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Abstract In this paper an approach for motion cap-
ture of dressed people is presented. A cloth draping
method is incorporated in a silhouette based motion
capture system. This leads to a simultaneous estimation
of pose, joint angles, cloth draping parameters and wind
forces. An error functional is formalized to minimize
the involved parameters simultaneously. This allows for
reconstruction of the underlying kinematic structure,
even though it is covered with fabrics. Finally, a
quantitative error analysis is performed. Pose results
are compared with results obtained from a commercially
available marker based tracking system. The deviations
have a magnitude of three degrees which indicates a
reasonably stable approach.

Keywords Motion capture · Cloth draping · Pose
estimation

1 Introduction

Classical motion capture (MoCap) comprises techniques
for recording the movements of real objects such as
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humans or animals [36]. In biomechanical settings, it is
aimed at analyzing captured data to quantify the move-
ment of body segments, e.g., for clinical studies, diag-
nostics of orthopaedic patients or to help athletes to
understand and improve their performances. It has also
grown increasingly important as a source of motion data
for computer animation. Surveys on existing methods
for MoCap can be found in [16,26]. Well known and
commercially available marker based tracking systems
exist, e.g., those provided by Motion Analysis, Vicon or
Simi [25]. The use of markers comes along with intrin-
sic problems, e.g., incorrect identification of markers,
tracking failures, the need for special laboratory envi-
ronments and lighting conditions and the fact that peo-
ple may not feel comfortable with markers attached
to the body. This can lead to unnatural motion pat-
terns. As well, marker based systems are designed to
track the motion of the markers themselves, and thus
it must be assumed that the recorded motion of the
markers is identical to the motion of the underlying
human segments. Since human segments are not truly
rigid this assumption may cause problems, especially
in highly dynamic movements typically seen in sport-
ing activities. For these reasons, marker-less tracking
is an important field of research that requires knowl-
edge in biomechanics, computer vision and computer
graphics.

Typically, researchers working in the area of com-
puter vision prefer simplified human body models for
MoCap, e.g., stick, ellipsoidal, cylindric or skeleton mod-
els [4,5,15,18,24]. In computer graphics, advanced
object modeling and texture mapping techniques for
human motions are well known [8,10,22,37], but image
processing or pose estimation techniques (if available)
are often simplified.
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In [13] a shape-from-silhouettes approach is applied
to track human beings and incorporates surface point
clouds with skeleton models. One of the subjects even
wears a pair of shorts, but the cloth is not explicitly
modeled and simply treated as rigid component. Fur-
thermore, the authors just perform a quantitative error
analysis on synthetic data, whereas in the present study
a second (commercial) marker based tracking system is
used for comparison.

A recent work of us [32] combines silhouette based
pose estimation with more realistic human models:
these are represented by free-form surface patches.
Local morphing along the surface patches is applied to
gain a realistic human model within silhouette based
MoCap. Also a comparison with a marker based system
is performed indicating a stable system.

In this setup, the subjects have to wear a body suit
to ensure an accurate matching between the silhouettes
and the surface models of the legs. Unfortunately, body
suits may be uncomfortable to wear in contrast to loose
clothing (shirts, shorts, skirts, etc.). The subjects also
move slightly different in body suits compared to being
in clothes since all body parts (even unfavorite ones)
are clearly visible. The incorporation of cloth models
would also simplify the analysis of outdoor scenes and
arbitrary sporting activities. It is for these reasons that
we are interested in a MoCap system which also incor-
porates cloth models.

Cloth draping [17,19,23,35] is a well known research
topic in computer graphics. Virtual clothing can be
moved and rendered so that it blends seamlessly with
motion and appearance in movie scenes. The motion of
fabrics is determined by bending, stretching and shear-
ing parameters, as well as external forces, aerodynamic
effects and collisions. For this reason the estimation of
cloth simulation parameters is essential and can be done
by video [3,11,29] or range data [21] analysis. Existing
approaches can be roughly divided into geometrically or
physically based ones. Physical approaches model cloth
behavior by using potential and kinetic energies. The
cloth itself is often represented as a particle grid in a
spring–mass scheme or by using finite elements [23].
Geometric approaches [35] model cloths by using other
mechanics theories which are often determined empir-
ically. These methods can be very fast computation-
ally but are often criticized as being not very appealing
visually.

This contribution starts with a summary of the silhou-
ette based MoCap system [32]. It continues with intro-
ducing a kinematically motivated cloth draping model
and a wind model, which allows deformation of the par-
ticle mesh of a cloth with respect to oncoming external
forces. The proposed draping method belongs to the

class of geometric approaches [35] for cloth draping.
The reason for choosing this class is twofold: firstly, we
need a model which supports time efficiency, since cloth
draping is needed in one of the innermost loops for mini-
mization of the used error functional. Secondly, it should
be easy to implement and based on the same paramet-
ric representation as the used free-form surface patches.
This allows a direct integration into the MoCap system.
In section four we explain how to minimize the cloth
draping and wind parameters within an error functional
for silhouette based MoCap. This allows us to deter-
mine joint positions of the legs even if they are partially
occluded (e.g., by skirts). We present MoCap results of a
subject wearing a skirt and perform a quantitative error
analysis. Section five concludes with a summary.

1.1 Contributions

In this paper we inform about the following main con-
tributions:

1. A so-called kinematic cloth draping method is pro-
posed. It belongs to the class of geometric cloth
draping methods and is well suited to be embed-
ded in a MoCap system due to the use of a joint
model.

2. The cloth draping is extended by including a wind
model which allows to adapt the cloth draping to
external forces, the scene dynamics or speed of
movement.

3. The main contribution is to incorporate the cloth
draping algorithm in a silhouette based MoCap sys-
tem. This allows for determining the joint configu-
rations even when parts of the person are covered
with fabrics (see Fig. 1).

4. Finally, we perform a quantitative error analysis.
This is realized by comparing the MoCap results
with a (commercially available) marker based track-
ing system. The analysis shows that we receive sta-
ble results and can compete with the error range of
marker based tracking systems.

2 Foundations

This section describes the modules of the MoCap sys-
tem presented in [32]. It starts with mathematic and
algorithmic foundations, image segmentation based on
level set functions and the used model representation.
These foundations are needed in subsequent sections.
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Fig. 1 a Input: A multi-view image sequence (four cameras, one cropped image is shown). b The algorithm determines the cloth
parameters and joint configuration of the underlined leg model. c Cloth and leg configuration in a virtual environment. d Plain leg
configuration

2.1 Pose estimation

The pose estimation algorithm requires a set of point
correspondences (Xi, xi), with 4D (homogeneous)
model points Xi and 3D (homogeneous) image points xi.
Each image point defines a 3D Plücker line Li = (ni, mi)

(a projective ray), with a (unit) direction ni and moment
mi [27,31].

Every 3D rigid motion can be represented in expo-
nential form:

M = exp(θ ξ̂ ) = exp

(
ω̂ v

03×1 0

)
, (1)

where θ ξ̂ is the matrix representation of a twist ξ ∈
se(3) = {( v, ω̂)| v ∈ R

3, ω̂ ∈ so(3)}, with so(3) = { A ∈
R

3×3| A = − AT}. The Lie algebra so(3) is the tangen-
tial space of the 3D rotations. Its elements are (scaled)
rotation axes, which can either be represented as a 3D
vector

θω = θ


 ω1

ω2
ω3


 , with ‖ω‖2 = 1, (2)

or as a screw symmetric matrix

θω̂ = θ




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 . (3)

In fact, M is an element of the one-parametric Lie group
SE(3), known as the group of direct affine isometries. A
main result of Lie theory is that to each Lie group there
exists a Lie algebra which can be found in its tangential
space, by derivation and evaluation at its origin; see [27]
for more details. The corresponding Lie algebra to SE(3)
is denoted as se(3). A twist contains six parameters and

can be scaled to θξ with a unit vector ω. The parameter
θ ∈ R corresponds to the motion velocity (i.e., the rota-
tion velocity and pitch). For varying θ , the motion can
be identified as screw motion around an axis in space.
The six twist components can either be represented as a
6D vector

θξ = θ(ω1, ω2, ω3, v1, v2, v3)
T

with ‖ω‖2 = ‖(ω1, ω2, ω3)
T‖2 = 1, (4)

or as a 4 × 4 matrix

θ ξ̂ = θ




0 −ω3 ω2 v1
ω3 0 −ω1 v2

−ω2 ω1 0 v3
0 0 0 0


 . (5)

To reconstruct a group action M ∈ SE(3) from a given

twist, the exponential function exp(θ ξ̂ ) = ∑∞
k=0

(θ ξ̂ )k

k! =
M ∈ SE(3) must be computed. This can be done effi-
ciently by using the Rodriguez formula [27].

For pose estimation the reconstructed Plücker lines
are combined with the screw representation for rigid
motions and applied within a fix point iteration scheme:
incidence of the transformed 3D point Xi with the 3D
ray Li = (ni, mi) can be expressed as

(exp(θ ξ̂ )Xi)3×1 × ni − mi = 0. (6)

Indeed, Xi is a homogeneous 4D vector, and after multi-
plication with the 4×4 matrix exp(θ ξ̂ ) the homogeneous
component (which is one) is neglected to evaluate the
cross product with ni. Now the equation is linearized by

using exp(θ ξ̂ ) = ∑∞
k=0

(θ ξ̂ )k

k! ≈ I + θ ξ̂ , with I as identity
matrix. This results in

(( I + θ ξ̂ )Xi)3×1 × ni − mi = 0 (7)
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and can be reordered into an equation of the form
Aξ = b. Collecting a set of such equations (each is of

rank two) leads to an overdetermined system of equa-
tions, which can be solved using, for example, the House-
holder algorithm. The Rodriguez formula can be applied
to reconstruct the group action M from the estimated
twist ξ . Then the 3D points can be transformed and the
process is iterated until the algorithm converges.

Joints are expressed as special screws with no pitch of
the form θjξ̂j with known ξ̂j (the location of the rotation
axes as part of the model representation) and unknown
joint angle θj. The constraint equation of a jth joint has
the form

(exp(θjξ̂j) · · · exp(θ1ξ̂1) exp(θ ξ̂ )Xi)3×1 × ni − mi =0, (8)

which is linearized in the same way as the rigid body
motion itself. It leads to three linear equations with
the six unknown pose parameters and j unknown joint
angles. Collecting a sufficient number of equations leads
to an overdetermined system of equations.

Note that the algorithm uses reconstructed 3D lines.
Therefore it is possible to gain equations for different
cameras (calibrated with respect to the same world coor-
dinate system), to put them together in one system of
equations and solve them simultaneously. This is the key
idea to deal with partial occlusions: A joint that is not
visible in one camera must be visible in another one to
get a solvable system of equations. A set of four cameras
around the subject covers a large range and allows the
analysis of complicated motion patterns.

2.2 Image segmentation

Image segmentation usually means estimating bound-
aries of objects in an image. This task can become very
difficult since noise, shading, occlusion or texture tran-
sitions between the object and the background may dis-
tort the segmentation or even make it impossible. Our
approach for image segmentation is based on level sets
[7,9,14,28].

A level set function � ∈ � �→ R splits the image
domain � into two regions �1 and �2 with �(x) > 0
if x ∈ �1 and �(x) < 0 if x ∈ �2. The zero-level line
thus marks the boundary between both regions. The seg-
mentation should maximize the total a-posteriori prob-
ability given the probability densities p1 and p2 of �1
and �2, i.e., pixels are assigned to the most probable
region according to the Bayes rule. Ideally, the bound-
ary between both regions should be as small as possible.
This can be expressed by the following energy functional
that is sought to be minimized:

Fig. 2 Silhouette extraction based on level set functions. Left:
Initial segmentation. Right: Segmentation result

E(�, p1, p2)=−
∫
�

(
H(�(x)) log p1

+(1 − H(�(x))) log p2+ν|∇H(�(x))|) dx,

where ν > 0 is a weighting parameter and H(s) is a
regularized version of the Heaviside function, e.g., the
error function. Minimization with respect to the region
boundary represented by � can be performed according
to the gradient descent equation

∂t� = H′(�)

(
log

p1

p2
+ ν div

( ∇�

|∇�|
))

, (9)

where H′(s) is the derivative of H(s) with respect to
its argument. The probability densities pi are estimated
according to the expectation–maximization principle.
Having the level set function initialized with some con-
tour, the probability densities within the two regions are
estimated by the gray value histograms smoothed with
a Gaussian kernel Kσ having standard deviation σ .

Figure 2 shows on the left an example image with
an initialization of the region as a rectangle. The right
image shows the estimated (stationary) contour after 50
iterations. The legs and skirt are well extracted, but there
are some deviations due to shadows. Such inaccuracies
can be compensated through the pose estimation proce-
dure. For our algorithm we make a tracking assumption.
Therefore, we initialize the silhouette with the pose of
the last frame which greatly reduces the number of iter-
ations needed.

2.3 Shape registration

The goal of shape registration can be formulated as fol-
lows: given a certain distance measure, the task is to
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determine one transformation that leads to the mini-
mum distance between shapes. A very popular shape
matching method working on such representations is
the iterated closest point (ICP) algorithm [2]. Given two
finite sets P and Q of points, the (original) ICP algo-
rithm calculates a rigid transformation T and attempts
to ensure TP ⊆ Q.

1. Nearest point search: For each point p ∈ P find the
closest point q ∈ Q.

2. Compute registration: Determine the transforma-
tion T that minimizes the sum of squared distances
between pairs of closest points (p, q).

3. Transform: Apply the transformation T to all points
in set P.

4. Iterate: Repeat steps 1–3 until the algorithm con-
verges.

This algorithm converges to the next local minimum of
the sum of squared distances between closest points.
A good initial estimate is required to ensure conver-
gence to the sought solution. Unwanted solutions may
be found if the sought transformation is too large, e.g.,
many shapes have a convergence radius in the area of
20◦ [12], or if the point sets do not provide sufficient
information for a unique solution.

The original ICP algorithm has been modified in order
to improve the rate of convergence and to register par-
tially overlapping sets of points. Zhang [38] uses a mod-
ified cost function based on robust statistics to limit the
influence of outliers. Other approaches aim at the avoid-
ance of local minima during registration subsuming the
use of Fourier descriptors [33], color information [20] or
curvature features [34].

The advantages of ICP algorithms are obvious: they
are easy to implement and will provide good results, if
the sought transformation is not too large [12]. For our
tracking system we compute correspondences between
points on image silhouettes to the surface mesh, with
the ICP algorithm presented in [33].

2.4 Silhouette based motion capturing

Human models are often represented in a layered struc-
ture based on skeletons, meta-balls or polygonal surface
patches (for the bones, muscles and the skin,
respectively) [10]. It is further common to add local
deformation operators onto model joints [1]. These rep-
resentations are well suited for certain applications in
computer graphics, but for this specific task we prefer a
unified representation: we decided to model objects in
terms of two-parametric free-form surface patches. For

the leg model we use three patches for the hip, left leg
and right leg, respectively. We further add joint indices
onto each surface node so that we can directly determine
the joints of the corresponding kinematic chain for each
node on the legs.

Once a contour has been extracted from the image,
see Sect. 2.2, points on this contour must be matched to
3D points on the object surface. This is done by an ICP
procedure, see Sect. 2.3. Firstly, one determines those
points from the object surface that are part of the object
silhouette resulting in the 3D object rim contour. The
projection of each of these points is then matched to
the closest point of the extracted contour. In this way,
one obtains a 2D–3D point correspondence for each 3D
mesh point that is part of the object silhouette. Based on
the correspondences, equations are generated following
Sect. 2.1. These are solved by using the Householder
algorithm and are iterated until the overall pose con-
verges.

In order to deal with larger motions during pose
tracking a simple sampling method is used to apply
the pose estimation algorithm to different neighbor-
ing (random) starting positions. From all results the
one with the smallest error between the extracted
silhouette and the projected surface mesh is chosen.
This is important in order to avoid local minima during
tracking.

This approach minimizes the spatial distance of the
3D surface rim to the 2D image silhouettes. In a multi-
view set-up, it leads to equations which are sufficient
for a unique solution of the pose and kinematic chain
parameters. After pose estimation, a new rim contour is
determined from the new pose and the process is iter-
ated until the overall pose converges. An example for
silhouette based motion capturing is shown in Fig. 3.
The pose result is visualized by projecting the trans-
formed meshes onto the images. Experiments proved
that the algorithm can handle self-occlusions, even for
highly dynamic movements.

Though it is not the main contribution of this work, it
is important to point out that the combined use of level
set based image segmentation, 3D shape and motion
priors (see [6]) leads to stable tracking results even in
highly noisy image sequences as shown in Fig. 4; in a
walking sequence we replaced 25% of all pixels by a
uniform random value. Additionally, we added heavy
occlusions to all camera views by randomly distributing
box-shaped occlusions of random size and gray value
across the images.

Figure 16 also shows a corrupted frame of a knee-
bending sequence. Our approach is able to handle such
outliers, and still leads to reasonably good tracking
results.
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Fig. 3 Pose result of the
silhouette based MoCap
system for four synchronized
cameras. The pose is
visualized by projecting the
transformed surface mesh
onto the image data

Fig. 4 Segmentation and
pose estimation in highly
noisy image sequences. We
replaced 25% of all pixels by
a uniform random value.
Additionally, we randomly
distributed box-shaped
occlusions of random size and
gray value across the images

3 Kinematic cloth draping

Cloth draping is a highly interesting discipline in com-
puter graphics. It deals with the realistic simulation and
modeling of a cloth which is moving and falling on
objects, e.g., a human being. As mentioned in Sect. 1,
existing approaches can roughly be divided into geo-
metrically or physically based ones. Physical approaches
model the cloth behavior by using potential and kinetic
energies [23]. Geometric approaches [35] model clothes
by using other mechanics theories which are often deter-
mined empirically. For our set-up we decided to use

a geometric approach to model cloth behavior. The
reason is two fold: firstly, cloth draping is needed in
one of the innermost loops for pose estimation and
segmentation. Therefore it must be very fast. In our
case we need around 400 iterations for each frame to
converge to a solution. An assumed cloth draping
algorithm which would need a few seconds would
result in hours to calculate the pose of one frame and
weeks for a whole sequence. The second reason is that
we are interested in a model representation which fits as
well as possible to our free-form surface based
representation.
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Fig. 5 A piece of cloth
falling on a tilted plane

Fig. 6 Basic principle of kinematic cloth draping

Due to these limitations, we decided to model the
skirt as a string-system based on kinematic chains: The
main principle is visualized in Fig. 5 for a piece of cloth
falling on a plane. The piece of cloth is represented as a
particle grid, a set of points with known topology. While
lowering the cloth, the distance of each cloth pointing to
the ground plane is determined. If the distance between
one point on the cloth to the surface is below a threshold,
the point is set as a fixed point; see the top-right image
of Fig. 5. Now the remaining points are not allowed to
“fall” downwards anymore. Instead, for each point, the
nearest fixed point is determined and a joint (perpen-
dicular to the particle point) is used to rotate the free
point along the joint axis through the fixed point. The
used joint axes are marked as blue lines in Fig. 5. The
image in Fig. 6 shows the geometric principle to deter-
mine the twist for rotation around a fixed point: The
blue line represents a mesh of the rigid body, x is the
fixed point and the (right) pink line segment connects x
to a particle p of the cloth. The direction between both

points is projected onto the y-plane of the fixed point
(1). The direction is then rotated about 90◦ (2), leading
to the rotation axis n. The point pair (n, x × n) defines
the components of the twist, see Eq. (5). While lower-
ing the cloth, free particles not touching a second rigid
point will swing below the fixed point (e.g., p′). This
leads to an opposite rotation [indicated with (1′), (2′)
and n′] and the particle swings back again, resulting in a
naturally swinging draping pattern. The draping velocity
is steered through a rotation velocity θ , which is set to
2◦ during the iteration. Since all points either become
fixed points, or result in a stationary configuration while
swinging backwards and forwards, we constantly use 50
iterations to drape the cloth. The remaining images in
Fig. 5 show the ongoing draping and the final result.

Figure 7 shows examples of a skirt falling on the leg
model. The skirt is modeled as a two-parametric mesh
model. Due to the use of general rotations, the inter-
nal distances in the particle mesh cannot change with
respect to one of these dimensions, since a rotation
maintains the distance between the involved points.
However, this is not the case for the other sampling
dimension. For this reason, the skirt needs to be recon-
strained after draping. This is visualized in Fig. 8; if a
stretching parameter is exceeded, the particles are re-
constrained to minimal distance to each other. This is
only done for the non-fixed points (i.e., for those which
are not touching the skin). It results in a better appear-
ance. Figure 8 shows that even the creases are main-
tained.

The cloth draping algorithm is only suited for non-
moving (static) objects, but during tracking also cloth
dynamics appear (e.g., swinging effects). To improve the
dynamic behavior of clothing during movements, we fur-
ther add a wind model to the cloth draping.
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Fig. 7 Skirt draping on leg model

Fig. 8 Reconstraining the skirts’ length

We extend the cloth-draping in the following way:
dependent on the direction of a wind force we deter-
mine a joint on the nearest fixed point for each free
point on the surface mesh with the joint direction being

Fig. 9 Wind model on skirt. Left: no wind, middle: frontal wind,
right: backwards wind

perpendicular to the wind direction. Now we rotate the
free point around this axis dependent on the wind force
(expressed as an angle) or until the cloth is touching
the underlying surface. Figure 9 shows examples of the
cloth with no, frontal or backward wind. The wind force
and direction are later part of the minimization function
during pose tracking.

Cloth dynamics during movements are modeled with
the help of such external forces: the walking person
causes a relative wind force acting on its body during
movement. Also the swinging dynamics of the cloth dur-
ing tracking are estimated in terms of such external wind
forces. Figure 10 visualizes the effect of the used wind
model.

Since the motion dynamics of the cloth are deter-
mined dynamically, we need no information about the
cloth type or weight since they are implicitly determined
from the minimized cloth dynamics in the image data.
We only need the measures of the cloth (in this case of
a skirt).

4 Combined cloth draping and MoCap

The assumptions are as follows: we assume the represen-
tation of a subject’s lower torso (i.e., for the hip and legs)
in terms of free-form surface patches. We also assume

Fig. 10 Left: Overlaid pose result without wind model. Right:
Overlaid pose result including wind model
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Fig. 11 The basic algorithm for combined cloth draping and
motion capturing

known joint positions along the legs. Furthermore, we
assume the wearing of a skirt with known measures. The
person is walking or stepping within a calibrated volume
of a four-camera setup. These cameras are synchronized
by an external trigger signal. The task is to determine
the pose of the model and the joint configuration. For
this we minimize the image error between the projected
surface meshes and the extracted image silhouettes. The
unknowns are the pose, kinematic chain and the cloth
parameters (wind forces, cloth thickness, etc.). The task
can be represented as an error functional as follows:

E(�, p1, p2, θξ , θ1, . . . , θn, c, w) =
−

∫
�

(
H(�) log p1 + (1 − H(�)) log p2 + ν|∇H(�)|) dx

︸ ︷︷ ︸
segmentation .

+ λ

∫
�

(� − �0( θξ , θ1, . . . , θn︸ ︷︷ ︸
pose and kinematic chain,

, c, w︸︷︷︸
wind parameters

))dx

︸ ︷︷ ︸
shape error

Due to the large number of parameters and unknowns
we decided for an iterative minimization scheme, see
Fig. 11; Firstly, the pose, kinematic chain and wind
parameters are kept constant, while the error functional
for the segmentation (based on �, p1, p2) is minimized
(Sect. 2.2). Then the segmentation and wind parame-
ters are kept constant while the pose and kinematic
chain are determined to fit the surface mesh and the
cloth to the silhouettes (Sects. 2.1 and 2.3). Note that
after cloth draping, the skirt is treated as a kinematic
chain during pose estimation. Therefore, the cloth con-
tributes with equations to the overall pose. After each
iteration, there is a need to re-drap (and adapt) the
cloth. Finally, different wind directions and wind forces
are sampled to refine the pose result (Sect. 3). Since all
parameters influence each other, the process is iterated
until a steady state is reached. In our experiments, we

always converged to a local minimum. The computa-
tion time is approximately 5 min per four-camera frame
on a standard (3 GHz) linux machine. Figure 12 shows
results of pose estimation and cloth draping by super-
imposing the surface patches with the image data. The
analysis of various image sequences revealed that it is
possible to recover the underlying kinematic structure
though body parts are heavily occluded by fabrics. We
analyzed different image sequences, with a subject walk-
ing, dancing, bending the knees or pulling them up. The
algorithm can handle partial occlusions, e.g., caused by
crossing legs.

Figure 13 shows pose results animated in a virtual
environment. The images on the left show pose results
with the cloth model, whereas the images on the right
just show the estimated leg configuration. In the sequ-
ence, the body is turning around 180◦, legs are cross-
ing and the skirt is swinging. Due to the dynamics of
the sequence, a static cloth draping (without taking into
account external forces) would cause (and has caused
in the first version of our program) major problems for
tracking. But with the included wind model applied to
the skirt, the tracking is successful and stable.

Figure 14 shows an example frame of a sequence with
the subject pulling up the knees and Fig. 15 shows a
pose result where the subject is bending the knees. Both
images are interesting since in the first example the skirt
is stretched whereas in the second example the skirt is
partially hanging down loosely. It can be seen that the leg
configurations are (according to subjective visual judg-
ment) accurately recovered.

Figure 16 visualizes the stability of our approach:
while grabbing the images, a couple of frames were
stored completely wrong. These sporadic outliers can
be compensated from our algorithm, and a few frames
later (see the images below) the pose is correct. Due to
the use of level set functions and the incorporated shape
prior, the segmentation is close to the last pose configu-
ration leading to an incorrect, but not completely wrong
pose. Once the image data is useful again, the segmen-
tation automatically relies more on the image data and
converges to the real image silhouette.

4.1 Quantitative error analysis

A lack of many studies so far (see e.g., [24]) is that the
only feedback one receives is visual feedback of the
pose provided by overlaying the pose with the image
data or by visualizing them in a virtual environment. To
enable a quantitative error analysis, we decided to use
a commercial marker based tracking system for com-
parison. We use the motion analysis software [25] with
eight Falcon cameras. For data capture we use the Eva
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Fig. 12 Pose results of skirt
draping and wind adaption
during tracking

3.2.1 software and the motion analysis Solver Interface
2.0 for inverse kinematics computing. For this system
the subject must have retro-reflective markers attached
to specific anatomical landmarks. Around each camera
is a strobe light led ring and a red-filter is in front of
each lens. This gives very strong image signals of the
markers in each camera. These are treated as point
markers which are reconstructed in the eight-camera
system. One of the cameras can be seen on the left
in Fig. 17. The system is calibrated by using a wand-
calibration method. Due to the filter in front of the
images we had to use a second camera set-up which

provides real image data. This camera system (consisting
of four cameras) is calibrated by using a calibration cube.
After calibration, both camera systems are calibrated
with respect to each other. Then we generate a stick-
model from the point markers including joint centers
and orientations (Fig. 18). This results in a completely
calibrated set-up which we use for a system comparison.
The right image of Fig. 17 shows our test subject wearing
the skirt and the retro-flective markers. Figure 19 shows
two example frames of the sequence with the pose over-
laid in one of the four cameras. The images on the right
show the animated leg configuration.
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Fig. 13 Pose results
animated in a virtual
environment. Each image pair
shows the pose result with the
estimated cloth parameters
on the left and the plain leg
configuration on the right

The diagram in Fig. 20 shows the left and right knee of
a plain walking sequence. The (smoothed) motion anal-
ysis data are overlaid with the silhouette based results.
The mean absolute difference is 2.72◦ for the left knee
and 3.1◦ for the right knee. Maximum errors occur when
the knees are nearly parallel to each other and
overlapping in the image data. Table 1 summarizes devi-
ations of the left and right knee for different motion
sequences (each of 240 frames).

In [30], eight biomechanical measurement systems
are compared (including the used motion analysis sys-
tem). The author also performed a rotation experiment
which shows that root mean square errors are typically
within 3◦. This shows that the errors are in the error

Table 1 Deviations between marker based and marker-less track-
ing systems

Sequence Left knee Right knee

Dancing (see Figs. 12, 13) 3.42 2.95
Knee-up (see Fig. 14) 3.22 3.43
Knee bending (see Figs. 15, 16) 3.33 3.49
Walking (see Figs. 19, 20) 2.72 3.1

Evaluated are the left and right knee for different motion
sequences (each of 240 frames)

range of marker based tracking systems. We consider
this as a good result and indication of a stable tracking
algorithm.
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Fig. 14 Left: Pose result of
the walking sequence, where
the knees are pulled up. Right:
The leg configuration in a
virtual environment (from
two different viewing angles)

Fig. 15 Left: Pose results of a
knee-bending sequence,
where the knees are bent.
Right: The leg configuration
in a virtual environment

5 Summary

The contribution presents an approach for motion cap-
ture of clothed people. To achieve this we extend a
silhouette based motion capture system, which relies
on image silhouettes and free-form surface patches of
the body with a cloth draping procedure. Due to the
limited time constraints for cloth draping we decided
for a geometric approach based on kinematic chains.
We call this cloth draping procedure kinematic cloth

draping. This model is very well suited to be embedded
in a motion capture system since it allows us to min-
imize the cloth draping parameters (and wind forces)
within the same error functional such as the segmenta-
tion and pose estimation algorithm. Due to the num-
ber of unknowns for the segmentation, pose estimation,
joints and cloth parameters, we decided for an itera-
tive solution. The experiments show that the formu-
lated problem can be solved: we are able to determine
joint configurations and pose parameters of the kine-
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Fig. 16 Top: Error during
grabbing the images. Bottom:
Two frames later, the pose is
correct again

Fig. 17 The set-up for the quantitative error analysis. Left: The
motion analysis system (and one of the strobe light cameras).
Right: The subject with markers attached to the body

matic chains, though they are considerably covered with
clothes. Indeed, we use the cloth draping appearance
to recover the joint configuration and simultaneously
determine wind dynamics of the cloth during walking
and dancing sequences. We further performed a quan-
titative error analysis by comparing our method with a
commercially available marker based tracking system.
The experiments show that we are in the same error
range as marker based tracking systems.

Applications are straight forward: the motion cap-
ture results can be used to animate avatars in computer
animations, and the angle diagrams can be used for the
analysis of sports movements or clinical studies. The pos-
sibility of wearing loose clothes is more comfortable for



38 B. Rosenhahn et al.

Fig. 18 The coordinate systems of the markers in the lab setup.
The markers are used to generate a stick-figure model. The images
show pose configurations of crossed legs and walking

Fig. 19 Left: Pose results of the walking sequence. Right: The leg
configuration in a virtual environment (from a slightly different
viewing angle)

Fig. 20 Knee angles of a walking sequence. Magenta/gray left and
right knee from the motion analysis system, orange/black left and
right knee from the marker-less system (including cloth model)

many people and enables a more natural motion behav-
ior. The presented extension also allows us to analyze
outdoor activities, e.g., soccer or other team sports.

For future works we plan to extend the cloth drap-
ing model with more advanced ones [23] and we will
compare different draping approaches and parameter
optimization schemes in the motion capturing setup.
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