v :=
1

2
(uv + vu), (2.6)

u ∧ v :=
1

2
(uv − vu). (2.7)

Here α = u · v ∈ R is a scalar, which is of grade zero,

i.e. α ∈ 〈G p,q〉0. Besides, B = u ∧ v is a bivector, i.e.

B ∈ 〈G p,q〉2. Note, that for basis vectors ei , e j ∈ G p,0,

with i �= j the following properties hold,

ei ei = e2
i = ei · ei = 1

ei e j = ei ∧ e j = ei j

ei ∧ ei = 0 = ei · e j .

To enlighten the rules of the geometric product, the

geometric product of two 3D vectors u, v ∈ G3,0 is

calculated as an example:

uv = (u1e1 + u2e2 + u3e3)(v1e1 + v2e2 + v3e3)

= u1e1(v1e1 + v2e2 + v3e3) + u2e2(v1e1 + v2e2

+v3e3) + u3e3(v1e1 + v2e2 + v3e3)

= u1v1 + u2v2 + u3v3 + (u1v2 − u2v1)e12

+(u3v1 − u1v3)e31 + (u2v3 − u3v2)e23

= u · v + u ∧ v . (2.8)

Thus the geometric product of two vectors leads to a

scalar representing the inner product of the two vectors

(corresponding to the scalar product of these vectors

in matrix calculus), and to a bivector representing the

outer product of two vectors. As extension the inner

product of a r -blade u1 ∧ · · · ∧ ur with a s-blade v1 ∧
· · · ∧ v s can be defined recursively as

(u1 ∧ · · · ∧ ur ) · (v1 ∧ · · · ∧ v s)

=





((u1 ∧ · · · ∧ ur ) · v1) · (v2 ∧ · · · ∧ v s)

if r ≥ s

(u1 ∧ · · · ∧ ur−1) · (ur · (v1 ∧ · · · ∧ v s))

if r < s,

(2.9)

with

(u1 ∧ . . . ∧ ur ) · v1

=
r∑

i=1

(−1)r−i u1 ∧ . . . ∧ ui−1 ∧ (ui · v1)

∧ ui+1 ∧ . . . ∧ ur , (2.10)

ur · (v1 ∧ . . . ∧ v s)

=
s∑

i=1

(−1)i−1v1 ∧ . . . ∧ v i−1 ∧ (ur · v i )

∧ v i+1 ∧ . . . ∧ v s . (2.11)

The following example illustrates the inner product

rule. Let e1, e2 ∈ G2,0, then

e1 · (e1 ∧ e2) = (e1 · e1) ∧ e2 − e1 ∧ (e1 · e2) = e2.

The blades of highest grade are n-blades, called

pseudoscalars. Pseudoscalars differ from each other

by a nonzero scalar only. For non-degenerate geomet-

ric algebras there exist two unit n-blades, called the

unit pseudoscalars ±I .

The dual X� of a r -blade X is defined as

X� := XI−1. (2.12)

The dual of a r -blade is a (n − r )-blade.

The reverse Ã〈s〉 of a s-blade A〈s〉 = a1 ∧ · · · ∧ as is

defined as the reverse outer product of the vectors ai ,

Ã〈s〉 = (a1 ∧ a2 ∧ · · · ∧ as−1 ∧ as)∼

= as ∧ as−1 ∧ · · · ∧ a2 ∧ a1. (2.13)

For later use we introduce the commutator × and

anti-commutator × products, respectively, for any two

multivectors,

AB =
1

2
(AB + BA) +

1

2
(AB − BA)

= : A×B + A×B. (2.14)

We use the conformal geometric algebra (Li et al.,

2001) to model the geometry of our scenario for

free-form pose estimation. The idea behind conformal

geometry is to interpret points as stereographically

projected points. Simply speaking a stereographic

projection is one way to make a flat map of the

earth. Taking the earth as a 3D sphere, any map

must distort shapes or sizes to some degree. The rule

for a stereographic projection has a nice geometric

description and is visualized for the 1D case in Fig. 4:

Think of the earth as a transparent sphere, intersected

on the equator by an equatorial plane. Now imagine a

light bulb at the north pole n, which shines through the

sphere. Each point on the sphere casts a shadow on the

paper, and that is where it is drawn on the map. Before

introducing a formalization in terms of geometric alge-

bra, we want to repeat the basic formulas for projecting
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Figure 4. Visualization of a stereographically projection for the

1D case: Points on the lines are projected on the circle. Note that the

point at infinity projects to the north pole n, and the origin projects

to the south pole s.

points on the (hyper-) plane onto the sphere and vice

versa, e.g. given in Needham (1997). To simplify the

calculations, we will restrict ourselves to the 1-D case,

as shown in Fig. 4. We assume two orthonormal basis

vectors {e1, e+} and assume the radius of the circle

as ρ = 1. Note that e+ is an additional vector to the

one-dimensional vector space e1 with e2
+ = e2

1 = 1.

To project a point x′ = ae1 +be+ on the sphere onto

the e1-axis, the interception theorems can be applied to

obtain

x =
(

a

1 − b

)
e1 + 0e+. (2.15)

To project a point xe1 (x ∈ R) onto the circle we have

to estimate the appropriate factors a, b ∈ [0, . . . , 1].

The vector x′ can be expressed as

x′ = ae1 + be+

=
2x

x2 + 1
e1 +

x2 − 1

x2 + 1
e+, (2.16)

and using a homogeneous coordinate e3 this leads to

a double homogeneous representation of the point on

the circle as

x′ = xe1 +
1

2
(x2 − 1)e+ +

1

2
(x2 + 1)e3. (2.17)

The vector x is mapped to

x ⇒ x′ = ae1 + be+ + e3. (2.18)

We define e3 to have a negative signature, and therefore

replace e3 with e−, whereby e2
− = −1. This has the

advantage that in addition to using a homogeneous

representation of points, we are also working in a

Minkowski space. Euclidean points, stereographically

projected onto the circle in Fig. 4, are then represented

by the set of null vectors in our new space. Thus, we

have the mapping

x ⇒ x′ = ae1 + be+ + e−, (2.19)

with

(x′)2 = a2 + b2 − 1 = 0 (2.20)

since (a, b) are the coordinates of a point on the unit cir-

cle. Each point in Euclidean space is in fact represented

by a line of null vectors in the new space: the scaled

versions of the null vector on the unit circle. Note that

the use of null elements is also common in other alge-

bras, e.g. the famous dual quaternions (Blaschke, 1960)

or the motor algebra (Bayro-Corrochanno et al., 2000).

But instead of using an element which squares to zero,

here a Minkowski space is used to model null vectors.

One advantage of this embedding is the existence of an

inverse pseudoscalar, which is important to compute

intersections between entities. Such operations are not

so simple in the dual quaternions or the motor algebra.

In Li et al. (2001) it is shown that the conformal

group of n-dimensional Euclidean space R
n is isomor-

phic to the Lorentz group of R
n+1,1. Furthermore, the

geometric algebra Gn+1,1 of R
n+1,1 has a spinor repre-

sentation of the Lorentz group. Therefore, any confor-

mal transformation of n-dimensional Euclidean space

is represented by a spinor in Gn+1,1, the conformal ge-

ometric algebra. Figure 5 visualizes the homogeneous

model for stereographic projections for the 1D case.

Substituting the expressions for a and b from

Eq. (2.16) into Eq. (2.19), we get

x′ = xe1 +
1

2
(x2 − 1

)
e+ +

1

2
(x2 + 1

)
e−. (2.21)

This homogeneous representation of a point is used

as point representation in the conformal geometric al-

gebra. We will show this in the next section. Note that

the stereographic projection leads to points on a sphere.

Therefore, we can use (special) rotations on this sphere

to model e.g. translations or rigid body motions as cou-

pled rotations and translations. Since we also use a ho-

mogeneous embedding, we have furthermore the pos-

sibility to model projective geometry.
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Figure 5. Visualization of the homogeneous model for stereo-

graphic projections for the 1D case. All stereographically projected

points are on a cone, which is a null-cone in the Minkowski space.

Note that in comparison to Fig. 4, the coordinate axes are rotated and

perspectively drawn.

To introduce the conformal geometric algebra

(CGA) we follow Li et al. (2001) and start with the

Minkowski plane R
1,1, which has an orthonormal basis

{e+, e−}, defined by the properties

e2
+ = 1 e2

− = −1 and e+ · e− = 0. (2.22)

A null basis can now be introduced by the vectors

e0 :=
1

2
(e− − e+) and e := e− + e+, (2.23)

with e2
0 = e2 = 0. The vector e0 can be interpreted as

the origin, and the vector e as a point at infinity. Note

that this is in consistency with Fig. 5: e0 corresponds

to the south pole s and e corresponds to the north pole

n in homogeneous coordinates. Furthermore we define

E := e ∧ e0 = e+ ∧ e−.

In the case of working in an n-dimensional vector

space R
n we couple an additional vector space R

1,1,

which defines a null space to gain R
n ⊕R

1,1 = R
n+1,1.

From that vector space we can derive the conformal

geometric algebra (CGA) Gn+1,1 as linear space of di-

mension 2n+2. For the 3-dimensional vector space R
3

we gain G4,1, which contains 25 = 32 elements of dif-

ferent structure. We further denote the conformal unit

pseudoscalar as

IC = e+−123 = Ee123 = EI E . (2.24)

The algebras G3,1 and G3,0 are suited to represent the

projective and Euclidean space, respectively (Hestenes,

1994; Hestenes and Ziegler, 1991). Since

G4,1 ⊇ G3,1 ⊇ G3,0, (2.25)

both algebras for the projective and Euclidean space

constitute subspaces of the linear space of the CGA.

It is possible to use operators to relate the different

algebras and to guarantee the mapping between the

algebraic properties (Rosenhahn, 2003; Perwass and

Hildenbrand, 2003). This relation is also interesting

since it builds another stratification hierarchy, contain-

ing the Euclidean, projective and conformal space, in

contrast to Faugeras’ stratification hierarchy (Faugeras,

1995), containing the Euclidean, affine and projective

space.

The basis entities of the 3D conformal space are

spheres s, defined by the center p and the radius ρ,

s = p+ 1
2
(p2 −ρ2)e+e0. A point x = x+ 1

2
x2e+e0 is

nothing else but a degenerate sphere with radius ρ = 0,

which can easily be seen from the representation of a

sphere. Evaluating x leads to

x = x +
1

2
x2e + e0

= x +
1

2
x2(e+ + e−) +

1

2
(e− − e+)

= x +
(

1

2
x2 −

1

2

)
e+ +

(
1

2
x2 +

1

2

)
e−. (2.26)

This is exactly the homogeneous representation of a

stereographically projected point, given in (2.21). The

basis vectors {e, e0} only allow for a more compact

representation of vectors than when using {e+, e−}.
A point x is on a sphere s iff x · s = 0. As shown

in Rosenhahn (2003), affine points, lines and planes

can be expressed as X� = e ∧ x, L� = e ∧ a ∧ b and

P� = e ∧ a ∧ b ∧ c. But since we only work with the

entities in their dual representation, we neglect the �-

sign in the further formulas. The entities and their dual

representation are summarized in Table 1. This table is

taken from Rosenhahn (2003) and Li et al. (2001).

In this work we do not use all properties which are

offered by the conformal geometric algebra. There is no

need for us to estimate e.g. inversions or other confor-

mal mappings, which can be estimated in conformal

geometric algebra (Perwass and Hildenbrand, 2003).

The properties we need are the intrinsic relation of pro-

jective and conformal geometry and the possibility to

express rigid motions in a linear manner.

2.2. Twists as Generators of Rigid

Body Motion in CGA

This section concerns the modeling of rigid body mo-

tion in conformal geometric algebra. It is well known,
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Table 1. The entities and their dual representations in CGA.

Entity Representation G. Dual representation G.

Sphere s = p + 1
2

(p2 − ρ2)e + e0 1 s� = a ∧ b ∧ c ∧ d 4

Point x = x + 1
2

x2e + e0 1 x� = (−Ex − 1
2

x2e + e0)I E 4

Plane P = nI E − de 1 P� = e ∧ a ∧ b ∧ c 4

n = (a − b) ∧ (a − c)

d = (a ∧ b ∧ c)I E

Line L = r I E + emI E 2 L� = e ∧ a ∧ b 3

r = a − b

m = a ∧ b

Circle z = s1 ∧ s2 2 z� = a ∧ b ∧ c 3

P z = z · e, L�
z = z ∧ e

p
z

= P z ∨ Lz , ρ = z2

(e∧z)2

Point Pair P P = s1 ∧ s2 ∧ s3 3 P P� = a ∧ b, X� = e ∧ x 2

that a rigid motion of an object is a continuous move-

ment of the particles in the object such that the distance

between any two particles remains fixed at all times

(Murray et al., 1994). A rigid motion is constituted by

a rotation R and a translation T . In CGA both opera-

tions can be expressed in a linear manner and they can

also be applied to different entities (e.g. points, lines,

circles, spheres) in the same manner. Rotations in G4,1

are represented by rotors,

R = exp

(
−

θ

2
l

)
=

∞∑

k=0

(
− θ

2
l
)k

k!

= cos

(
θ

2

)
− l sin

(
θ

2

)
. (2.27)

The components of the rotor R are the unit bivector l

(l2 = −1), which represents the dual of the rotation

axis, and the angle θ , which represents the amount of

rotation. If we want to translate an entity with respect

to a translation vector t ∈ G3,0, we can use a so-called

translator,

T = exp

(
et

2

)
=

(
1 +

et

2

)
. (2.28)

This translator is a special rotor, similar to a transla-

tor in the dual quaternion algebra. The main differ-

ence of CGA to the dual quaternion algebra (Rooney,

1978) or motor algebra (Bayro-Corrochanno et al.,

2000) is the way in which the geometric entities are

encoded. This leads to remarkable differences in esti-

mating rigid motions for different entities. Let X be a

point in CGA. Then rotations and translations can be

expressed by applying rotors and translators as versor

products (Hestenes et al., 2001), e.g. X′ = RX R̃, or

X′′ = T XT̃ . To express a rigid body motion we con-

catenate multiplicatively a rotor and a translator. Such

an operator (it is a special even-grade multivector) will

be denoted as a motor M, which is an abbreviation of

“moment and vector”. The rigid body motion of e.g. a

point X can be written as

X′ = MXM̃

= T RX R̃T̃, (2.29)

see also Bayro-Corrochanno et al. (2000). But as

mentioned before, this does not only hold for point

concepts. Other entities like lines, plane, circles and

spheres can be transformed in exactly the same man-

ner. Note that this is in contrast to the motor algebra:

The CGA is a universal algebra since it is build from

1-vectors whereas the motor algebra is build from 2-

vectors. That is the reason why estimating transforma-

tions in the motor algebra can only be done with taking

care of different signs within the motors acting on the

different entities, see Bayro-Corrochanno et al. (2000)

for more details.

Following e.g. Murray et al. (1994), a rigid body

motion can be expressed as a twist or screw motion,

which is a rotation around a line in space (in general not

passing through the origin)1 combined with a transla-

tion along this line. The infinitesimal version of a screw

motion is called a twist and it provides a description of

the instantaneous velocity of a rigid body in terms of
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its linear and angular components. In CGA it is pos-

sible to use the rotors and translators to express screw

motions in space. A screw motion is defined by an axis

l�, a pitch h and a magnitude θ . The pitch of the screw

is the ratio of translation to rotation, h := d
θ

(d, θ ∈ R,

θ �= 0). If h → ∞, then the corresponding screw mo-

tion consists of a pure translation along the axis of the

screw. The resulting motor takes the form (Rosenhahn,

2003)

M = exp

(
−

θ

2
(l + em)

)
. (2.30)

The bivector in the exponential part, − θ
2
(l + em), is

a twist. The vector m is a vector in R
3 which can be

decomposed in an orthogonal and parallel part with

respect to the rotation axis n = l�. If m is zero, the

motor M gives a pure rotation and if l is zero, the motor

gives a pure translation. For m ⊥ l�, the motor gives

a general rotation and for m �⊥ l�, the motor gives a

screw motion.

Note, that general rotations are a good representation

to model joints along manipulators. The idea of their

twist representation as a motor is to translate both, the

entity and the line to the origin, to perform a rotation

and to translate back the transformed entity. The motor

M, interpreted as the exponential of a twist, may be

written as

M = T RT̃

= exp

(
−

θ

2
(l + e(t · l))

)

= exp

(
−

θ

2
�

)
. (2.31)

The rigid body motion of a point can then be written as

X′ = MXM̃

= (T RT̃)X(T R̃T̃). (2.32)

Note that we use ξ for a twist in the affine space and �

for a twist in the conformal space. For points these two

structures are equivalent. But � is more general since

it can also be applied on other entities.

2.3. Operational Definition of Cycloidal Curves

While in the last section we stated that twists can be

considered as generators of the Lie group of rigid body

motion for a certain set of entities, we will now con-

sider curves as generalized geometric entities which

result from twists as orbits of a certain Lie group. That

is, here we restrict ourselves to model curves by the

algebraically constrained motion of points in space.

As previously explained, cycloidal curves are circles

rolling on circles or lines. In this section we will ex-

plain how to generate such curves as twist depending

functions in conformal geometric algebra. For example

conics are no entities which can be directly described

in conformal geometric algebra. The idea for modeling

conics is visualized in Fig. 6: We assume two parallel

twists in 3D space and a 3D point on the conic, and

we transform the point around the two twists in a fixed

and dependent manner. In this case we use two cou-

pled parallel (not collinear) twists, rotate the point by

−2φ around the first twist (1) and by φ around the sec-

ond one (2). The set of all points for φ ∈ [0, . . . , 2π ]

generates a conic as the orbit of the corresponding Lie

group.

In general, every cycloidal curve is generated by

a set of twists ξi with frequencies λi acting on one

point X on the curve. Since m twists can be used to

describe general rotations in the 2D plane or 3D space,

we call the generated curves nD-mtwist curves. With

nD-mtwist curves we mean n dimensional curves,

generated by m twists with n, m ∈ N. In the context of

the 2D-3D pose estimation problem we use the twist

generated curves as 3D object entities. So we mean 3D-

mtwist curves, if we speak of just mtwist curves. Note,

that the cycloidal curves are a special case of twist-

generated curves. E.g. a spiral is no cycloidal curve,

but can be generated with two twists. Furthermore,

cycloidal curves require a special relation between the

Figure 6. A conic generated with a point and two coupled twists.
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Figure 7. Curves generated from 3D-2twists with parallel and non-parallel axes.

frequency and the twist location. Only then it is possible

to model a circle rolling along another circle without

slipping. Such restrictions are not necessary for twist

generated curves. Furthermore it is possible to arrange

the twist axes non-parallel, resulting in non-planar

curves in 3D space as shown in the right images of

Fig. 7.

We will start with very simple curves. The simplest

one consists of one point (a point on the curve) and one

twist. Rotating the point around the twist leads to the

parameterized generation of a circle: The transforma-

tion can be expressed with a suitable motor Mφ and

an arbitrary 3D point, XZ , on the circle. The 3D orbit

of all locations on the circle the point can take on is

simply given by

X
φ

Z = Mφ XZ M̃φ : φ ∈ [0, . . . , 2π ]. (2.33)

We call a circle also a 1twist generated curve. The

points on the orbit are constrained by the motor Mφ

as element of a Lie group. This is in contrast to classi-

cal subspace concepts in vector spaces.

Now we can continue and wrap a second twist around

the first one. If we make the amount of rotation of each

twist dependent on each other, we gain a 3D curve in

general. This curve is firstly dependent on the relative

positions and orientation of the twists with respect to

each other, the (starting) point on the curve, and the

ratio of angular frequencies. For parallel twist axes we

gain a 2D curve in 3D space, whereas we get a 3D curve

in 3D space for non-parallel twist axes.

The general form of a 2twist generated curve is

X
φ

C = M2
λ2φ

M1
λ1φ

XC M̃1
λ1φ

M̃2
λ2φ

= exp

(
−

λ2φ

2
�2

)
exp

(
−

λ1φ

2
�1

)
XC

× exp

(
λ1φ

2
�1

)
exp

(
λ2φ

2
�2

)
:

λ1, λ2 ∈ R, φ ∈ [α1, . . . , α2]. (2.34)

The motors Mi are the exponentials of the twists �i ,

the scalars λi ∈ R determine the ratio of angular

frequencies between the twists and XC is a point on

the curve. The values αi define the boundaries of the

curve and indeed it is also possible to define curve

segments.

Figure 7 shows further examples of curves, which

can be very easily generated by two coupled twists.

Note that also the archimedic spiral is a 2twist

generated curve. To gain an archimedic spiral, one

twist has to be a translator. All these curves are

given in the 3D space. In Fig. 7 only projections are

shown. Figure 8 shows different projective views

of a 3D twist generated curve. Table 2 gives an

overview of some well known entities, interpreted

as twist generated curves as well as twist generated

surfaces.

The rigid body motion of these entities can easily be

estimated, just by transforming the starting point and

the generating twists. The transformation of an mtwist

generated curve can be performed by transforming the

m twists (which are just lines in the space) and the
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Table 2. Well known 3D entities as mtwist curves or

surfaces.

Entity Class Entity Class

Point 0twist curve rose 2twist curve

Circle 1twist curve spiral 2twist curve

Line 1twist curve sphere 2twist surface

Conic 2twist curve plane 2twist surface

Line segment 2twist curve cone 2twist surface

Cardioid 2twist curve cylinder 2twist surface

Nephroid 2twist curve quadric 3twist surface

Figure 8. Perspective views of a 3D-2twist generated curve. The

2twist curve and the twists axes are visualized.

point on the curve. The description of these curves is

compact, and rigid transformations can be estimated

very fast. We will focus on curves only in this paper.

3. Estimating Twists from a Given Closed Curve

So far we have discussed how a set of multiplicatively

coupled twists can be used to generate a curve. Sim-

ilarly, we can ask how a given closed curve may be

parameterized with respect to a set of additively cou-

pled twists. This problem is in fact closely related to

Fourier descriptors, which are used for object recogni-

tion (Granlund, 1972; Zahn and Roskies, 1972; Arbter

et al., 1990; Kauppinen et al., 1995) and affine pose es-

timation (Arbter and Burkhardt, 1991; Reiss, 1993) of

closed contours. We will show here that a set of coupled

twists acting on a vector is equivalent to a sum over a

set of rotors, each of which acts on a different phase

vector. The latter can be regarded as a Fourier series

expansion, whose coefficients are also called Fourier

descriptors.

The equivalence of coupled twists modeling general

rotations and a Fourier expansion is most easily shown

in Euclidean space. Let

R
φ

i := exp

(
−

πuiφ

T
l

)
, (3.35)

where T ∈ R is the length of the closed curve, ui ∈
Z is a frequency number and l is a unit bivector

which defines the rotation plane. Furthermore, R̃
φ

i =
exp(πuiφ/T l). Recall that l2 = −1 and, as noted

in Eq. (2.27), we can therefore write the exponential

function as

exp(φ l) = cos(φ) + sin(φ) l. (3.36)

A 2twist generated curve may then be written in Eu-

clidean space as follows,

X
φ

C = M2
λ2φ

M1
λ1φ

XC M̃1
λ1φ

M̃2
λ2φ

⇔ x
φ

C = R
φ

2

((
R

φ

1 (xC − t1) R̃
φ

1 + t1

)
− t2

)
R̃

φ

2 + t2

= R
φ

2 R
φ

1 (xC − t1)R̃
φ

1 R̃
φ

2 + R
φ

2 (t1 − t2)R̃
φ

2 + t2

= p0 + V
φ

1 p1 Ṽ
φ

1 + V
φ

2 p2 Ṽ
φ

2 , (3.37)

where p0 ≡ t2, p1 ≡ t1 − t2, p2 ≡ xC − t1, V
φ

1 ≡ R
φ

2 ,

V
φ

2 ≡ R
φ

2 R
φ

1 and λi = 2πui/T . Note that for planar

curves the rotors R
φ

1 and R
φ

2 act in the same plane and

the vectors xC , t1 and t2 lie in the rotation plane. Hence,

the {pi } lie in the rotation plane.

It can be shown that if a vector x lies in the rotation

plane of some rotor R, then Rx = xR̃. The previous

equation can therefore be written as

x
φ

C = p0 + p1 Ṽ
2φ

1 + p2 Ṽ
2φ

2 . (3.38)

Note that the square of a rotor is equal to a rotor of

twice the angle in the same rotation plane. Therefore,

Ṽ
φ

i Ṽ
φ

i = Ṽ
2φ

i . Using the exponential form of rotors,

we get

x
φ

C = p0 + p1 exp

(
2πu1φ

T
l

)

+ p2 exp

(
2πu2φ

T
l

)
. (3.39)
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This is equivalent to a Fourier series expansion where

we have replaced the imaginary unit i =
√

−1 with l

and the complex Fourier series coefficients with vectors

that lie in the plane spanned by l. The latter vectors are

the phase vectors. In general it may be shown that any

closed, planar curve C(φ) can be expressed as a series

expansion

C(φ) = lim
N→∞

N∑

k=−N

pk exp

(
2πkφ

T
l

)

= lim
N→∞

N∑

k=−N

R
φ

k pk R̃
φ

k . (3.40)

For every closed curve there is a unique set of phase

vectors {pk} that parameterizes the curve. However,

such a set corresponds to infinitely many different com-

binations of coupled twists. That is, given a set of cou-

pled twists, we can obtain the corresponding phase vec-

tors {pk} but not vice versa. The spectral representa-

tion of a curve transforms the translational parts of its

generating twists into a set of different phase vectors

and therefore results in a pure rotor description. This

additive representation is unique, whereas the multi-

plicative coupled twist representation is not. Therefore,

we use the additive description for our pose estimation

scenario later on.

The expansion in Eq. (3.40) is again closely re-

lated to the standard Fourier series expansion of a real,

scalar valued function. In Fig. 9 a closed curve cre-

ated by two coupled twists is shown in the yz-plane.

Suppose that instead of C(φ) we consider CS(φ) :=
C(φ) + 2πφ/T e1, where e1 is the unit vector along

the x-axis. If we project CS(φ) onto the xy-plane and

xz-plane, we obtain the two other curves shown. This

visualizes the well known fact that we can regard any

periodic function in a space of dimension n as the

projection of a closed curve in a space of dimension

n + 1.

The phase vectors {pk} are also called Fourier de-

scriptors. It has long been known that one can also con-

struct affine invariant Fourier descriptors (Granlund,

1972; Arbter, 1989), that is, entities that describe a

closed curve and stay invariant under affine transfor-

mations of the curve. This is particularly useful for

object recognition and has been used in many applica-

tions (Arbter et al., 1990; Fenske, 1993; Tello, 1995).

The same relations that allow one to construct affine

invariant Fourier descriptors also allow for affine pose

estimation. This works in the following way. Consider

Figure 9. Projections of a curve created by coupled twists.

a closed curve that lies on a plane which is tilted with

respect to an observer. This curve is projected with an

affine camera onto an image plane. The pose of the

plane in space can then be estimated given the Fourier

descriptors of the projected curve as well as the Fourier

descriptors of the original curve. See Arbter (1990) for

more details.

We attempted to perform a projective pose estima-

tion via Fourier descriptors. Unfortunately, there are

two major problems. First of all, if a closed curve is pro-

jected projectively, then the projected curve will not be

sampled in the same way as the original curve. This al-

ready distorts the Fourier descriptors. Secondly, going

through the equations we found that in order to solve

the projective pose estimation problem via Fourier

descriptors, one has to find analytic solutions to nth de-

gree polynomials. Since this is not possible in general,

we cannot follow this approach. We therefore investi-

gated a different approach for the pose estimation of

projected closed curves, which will be discussed in the

following.

4. Pose Estimation in CGA

This section concerns the pose estimation prob-

lem. So far we have just formalized free-form en-

tities and their twist representation. Now we will

continue to formalize the 2D–3D pose estimation

problem.
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4.1. Pose Estimation in Stratified Spaces

To define the pose problem we want to quote Grimson

(1990):

Definition 4.1. By pose, we mean the transformation

needed to map an object model from its own inherent

coordinate system into agreement with the sensory

data.

Thus, pose estimation means to relate several coordi-

nate frames of measurement data and model data by

finding out the transformation between them. 2D-3D

pose estimation means to estimate the relative position

and orientation of a 3D object to a reference camera

system. We already formalized our entities in the

conformal algebra because we want to formalize the

pose estimation problem in the conformal space. That

is, a kinematically transformed object entity has to lie

on a projectively reconstructed image entity. Let X be

an object point given in CGA. The (unknown) trans-

formation of the point can be written as MXM̃. Let x

be an image point on a projective plane. The projective

reconstruction from an image point in CGA can be writ-

ten as Lx = e ∧ O ∧ x (Rosenhahn, 2003). This leads

to a reconstructed projection ray, containing the optical

center O of the camera, see e.g. Fig. 1, the image point

x and the vector e as the point at infinity. Note that O∧x

formalizes the reconstructed ray in projective geometry

(Perwass and Hildenbrand, 2003). The expression

e∧ O ∧x represents the reconstructed ray in conformal

geometry (see Table 1) and is therefore given in the

same language as we use for our entities and mtwist

generated curves.

To express the incidence of a transformed point

with a reconstructed ray we can apply the commutator

product, which expresses collinearity and directly

transforms the constraint equation in an equation

given in the Euclidean space (see e.g., Rosenhahn,

2003 for the proofs). Thus, the constraint equation of

pose estimation from image points reads

(M X︸︷︷︸
object point

M̃)

︸ ︷︷ ︸
rigid motion of

the object point

× e ∧ (O ∧ x︸︷︷︸
image point

)

︸ ︷︷ ︸
projection ray,

reconstructed from the

image point︸ ︷︷ ︸
collinearity of the transformed object

point with the reconstructed line

= 0,

(4.41)

Constraint equations to relate 2D image lines to 3D

object points, or 2D image lines to 3D object lines, can

also be expressed in a similar manner. Note that the

constraint equations implicitly represent an Euclidean

distance measure which has to be zero. Such com-

pact equations subsume the pose estimation problem

at hand: find the best motor M which satisfies the con-

straint. But in contrast to other approaches, where the

minimization of errors has to be computed directly on

the manifold of the geometric transformations (Chiuso

and Picci, 1998; Ude, 1999), in our approach a distance

in the Euclidean space constitutes the error measure. To

change our constraint equation from the conformal to

the Euclidean space, the equations are rescaled without

loosing linearity within our unknowns.

The theoretical foundations concerning the mathe-

matical spaces involved in the pose estimation problem

and their algebraic coupling within geometric algebras

is more detailed explained in Rosenhahn (2003).

4.2. Pose Estimation of Twist Generated Curves

Now we can continue to combine the twist generated

curves with the pose estimation problem: We consider

a 3D twist generated curve, like

X
φ

Z = M2
λ1φ

M1
λ2φ

XM̃1
λ2φ

M̃2
λ1φ

: λ1, λ2 ∈ R,

φ ∈ [0, . . . , 2π ]. (4.42)

By substituting this expression within our constraint

equation for pose estimation, we gain

(
M

(
M2

λ1φ
M1

λ2φ
XM̃1

λ2φ
M̃2

λ1φ

)
M̃

)

× (e ∧ (O ∧ x)) = 0. (4.43)

Since every aspect of the 2D–3D pose estimation prob-

lem of twist generated curves is formalized in CGA,

the constraint equation describing the pose problem is

compact and easy to interpret: The inner parenthesis

on the left contains the operational definition of the

twist generated curve. The outer parenthesis contains

the unknown motor M, describing the rigid body mo-

tion of the 3D twist generated curve. This is the pose

we are interested in. The expression is then combined

via the commutator product with the reconstructed pro-

jection ray and has to be zero. This describes the co-

tangentiality of the transformed curve to a projection

ray. The point x is a member of a 2D contour in the

image plane.

The unknowns are the six parameters of the rigid

motion M (three for the location of the line, two for its
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Figure 10. Pose estimation of an object containing a cardioid and

two cycloids.

orientation and one rotation angle) and the angle φ for

each point correspondence. An example for pose esti-

mation of twist generated curves is shown in Fig. 10.

The upper left image shows the 3D object model. The

other images show pose results of the model. To visu-

alize the quality, the transformed and projected object

model is overlaid in the images.

4.3. Pose Estimation of Free-Form Contours

So far we considered continuous 3D curves as repre-

senting objects. Now we assume a given closed, dis-

cretizied 3D curve, that is a 3D contour C with 2N

sampled points in both the spatial and spectral domain

with phase vectors pk of the contour. We now replace

a Fourier series development by the discrete Fourier

transform. Then the interpolated contour can be ex-

pressed in the Euclidean space as

C(φ) =
N∑

k=−N

R
φ

k pk R̃
φ

k . (4.44)

For each φ does C(φ) lead to a point in the Euclidean

space. We first have to transform this expression in the

conformal space. Then we can, similar to the previ-

ous section, substitute this expression in the constraint

equations for pose estimation. The transformation of

the Fourier descriptors in the conformal space can be

expressed as

e ∧ (C(φ) + e−) = e ∧

((
N∑

k=−N

R
φ

k pk R̃
φ

k

)
+ e−

)
.

(4.45)

The innermost parenthesis contains the Fourier de-

scriptors in the Euclidean space. The next parenthe-

sis transforms this expression in the homogeneous

space and then it is transformed to the conformal space

(Rosenhahn, 2003). Substituting this expression in the

pose constraint equation leads to

(M(e ∧ (C(φ) + e−))M̃)×(e ∧ (O ∧ x)) = 0

⇔

(
M

(
e ∧

((
N∑

k=−N

R
φ

k pk R̃
φ

k

)
+ e−

))
M̃

)

× (e ∧ (O ∧ x)) = 0. (4.46)

The interpretation of this equation is also simple: The

innermost part contains the substituted Fourier descrip-

tors in the conformal space of Eq. (4.45). This is then

coupled with the unknown rigid body motion (the mo-

tor M) and compared with a reconstructed projection

ray, also given in the conformal space.

Note that twist generated curves are in that respect

more general than contours as we assume contours as

closed curves, whereas twist generated curves (see e.g.

a spiral) are in general not closed. This means, for

closed curves can Fourier descriptors be interpreted as

generator parameters of special twist generated curves,

but not vice versa. The main point is the coupling of

a spectral representation of contours within the pose

estimation problem. This is achieved in the previous

equation by using a conformal embedding.

4.4. Estimation of Pose Parameters

The main question is now, how to solve a set of

constraint equations for multiple (different) features

with respect to the unknown motor M. Since a motor

may be represented as a polynomial of infinite degree

(see, e.g., 2.27 for the series expression of the expo-

nential function), this is a non-trivial task, especially

in the case of real-time estimations. The idea is to

gain linear equations with respect to the generators of

the motor. We use the exponential representation of

motors and apply the Taylor series expression of first

order for approximation. This corresponds to a

mapping of the above mentioned global motion

transformation to a twist representation, which enables

incremental changes of pose. That means, we do not

search for the parameters of the Lie group SE(3) to

describe the rigid body motion (Gallier, 2001), but

for the parameters which generate their Lie algebra

se(3) (Murray et al., 1994). Therefore, we linearize the
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equations (which means we go to the tangential space,

the Lie algebra) and iterate the solutions. This results

in a gradient descent method. The Euclidean trans-

formation of a point X = e ∧ x = E + e ∧ x caused

by the motor M is approximated in the following

way:

MXM̃ = exp

(
−

θ

2
(l′ + em′)

)
X exp

(
θ

2
(l′ + em′)

)

≈
(

1 −
θ

2
(l′ + em′)

)
(E + e ∧ x)

×
(

1 +
θ

2
(l′ + em′)

)

≈ E + e(x − θ (l′ · x) − θm′). (4.47)

Note, that (x − θ (l′ · x) − θm′) yields a vector in R
3.

This means, E + e(x − θ (l′ · x) − θm′) is again a

homogeneous representation of a point in conformal

geometric algebra. Since further holds

E + e(x − θ (l′ · x) − θm′)

= E + e ∧ x − e ∧ (θ (l′ · x) + θm′)

= X − e ∧ (θ (l′ · x) + θm′), (4.48)

it is nothing more, than the point X and added is the

linearized unknown rigid motion M acting on x.

Setting l := θl′ and m := θm′ results in

MXM̃ ≈ E + e(x − l · x − m). (4.49)

By combining this approximation of the motion with

the previously derived constraints (e.g. the point-line

constraint) we get

0 = MXM̃×L

⇔ 0 = exp

(
−

θ

2
(l′ + em′)

)
X

× exp

(
θ

2
(l′ + em′)

)
× L

⇐ ≈ ⇒ 0 = (E + e(x − l · x − m))× L. (4.50)

Because of the approximation (⇐≈⇒) the unknown

motion parameters l and m are linear. This equation

contains six unknown parameters of the rigid body

motion. These unknowns are the unknown twist pa-

rameters. The linear equations can be solved for a set

of correspondences by applying e.g. the Householder

method. From the solution of the system of equations,

the motion parameters R, t can be recovered by evalu-

ating θ := ‖l‖, l′ := l
θ

and m′ := m
θ

and applying the

Rodgrigues formula (Murray et al., 1994).

Solving these equations, we get a first approximation

of the rigid body motion. Iterating this process leads

to a monotonous convergence to the actual pose and

only a few iterations (mostly 5–8) are sufficient to get

a good approximated pose result. The algorithm itself

corresponds to a gradient descend method applied in

the 3D space. Note that the monotonous convergence

does sometimes lead to local minima. The aim is to

avoid such local minima. Therefore we use low-pass

information for contour approximation.

5. Experiments

In this section we present experimental results of free-

form contour based pose estimation. Therefore we will

start with an introduction to the main algorithm for

pose estimation of free-form contours. Though the nu-

merical estimation of the pose parameters is already

clarified in the last section, the main problem is to de-

termine suited correspondences between 2D image fea-

tures and points on the 3D model curve. Therefore a

version of an ICP-algorithm is presented and called the

increasing degree method. Then we will continue with

experiments on the convergence behavior of our algo-

rithm. There are also shown stability examples for dis-

torted image data. The algorithm proofs as stable and

fast (real-time capable) for our scenarios. To deal with

3D objects and partially occluded aspects of objects

during tracking, we then present a modified version of

our increasing degree method. There we are able to

deal with occlusion problems by using sets of Fourier

descriptors to model aspects of the object within our

scenario.

5.1. The Algorithm of Pose Estimation

for Free-Form Contours

The aim is to formulate a 2D–3D pose estimation algo-

rithm for any kind of free-form contour. The assump-

tions we make are the following:

1. The object model is given as a set of 2N 3D points

f 3
j , spanning the 3D contour. Further we assume to

know their phase coefficients pk .

2. In an image of a calibrated camera we observe the

object in the image plane and extract a set of n 2D

points x2
j , spanning the 2D contour.



Pose Estimation of 3D Free-Form Contours 283

Since the number of contour points in the image is often

too high (e.g. 800 points in our experimental scenario),

we use just every 10th point and get an equal sampled

set of contour image points.

Note that we have no knowledge which 2D image

point corresponds to which 3D point of the interpolated

model contour. Furthermore, a direct correspondence

does not generally exist.

Using our approach for pose estimation of point-line

correspondences, the algorithm for free-form contours

consists of iterating the following steps:

(a) Reconstruct projection rays from

the image points.

(b) Estimate a nearest point on the

3D contour to each projection

ray.

(c) Estimate the pose of the contour

with the use of this correspon-

dence set.

(d) goto (b).

The idea is, that all image contour points simultane-

ously pull on the 3D contour. The algorithm itself cor-

responds to the well-known ICP algorithm, e.g. dis-

cussed in Rusinkiewicz and Levoy (2001) and Zang

(1999). But whereas ICP algorithms are mostly ap-

plied on sets of 2D or 3D points, here we apply it on

a trigonometrically interpolated 3D function and from

image points reconstructed 3D projection rays.

Note that this algorithm only works if we assume a

scenario where the observations in the image plane are

not too different. Thus, it is useful for tracking tasks.

For our experiments we allow up to 25 pixel deviation

between two images of a sequence. A projection of the

used object model for our first experiments is shown in

Fig. 11. The discrete points and the different approxi-

mation levels are shown. The model itself consists of 90

contour points, is planar and has the width and height

of 24 × 8 cm. Pose estimation results at different itera-

tions are shown in Fig. 12. The white 2D contour is the

Figure 11. The different approximation levels of the 3D object

contour.

Figure 12. Pose results during the iteration.

transformed and projected 3D object model overlaid

with the image.

Using the Fourier coefficients for contour interpo-

lation works fine but the algorithm can be made more

stable by using a low-pass approximation for pose esti-

mation and by adding successively higher frequencies

during the iteration. This is basically a multi-resolution

method. We call this technique the increasing degree

method. Therefore we start the pose estimation pro-

cedure with just a few Fourier coefficients of the 3D

contour and estimate the pose to a certain degree of

accuracy. Then we increase the order of used Fourier

coefficients and proceed to estimate the pose with the

refined object description. This is shown in Fig. 13.

In this experiment, the indicated iteration number

corresponds directly to the number of used Fourier

coefficients minus one. This means that we use two

Fourier coefficients in the first iteration, four Fourier

coefficients in the third iteration, etc. Iteration 21 uses

22 Fourier coefficients and Fig. 13 shows that the result

Figure 13. Pose results of the low-pass filtered contour during the

iteration.
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Figure 14. Different pose results of the free-form contour.

Figure 15. Computing times for an image sequence containing 500

images.

is nearly perfect. Figure 14 shows pose results during

an image sequence containing 530 images. As can be

seen also perspective views of the free-form contour

can be estimated.

Figure 15 shows the computing times for an image

sequence containing 500 images. The computing time

for each image varies between 20 ms and 55 ms. The

average computing time is 34 ms, which is equivalent

to 29 fps. These results were achieved with a 2 GHz

Pentium IV computer.

Many ideas to speed up the algorithm can also be

found in Rusinkiewicz and Levoy (2001). We did not

improve the algorithm yet. This is part of future work.

The main result is that the algorithm can also be used

for real-time applications on standard Linux machines.

The robustness of our algorithm with respect to dis-

torted image data is shown in Fig. 16. In this image

sequence (containing 450 images) we distort the image

contour by covering parts of the contour with a white

paper. This leads to slight or more extreme errors dur-

ing the contour extraction in the image. The first row of

Fig. 16 shows the results obtained with a non-modified

ICP-algorithm. Since we have already clarified that the

Figure 16. Different pose results for distorted image data. The first

row shows results obtained with the non-modified ICP algorithm. The

second row shows pose results obtained with the outlier-elimination

during the ICP algorithm.

Figure 17. Contour approximations of another planar object model

and its convergence behavior.

constraint equations express a geometric distance mea-

sure in the 3D space, it is easy to detect outliers and

implement an algorithm which automatically detects

outliers and eliminates their equations. Some results of

the modified algorithm are shown in the second row of

Fig. 16. We call this procedure the outlier-elimination

method. As can be seen, the obtained results are much

better. But indeed, these examples give just a guess

about the stability of the proposed method. It is not

possible to compensate totally wrong extracted con-

tours or too much missing information.

Figures 17–20 present results of other object models:

We call the first object model the cloud and the second

object model the edge. Figure 17 shows the 3D contour

approximations in the left image and a convergence ex-

ample in the other images. Figure 18 presents results of

a sequence containing 700 images. As can be seen also

strong perspective views, as in the lower right image,

can be estimated. To compare the visual observable er-

ror (as a drawn contour in the image) with its real 3D

pose we visualize in Fig. 18 the relative pose in a vir-

tual environment. The real 3D pose matches with the

observations in the image.

Figure 19 shows approximation levels of a non-

planar object model in three different perspective

views. This is an extreme example since the object

model contains edges. Interpolation of a contour with

Fourier descriptors leads to a trigonometrically inter-

polated function. So the edges are always smoothed and

several descriptors (we use 40) are required to achieve
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Figure 18. Example images and 3D poses taken from an image

sequence containing 700 images.

Figure 19. Three perspective views of a non-planar object model

and its approximations.

Figure 20. Example images from an image sequence containing

500 images.

an acceptable result. Figure 20 presents different results

from an image sequence containing 500 images.

Object contours which contain concavities are in

danger to get trapped in local minima during using

the ICP-algorithm with the gradient descend method

for pose estimation. Though it is not always possible to

find the global minimum (and therefore the best pose),

using contour approximations helps to avoid local min-

ima. This effect is achieved by using firstly a low-pass

contour for pose estimation and then a more refined

contour over the iterations.

The last two object models (the cloud and the edge)

contain more local minima than our first one. Therefore

we need more Fourier descriptors to gain acceptable re-

sults. This indeed increases the computing time. While

for the first object model the average computing time

is 34 ms, the average computing time of the cloud and

edge model are 50 ms and 70 ms, respectively. Note,

that the Fourier descriptors can be estimated offline

before the algorithm starts.

5.2. Simultaneous Pose Estimation

of Multiple Contours

In the last experiments our object model is assumed as

one (closed) contour. But many 3D objects can more

easily be represented by a set of 3D contours expressing

the different aspects of the object. In this section we will

extend our object model to a set of 3D contours. The

main problem here is, how to deal with occluded or

partially occluded contour parts of the object. For our

first experiment we will use the object model which we

already used in Figs. 19 and 20. We will interpret the

model as an object containing two sides and one ground

plate. This means we get a set of three planar contours

to model the object. The three contours are merged to

one object and perspective views are shown in Fig. 21.

The three contours are assumed as rigidly coupled to

each other. This means that the pose of one contour

automatically defines the pose of the other contours.

Our algorithm to deal with partially occluded object

parts is simple and effective:

Assumptions:
n 3D contours and one boundary
contour in the image dist(P,R) a
distance function between a 3D
point P and a 3D ray R.

Aim:
Estimate correspondences and pose

(a) Reconstruct projection rays from
the image points.

(b) For each projection ray R:
(c) For each 3D contour:

(c1) Estimate a nearest point
P1 on the 3D contour
to each projection ray R.

(c2) if (n==1) choose P1 as
actual P for the
point-line correspon-
dence

(c3) else compare P1 with P:
if dist(P1,R) is smaller

than dist(P,R) then
choose P1 as new P

(d) Use (P,R) as correspondence set.
(e) Estimate pose with this

correspondence set
(f) Transform contours, goto (b)
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Figure 21. Three perspective views of an object which is interpreted

by a set of contours. The different approximations of the contours

are also drawn.

The idea is to apply our ICP-algorithm not to one

image contour and one 3D contour, but now to one

image contour and a set of 3D contours.

This implies: For each extracted image point must

exist one model contour and one point on this contour,

which corresponds to this image point. Note, that the

reverse is in general not possible.

Figure 22 visualizes the problem of partially oc-

cluded contour points. The only image information we

use is the observed boundary contour of the object. By

using a priori knowledge (e.g. assuming a tracking as-

sumption), the pose can be recovered uniquely. This

means, our algorithm can infer the position of hidden

components from the visible components.

The computing time is proportional to the number

of used contours. But we gain a more general concept,

since we are not restricted to one special view to the

object. Instead we can deal with aspect changes of the

contour in an efficient manner. This is demonstrated in

Figure 22. Pose results of an object with partially occluded con-

tours. The left image shows the original image. The middle image

shows the extracted silhouette (from which the boundary contour is

extracted) and the right image visualizes the pose result. Note that

also the occluded parts of the model are drawn and uniquely deter-

mined by the visible parts.

Figure 23. Pose results of an image sequence containing different

aspect changes and degenerate situations.

Fig. 23 in case of quite different aspects of a 3D object.

The images are taken from an image sequence con-

taining 325 images. In this image sequence we put the

object on a turn table and make a 360◦ degree turn of

the whole object. The aspects of the objects are chang-

ing and half-side models can not be used any more, but

just the whole object. Our tracking algorithm does not

fail and is even able to cope with degenerate situations,

e.g. special perspective views as shown in the lower

middle or lower left image of Fig. 23.

In our next experiment, we use as object model

the shape of a 3D tree. The contour approximations

are shown in Fig. 24. As can be seen in the close-up,

here are also needed many descriptors (around 50)

to get a sufficient approximation of the model. Pose

results of an image sequence containing 735 images

are shown in Fig. 25. The interesting part of this

model, in contrast to the previous ones, is not only its

complexity: This model contains two nested contours

and is therefore much more complicated than the

previous ones. Because of its complexity (the number

of Fourier coefficients and the nested contours) we

need a computing time of 500 ms for each image on

a 2 GHz Linux machine.

Figure 24. One perspective, frontal and top view with approxima-

tions of the tree model. The close up visualizes the complexity of the

object model.
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Figure 25. Pose results of the tree model during an image sequence.

Figure 26. Image processing steps and pose results of a cup model

during an image sequence.

The next experiment, see Fig. 26, presents results of

a tracked cup during an image sequence. The cup is

modeled by three contours of the cup and since the cup

is moved by a human hand, the extracted silhouette is

noisy and the outlier elimination method explained pre-

viously has to be applied additionally. Figure 26 shows

two processed images with their processing steps: The

first image in each row shows the original image. The

second image in each row shows the extracted silhou-

ette, from which the boundary contour is extracted. As

can be seen, the hand leads to remarkable outliers in the

correspondence set, which will be detected and elim-

inated. The last image shows the pose result after the

outlier elimination and the ICP-algorithm. As can be

seen, the pose result is accurate and it is possible to

deal with multiple contours combined with an outlier

elimination during image sequences.

From the last experiments results the possibility to

model complex objects with contours representing dif-

ferent aspects of the object and to fuse these within our

scenario.

6. Discussion

This work deals with the problem of 2D–3D pose es-

timation of 3D free-form contours. We assume the

knowledge of a 3D object, which contains one or

more contours modeling the aspects of the object. Fur-

thermore we assume a calibrated camera and observe

the silhouette of the object in the camera. The aim

is to estimate the pose (rotor R and translator T),

which leads to a best fit between image and model

data. The first topic we concern is the modeling of

3D free-form contours. Therefore, we start with alge-

braic curves (the cycloidal curves) and model them

by coupled twists. We then derive the connection of

twist-generated curves with Fourier descriptors and

explain how to estimate 3D closed contours by us-

ing 3D Fourier descriptors. In contrast to an explicit

or implicit definition of algebraic curves, we propose

an operational definition which keeps geometric trans-

parency and fits within the scenario of pose estima-

tion in a conformal manner. The second topic we con-

cern is the coupling of this curve representation within

the 2D–3D pose estimation problem. Therefore we use

the conformal geometric algebra, which contains also

Euclidean and projective geometry as sub-algebras.

This representation is used to compare the 3D contour

with (from image points) reconstructed projection rays.

This leads to constraint equations, which are solved by

using a gradient descend method, combined with an

ICP-algorithm. The formulas are compact and easy to

interpret.

The last section presents experiments which show

the efficiency of our algorithm on different image se-

quences with different object models (planar, non-

planar, curved, angular etc.). We discuss the behavior

of our algorithm with respect to boundary distortions

and the complexity of object models. Besides, we in-

vestigate the time performance. Furthermore, we deal

with partially occluded object features and nested con-

tours. Using Fourier descriptors allows us to deal with

low-pass information of contours and therefore to sta-

bilize the algorithms. Our algorithms prove as real-time

capable, efficient and robust.

Note

1. Such an operation is also called a general rotation general rotation.
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