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Abstract Local optimization and filtering have been widely
applied to model-based 3D human motion capture. Global
stochastic optimization has recently been proposed as promis-
ing alternative solution for tracking and initialization. In or-
der to benefit from optimization and filtering, we introduce
a multi-layer framework that combines stochastic optimiza-
tion, filtering, and local optimization. While the first layer
relies on interacting simulated annealing and some weak
prior information on physical constraints, the second layer
refines the estimates by filtering and local optimization such
that the accuracy is increased and ambiguities are resolved
over time without imposing restrictions on the dynamics.
In our experimental evaluation, we demonstrate the signif-
icant improvements of the multi-layer framework and pro-
vide quantitative 3D pose tracking results for the complete
HumanEva-II dataset. The paper further comprises a com-
parison of global stochastic optimization with particle filter-
ing, annealed particle filtering, and local optimization.

Keywords Human Motion Capture· Stochastic Optimiza-
tion · Filtering · Tracking

1 Introduction

The 3D reconstruction of human motion from multi-view
video sequences has applications in many areas including
computer graphics, biomechanics, medicine, and sport sci-
ence, see e.g. [44]. Besides robustness, accuracy, and low
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computational cost, many applications require a general so-
lution without imposing strong assumptions on the dynam-
ics and the appearance of the human, i.e. neither motion
patterns nor clothing are known a-priori. Nonetheless, the
use of prior poses or motion patterns learned from a motion
database has become very popular in order to achieve ro-
bust tracking also in difficult and ambiguous scenarios [41,
46,52]. In [1] the pose is directly recovered from silhouettes
by learning the mapping between silhouettes and markers.
Gaussian process dynamical models [35,51] have been used
for embedding motion in a low-dimensional latent space.
Although these learning strategies allow for tracking even
in monocular video sequences, they impose strong assump-
tions on the tracked motion. The restriction to a small subset
of human motion patterns limits their application in practice.
When, for example, the movement of a person with an arti-
ficial hip joint is measured using training data from persons
with natural hip joints, the estimates are likely to be biased
towards the movement of a person with natural hip joints,
i.e., one eliminates exactly the information that is important
for the medical application. Hence, in the present paper, we
will focus on a tracking system that allows for robust and
accurate tracking without relying on strong motion priors.

Another kind of prior knowledge frequently used in hu-
man tracking is a surface model with an underlying skele-
ton, see e.g. [27] or the survey [34]. These so-called model-
based approaches estimate the position, rotation, and joint
configuration (pose) of the human model for each frame,
where the large number of degrees of freedom (DoF) re-
sults in a high-dimensional state space. Although the use of
a model-based approach also limits the general applicability
of the tracking framework, we assume here the existence of
such a body model.

The strategies for model-based pose estimation can be
classified into global optimization, filtering, and local op-
timization. All these strategies have some drawbacks. The
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main contribution of the present paper is therefore a multi-
layer framework that employs the basic ideas of all three
concepts.

1.1 Global Optimization

A stochastic global optimization approach, called interact-
ing simulated annealing (ISA) [23], has recently been pro-
posed for human motion capture [22]. Since it searches for
the globally best solution, it is also suitable for initialization
of model-based approaches [24]. Its ability to recover from
errors and its precise estimates satisfy the requirements for
the first layer where robustness and accuracy are essential.
However when the estimates are observed over time, some
jitter is noticeable which is typical for stochastic approaches
like ISA that sample from a distribution of interest. Vari-
ations between estimates of two frames might also occur,
when the tracker recovers from an ambiguity in the previ-
ous frame. Moreover, while stochastic global optimization
provides estimates close to the global optimum in reason-
able time, the ratio between accuracy and computation cost
is unsatisfactory when more precise estimates are required,
as we will show.

1.2 Filtering/Smoothing

Filtering approaches estimate the unknown true statext from
some noisy observationsyt , e.g. images. In general, the esti-
mation is called prediction, filtering, or smoothing if obser-
vations before framet, includingt, or also aftert are taken
into account. The filtering problem is typically solved by
Kalman filtering [31] or particle filtering [20] where it is as-
sumed that the underlying stochastic processes

xt+1 = ft (xt)+vt , (1)

yt = ht (xt)+wt (2)

with noisevt andwt are known. Isard and Blake [28] applied
a particle filter to 2D tracking and extended it to a two-pass
smoothing algorithm [29]. For 3D human motion capture,
particle filters were combined with Markov chains, called
Hybrid Monte Carlo filter [15], and graphical models, called
nonparametric belief propagation [33,47]. In [8] a Kalman
filter was used to model the human dynamics by multiple
abstraction levels. Even though filtering approaches exploit
temporal coherence, handle noise and are able to recover
from errors, they are usually too imprecise for motion anal-
ysis in high dimensional spaces. Since accurate models for
ft andht are rarely available, the model’s weakness is com-
pensated by overestimating the noise vectorsvt andwt at the
expense of poor performance.

For this reason, some heuristics based on particle filters
were developed to combine local optimization with filtering.

Sminchisescu and Triggs [49] propose covariance scaled sam-
pling to guide the particles to the local maxima of a pos-
terior distribution. To find the local maxima, the particles
are broadly spread in the search space by inflating the co-
variance of the dynamic prior and refined by a local opti-
mization with respect to the likelihood. The posterior is then
modeled by a mixture of Gaussians where the means and
covariance matrices are given by the detected local maxima
and their Hessians. Smart particle filtering [7] combines a
particle filter with stochastic meta descent [45] for local op-
timization. Since the optimization of the particles changes
the approximated distribution, a correction factor is used to
compensate for the additional set of particles. The correc-
tion factor, however, depends on the unknown distribution
after prediction. Hence, a regularization [20, Chapter 12],
which introduces an error, is performed to estimate the con-
tinuous distribution from the finite set of particles before
the optimization step. Particularly, the low number of parti-
cles prevents an accurate estimation of the correction factor.
Deutscher et al. propose an annealed particle filter [17,18]
that follows the idea of annealing to guide the particles to the
global maximum of the likelihood. To this end, the shape
of the likelihood is gradually changed and the sampling is
repeated. The approach does not perform annealing in the
classical sense where the temperature is monotonically de-
creased, but relies on the fluctuating survival rate of the par-
ticles. Hence, the annealed particle filter is not suitable for
global optimization and requires an additional technique for
initialization like other approaches that combine local opti-
mization with particle filtering. Although it has been shown
that these heuristics work well for tracking hands or humans,
there is no evidence that they converge to the optimal solu-
tion of the filtering problem stated in Equations (1) and (2)
in contrast to Kalman or particle filtering.

1.3 Local Optimization

Local optimization has been widely used for 3D human mo-
tion capture [9,14,25,26,30,32,37]. It provides very accu-
rate results provided that the state vector is initialized near
the global optimum. Since it searches only for the locally
best solution, it usually cannot recover from errors and re-
quires an initialization. Without additional prior informa-
tion, the tracking often fails in case of fast motions and
ambiguities. The optimization for pose estimation has re-
cently been coupled with level-set segmentation [12,42] and
graph-cut segmentation [6] where the estimated pose serves
as shape prior for segmentation. Even though the shape prior
yields better segmentation results and can be applied more
generally than background subtraction, it introduces a local
term for energy minimization that depends on the previous
estimate. Hence, these approaches are not able to recover
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Fig. 1 A multi-layer framework for tracking. While the first layer
based on global stochastic optimization provides robust and relatively
accurate estimates, the second layer increases the accuracy and reduces
jitter and potential bias from the first layer with a short delayd.

from errors since a wrong estimate results in a wrong shape
prior and a wrong segmentation for the next frame.

The idea of several layers has been used for tracking-by-
detection approaches [21,40] which rely on a learned tem-
plate model. Since the detection is usually limited to canon-
ical poses like lateral walking, the human poses are only
detected on a subset of frames. A second step is therefore
required to interpolate or track between the detected frames.
While the tracking is usually done offline since the detected
poses are used to learn a subject specific appearance model,
our framework processes the image data online or with a
very short delay.

1.4 Overview and Contribution

In this work, we propose a model-based approach for 3D
human motion capture that meets important needs of mo-
tion analysis since it does not rely on prior knowledge of
the dynamics. In order to increase the accuracy and resolve
ambiguities over time without imposing restrictions on the
dynamics, we introduce a multi-layer framework that com-
bines global optimization, filtering, and local optimization.
While the first layer relies on global stochastic optimization,
the second layer refines the estimates by filtering and local
optimization as outlined in Figure 1.

For the first layer, the images are processed and silhou-
ettes are extracted (Section 2). A recently developed stochas-
tic global optimization technique, namely interacting simu-
lated annealing, initializes the tracker and estimates the pose
for each frame by minimizing an image-based energy func-
tion, which relies on silhouettes and color, as well as some
weak prior on physical constraints (Section 3). Although the
first layer provides a robust and relatively accurate estimate
of the human pose in the current frame, the estimate is still

corrupted by noise due to sampling and the unsteady quality
of the image features. Besides the missing temporal consis-
tency, some bias might have been introduced by the weak
prior.

The second layer refines the estimate with a short delay
of d ≥ 0 frames, where the estimate is filtered or smoothed
(Section 4). Although the smoothing reduces the jitter from
the stochastic global optimization by introducing temporal
consistency, it improves only slightly the accuracy of the
estimate. The latter is achieved by local optimization and
segmentation where the smoothed estimate for framet −d
serves as initial pose for optimization and as shape prior for
the level-set segmentation (Section 5). The additional local
segmentation improves the quality of the silhouettes of the
first layer, which are obtained by global segmentation like
background subtraction and often contain severe artifacts
like shadows and holes. Since both segmentation and local
optimization are initialized by good estimates from the first
layer for each frame, an error accumulation due to the shape
prior is prevented. We show that the second layer consisting
of smoothing, local optimization, and local segmentation not
only increases the accuracy, but also reduces jitter and po-
tential bias from the first layer.

Indeed, our experimental evaluation in Section 6 demon-
strates the improvements of the multi-layer framework in
comparison to an increased number of iterations and sam-
ples for global optimization. It further comprises a quanti-
tative error analysis using theHumanEva-II dataset [48],
where we also compare interacting simulated annealing with
particle filtering, annealed particle filtering, and local opti-
mization.

2 Image processing

In our multi-layer framework, global and local optimization
are applied to the same images, see Figure 1. Hence, the
images need to be processed once such that they are suit-
able for the appearance model used for global optimization
(Section 3.3.2) and the level-set segmentation in the sec-
ond layer (Section 5.1). Both for segmentation and the ap-
pearance model, good results are obtained with the CIELab
color space that mimics the human perception of color dif-
ferences. In order to reduce noise without smoothing over
the edges that separate body parts and background, we ap-
ply the edge-enhancing diffusivity function [13]

g(|∇u|2) =
1

|∇u|p + ε
(3)

with ε = 0.001 andp = 1.5, where the smoothing is effi-
ciently implemented by the AOS scheme [53].
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(a) (b)

Fig. 2 Left: a) The triangles of the human model encode the body

parts.Right: b) Outline of the first layer. While the particle set(x(i)
t )i

represents the distribution of the solution, the mean ˆxt provides a single
estimate for the pose. The pose for the next framexpred

t+1 is predicted by
Gaussian process regression (GPR), and an additional mutation opera-
tor spreads the particles in the search space. The pose is then estimated
by stochastic optimization (ISA). The system is closed in the sense
that any uncertainty that arises from the prediction and estimation is

preserved in terms ofΣ pred
t+1 and(x(i)

t+1)i .

(a) (b) (c)

Fig. 3 From left to right: a) Energy functionV with global mini-
mum at zero.b) η1. c) The mass ofηk concentrates around the global
minimum ask increases. For a limited number of iterations,ηk is mul-
timodal.

3 Global Optimization

The first layer of our tracking framework relies on inter-
acting simulated annealing (ISA) [23], which is a global
stochastic optimization technique. Since we assume that a
3D skeletal model as shown in Figure 2 a) is available, the
pose can be represented by a vectorx containing the posi-
tion, orientation, and joint angles, where rotations are con-
verted to the axis-angle representation. For each frame, the
pose ˆx is obtained by searching for the global minimum of
an energy functionV ≥ 0, which is described in Section 3.3.

Instead of searching for a single estimate ˆx, ISA approx-
imates a distributionηk whose mass concentrates in the re-
gion of global minima of the energy functionV ask tends to
infinity, see Figure 3. This behavior is described by the fol-
lowing convergence theorem [36] saying that for anyε > 0

lim
k→∞

ηk (V ≥ sup{v≥ 0; V ≥ v a.e.}+ ε) = 0. (4)

(a) (b)

Fig. 4 Two mutation operators.From left to right: a) The left branch
(red) and the right branch(blue)are swapped.b) The left branch(red)
is reconstructed from the right branch(blue)by mirroring the first joint.

Similar to particle filters, where the posterior distribution is
approximated by so-called particles,ηk needs to be approxi-

mated byn samplesx(i)
k with weightsπ(i) since an analytical

solution is usually not available. The approximate distribu-
tion

η
n
k :=

n

∑
i=1

π
(i)

δ
x(i)
k

, (5)

whereδ denotes the Dirac measure, converges toηk as the
number of particles increases [36]. A single estimate for the
human pose from the set of particles is obtained by the mean
x̂ =

∫
ηn

k (x)dx where the mean of rotations is computed ac-
cording to [38]. The details of ISA are discussed in Sec-
tion 3.2.

During tracking the solution is represented by the set of

particles(x(i)
t )i as outlined in Figure 2 b). Since the particles

approximate a distribution, uncertainties from the pose esti-
mation are propagated to the next frame making the estima-
tion robust to ambiguities. An additional mutation operator
between two frames spreads the particles in the search space
where the predicted posexpred

t+1 and its confidenceΣ pred
t+1 are

taken into account, see Section 3.1. The initial pose is also
determined by ISA as described in Section 3.4.

3.1 Mutation

After estimating the pose ˆxt , the particlesx(i)
t congregate

around the global optimum for framet. Since this set is not
well distributed for estimating the pose in the next frame,
a mutation step spreads the particles in the search space.
For this purpose, the pose is predicted from the previous
estimates by a 3rd order autoregression, i.e.xpred

t+1 = f (x̂t:3)
wherex̂t:3 = (x̂t , x̂t−1, x̂t−2) denotes the last three estimates.
The functionf can be learned during tracking from the his-
tory of estimates given by the equations

x̂t−r+1 = f (x̂t−r:3) for r = 1. . .R. (6)
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The regression is implemented by Gaussian processes (GP)
[54] where the prediction is given by a Gaussian distribu-
tion with meanxpred

t+1 and covariance matrixΣ pred
t+1 . Since GP

regression provides a predictive distribution and works well
for a small set of training data, it meets the needs for the first
layer.

To simplify matters, we briefly summarize only the one-
dimensional prediction by Gaussian processes where the set
of training data is given by ˆxR = (x̂t−1:3, . . . , x̂t−R:3)T and
f (x̂R) = ( f (x̂t−1:3), . . . , f (x̂t−R:3))T . The predictive distribu-
tion for the last three estimates ˆxt:3 is obtained by the condi-
tional Gaussian distributionp(x̂t+1|x̂t:3, x̂R, f (x̂R)) with mean
and variance

xpred
t+1 = k(x̂t:3, x̂R)TK−1 f (x̂R), (7)

(σ pred
t+1 )2 = k(x̂t:3, x̂t:3)−k(x̂t:3, x̂R)TK−1k(x̂t:3, x̂R). (8)

The covariance matrix for the training dataK is modeled by
the general covariance function

k(x̂r:3, x̂s:3) = a0exp

(
−1

2

2

∑
j=0

a j+1 (x̂r− j − x̂s− j)
2

)

+
2

∑
j=0

a j+4 x̂r− j x̂s− j +σ
2
noiseδrs, (9)

where the hyperparametersa j andσ2
noiseare learned offline1

by minimizing the log likelihood as proposed in [54]. Due to
computational efficiency, all parameters of the search space
are assumed to be independent yielding a one-dimensional
prediction for each degree of freedom.

Since the dynamics are learned online, the prediction
adapts to the current motion but it also might be corrupted by
tracking errors in the past. Hence, we shift only 40% of the
particles according toxpred

t+1 , another 30% is kept as it is and
30% are mutated. The mutation is motivated by evolutionary
algorithms where a larger variety among a population helps
to recover from errors. We propose two human specific mu-
tation operators as illustrated in Figure 4. The first swaps
two kinematic branches like the left and the right leg and
helps to recover from ambiguous silhouettes which often oc-
cur when the legs are next to each other. The second is useful
when only one of two legs or arms is well estimated due to
occlusions. In order to reconstruct its counterpart, we imi-
tate the behavior of humans to use their arms or legs to bal-
ance. For this purpose, the first joint of the kinematic branch
is mirrored while the other joint angles remain unchanged.
Even though the mutated particles will be mostly rejected
after the first iterations of the optimization, they support the
tracker in recovering from errors. Finally, all particles are
propagated by a zero-mean Gaussian distribution with co-
variance matrix proportional toΣ pred

t+1 .

1 The hyperparameters are learned from the sequences shown in
rows 2-4 of Figure 8 in [25]. The sequences differ from the test se-
quences in motion, frame rate, and subject.

(a) (b) (c)

Fig. 5 Impact of learning the motion model online.From left to
right: a) To simulate the effect of a fast movement, only every 4th
frame is used, i.e., the frame rate of the camera is reduced from 60 fps
to 15 fps. Since the dynamics are learned online, it takes some frames
until good estimates forxpred

t+1 andΣ
pred
t+1 are obtained. When the num-

ber of iterations for ISA remains unchanged, the error increases for the
first frames. After the motion model is learned, the error is comparable
to the 60 Hz sequence.b) Estimated pose for frame 3 of the 15 Hz se-
quence(frame 10). c) After 5 frames at 15 Hz(frame 18), the motion
model is learned and the pose is well estimated.

The prediction by Gaussian process regression has two
advantages. When the movement is fast or the frame rate
is low, xpred

t+1 guides some particles towards the next poten-
tial pose such that less iterations are required for optimiza-
tion as illustrated in Figure 5. More important, however, is
Σ

pred
t+1 which spreads the particles in the search space before

optimization. Without the prediction, it would be necessary
to setΣ pred

t+1 manually but the optimal values depend on the
motion and the frame rate. GPR provides this information
where the variance becomes larger for fast motions or a re-
duced frame rate. Note that we do not require a first order
Markov process for the transitions as it is usually assumed
for filtering approaches. In our experiments, we have ob-
served that a 3rd order autoregression performs well for hu-
man motion whereas models with higher order improve only
marginally the prediction.

3.2 ISA

The optimization consists of a weighting, a selection, and
a mutation step that are iterated several times. For each it-
erationk, the distributionηk is approximated by the set of
particles, see Figure 6. The particles are initialized by the
mutation operator from Section 3.1 as illustrated in Figure 2.

Weighting Assuming that a set of particles(x(i)
k )i=1...n

exists, each particle is weighted by the Boltzmann-Gibbs
measure

π
(i) = exp

(
−βkV

(
x(i)

k

))
, (10)



6

Fig. 6 The set of particles converges to the global minimum. The
weighted particles are shown for iterationsk= 5, 10, 20, and 35, where
particles with higher weights are brighter.

whereβk = (k+ 1)b with b = 0.7 is an annealing scheme
that increases monotonically. After normalizing the weights
such that∑i π(i) = 1, the weight indicates the probability that
a particle is selected for the next step.

Selection. In a first stage, particles are accepted with
probability π(i)/maxl π(l), i.e. the particle with the highest
weight is always accepted. Since after this first stage onlym
particles are selected, additionaln−m particles are drawn
in a second stage, replacing those from the old set. This is
efficiently done by stratified resampling [19] using the nor-
malized weightsπ(i). Due to the selection operation, similar
particles with high weights are contained several times in the
new set whereas particles with low weights might disappear
completely.

Mutation. In order to explore the search space, the par-
ticles are spread out according to a GaussianKk whose co-
variance matrix is the sampling covariance matrix

Σk =
αΣ

n−1

(
ρ I +

n

∑
i=1

(x(i)
k −µk)(x

(i)
k −µk)T

)
(11)

scaled byαΣ = 0.4, whereµk is the average,I the iden-
tity matrix, andρ a small positive constant that ensures that
the covariance does not become singular. The computational
cost is reduced by using a sparse matrix that takes only cor-
relations of joints into account that belong to the same skele-
ton branch. In general, the Gaussian distribution can be re-
placed by any distribution that satisfies the mixing condi-
tion to ensure the convergence on a bounded search space;
see [23] or [36].

For a comparison of different annealing schemes and pa-
rameter settings for ISA, we refer to [23]. The optimal num-
ber of iterations and particles is a trade-off between accuracy
and computation cost, which is discussed in Section 6.

3.3 Energy

As energy function for global optimization, we use

V(x) = ν Vsilh(x)+ τ Vapp(x)+υ Vphys(x), (12)

(a) (b) (c) (d)

Fig. 7 From left to right: a) Template imageTv(x). b) Silhouette im-
ageIv. c) Smootheda-channel.d) Smoothedb-channel.

where the parametersν , τ, andυ control the influence of
the three terms, namely silhouettes, appearance, and phys-
ical constraints that are explained in Sections 3.3.1, 3.3.2,
and 3.3.3, respectively. The impact of the appearance term
has been evaluated in [22]. Throughout this paper, we use
the recommended parametersν = 2, τ = 40, andυ = 2.

3.3.1 Silhouettes

In order to model an error function between a particlex and
a silhouette imageIv extracted by background subtraction, a
template imageTv(x) is generated by projecting the surface
of the human model that is translated, rotated, and deformed
according to the particle as shown in Figure 7 a). The in-
consistent areas between the silhouette and the template are
then measured for each viewv by

Vv(x) =
1

2|T0
v (x)| ∑

p∈T0
v (x)

|Tv(x, p)− Iv(p)|

+
1

2|I0
v |

∑
p∈I0

v

|Iv(p)−Tv(x, p)| , (13)

whereIv(p) andTv(x, p) are the pixel values for a pixelp
and the sets of pixels inside the silhouettes are denoted by
I0
v and T0

v (x). Since pixels that are far away from the sil-
houette should be penalized more severely, a Chamfer dis-
tance transform [5] is previously applied toIv as shown in
Figure 7 b). In the optimal case, the Chamfer distance trans-
form is also applied to the templateTv(x), but this would
be very expansive since the transform needs to be computed
for each particle. Hence, we use only a constant value where
pixels inside the silhouette are set to 0, as it is the case for
the distance transform, and pixels outside the silhouette have
a constant ‘distance’ to compensate for the differences be-
tween the error of the first and the second term of Equa-
tion (13). In our experiments, we have found that a value of
8 is a proper compensation factor. The energy termVsilh is
finally defined as the average error of all views.
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3.3.2 Appearance

To obtain an appearance model that is robust to 3D ro-
tations, we combine the pixel information from all views
to model the statistics of different body parts rather than
their separate projections to the images. Since theL-channel
of the CIELab color space is very sensitive to illumination
changes, we use only thea- and b-channel, see Figure 7.
Furthermore, we assume the image channelsuc to be uncor-
related for efficiency reasons. Hence, the joint probability
density function for a body parts can be written as

ps(u) = ∏
c

ps,c(uc). (14)

Instead of assuming a certain family of distribution func-
tions, we approximate the probabilitiesps,c in a more gen-
eral manner by normalized histogramsH(s,c) where we fixed
the number of bins toK = 64.

In order to measure deviations of the appearance of a
particle x from the appearance model given byH(s,c), the
particle’s appearancẽH(s,c)(x) is estimated by sampling from
all views. For this purpose, the triangles of the human model
are used to encode the body parts of the projected surface as
shown in Figure 2 a). Hence, a pixelp that belongs to a
body parts contributes for each channeluc to the histogram
H̃(s,c)(x). For histogram comparison, we choose the Bhat-
tacharya distance since it is also stable for empty bins in
contrast toχ2-statistics or Kullback-Leibler divergence [39].
The total deviation is then measured according to (14) by

Vapp(x) = ∑
s

ws

C

C

∑
c=1

(
1−

K

∑
k=1

√
h(s,c)

k h̃(s,c)
k (x)

)
, (15)

where the weightsws reflect the size of the body parts and
are determined during initialization, see Section 3.4. In gen-
eral, the appearance model needs to be updated during track-
ing. However when the lighting conditions are controlled as
it is the case for theHumanEva-II dataset, an update is not
necessary.

3.3.3 Physical Constraints

Since human motion is subject to physical restrictions like
anatomical constraints and self-intersections, the search can
be focused on poses with higher probabilities by adding a
soft constraint to the energy function. For this purpose, the
probability of a skeleton configurationppose is estimated
from a set of training samplesyl taken from the CMU mo-
tion database [16]. Since self-intersections between the head,
the upper body, and the lower body rarely occur, the sample
sizeL can be reduced by regarding the probabilities for the
three body parts, denoted byphead

pose, pupper
pose , andplower

pose , as un-
correlated. The probability for a body part is approximated

(a) (b) (c)

Fig. 8 Initialization. From left to right: a) The search space is
bounded by a cube.b) The initial set of particles is randomly dis-
tributed around the center of the cube.c) The pose is correctly ini-
tialized after 35 iterations. Intermediate steps are shown in Figure 6.

by a Parzen-Rosenblatt estimator with a Gaussian kernelK:

ppose(x) =
1

Lhd ∑
l

K

(
x−yl

h

)
, (16)

where thed-dimensional vectorsx andyl contain only the
joint angles for the body part. The bandwidthh is given
by the maximum second nearest neighbor distance between
all training samples. Finally, we used less than 200 samples
from different motions for modeling the physical constraints
by

Vphys(x) =−1
3

ln
(

phead
pose(x)pupper

pose (x)plower
pose (x)

)
. (17)

Although the termVphys is only a weak prior, it might still
introduce some bias that is reduced by the second layer.

3.4 Initialization

For finding the initial pose, ISA searches for the global min-
imum of the energy function defined in Equation (12) where
only the termsVsilh andVphysare used since the appearance
of the model is unknown a priori. To this end, the search
space is bounded by a cube that is determined by the silhou-
ettes, where the intersections of the projection rays of the
silhouettes’ bounding boxes are the corners of the cube [24].
The particles are then randomly distributed around the cen-
ter of the cube and optimized by ISA, see Figure 8. Finally,
the pose is refined by local optimization as discussed in Sec-
tion 5.2. After the pose ˆx0 is estimated for the first frame,
the histogramsH(s,c) are generated by sampling from the
images as described in Section 3.3.2. During sampling, the
range of each feature channel is also determined and divided
into uniform bins. Furthermore, the weightsws in Equa-
tion (15) are given by the sample size for each body part
s after normalizing such that∑sws = 1.
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(a) (b)

Fig. 9 Impact of smoothing.From left to right: a) The smoothing
reduces the jitter from global stochastic optimization.b) The absolute
tracking error of the second layer with respect to the introduced delay
d (Frames 2−821 of sequence S4). The best result is achieved with a
delay of only 5 frames. This corresponds to a delay of 83msfor a se-
quence with 60 fps. Ford = 0, the estimates are filtered without delay.

4 Smoothing

Using the noisy mean estimates ˆxt from global optimiza-
tion as observations instead of images, the filtering problem
specified by Equations (1) and (2) is simplified such thatht

becomes the identity map. In addition, for considering the
solutions of many frames for smoothing and not only a sin-
gle one, we formulate the filtering as a regression problem.

As outlined in Figure 1, the second layer refines the es-
timates ˆxt from global optimization with a short delay of
d ≥ 0 frames by means of local optimization, as described
later in Section 5. This yields more precise estimatesxt . We
propose to couple regression and local optimization. Having
Restimates

xt−R, . . . ,xt−d−1, x̂t−d, . . . , x̂t , (18)

we seek the functionf that provides a smoothed version for
framet−d, i.e.xsmooth

t−d = f (t−d). Since the refined values
xt should have more impact in the regression than the values
x̂t , we add a binary indicator variableit as additional dimen-
sion to the input space.it = 1 indicates that the estimate has
been already refined. The regressorf (t, it) is then learned
from the data

xt−r = f (t− r,1) for r = R. . .d−1 (19)

x̂t−r = f (t− r,0) for r = d . . .0. (20)

Similar to the prediction in Section 3.1, we apply Gaussian
process regression. Lett := (t, it) andtR := (t−R, . . . , t)T .
The smoothed estimate is then given by the mean

xsmooth
t−d = k((t−d,1), tR)T K−1 f (tR) , (21)

where the covariance matrixK is modeled by

k(t− r , t−s) =a0exp

(
−1

2

(
a1 (r−s)2 +a2 (it−r − it−s)

2
))

+σ
2
noiseδrs. (22)

(a) (b) (c) (d)

Fig. 10 From left to right: a) Silhouette from background subtrac-
tion. b) Estimate from global optimization.c) Silhouette from level-set
segmentation.d) Improved estimate by local optimization. The right
and left arms are better estimated.

The hyperparameters are learned offline as explained in Sec-
tion 3.1. Since the correlation depends only on the temporal
distance but not on the current value oft, K−1 needs to be
calculated only once for a fixed number of training dataR.
Basically the regression comes down to linear filtering with
an asymmetric filter mask and the weights being learned
from training data. Figure 9 shows the impact ofd where
we useR= 10+d.

In general, a Kalman or particle filter could also be used
for smoothing. However, the parameters need to be learned
as well and we have not observed a significant improvement
when the smoothing is performed with only a short delay.

5 Local Optimization

After smoothing, the accuracy of the estimated pose is in-
creased by local optimization. Since the silhouettes from
background subtraction often contain severe artifacts like
shadows and holes, we improve the quality of the silhou-
ettes by local segmentation before optimizing the pose, see
Figure 10. The smoothed posexsmooth

t−d serves both as shape
prior for the segmentation and as initial estimate for local
optimization.

5.1 Local Segmentation

The silhouette of the human is extracted by a level-set seg-
mentation that divides the image into fore- and background
where the contour is given by the zero-line of a level-set
functionΦ . As proposed in [43], the level-set functionΦ is
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the minimum of the energy functional

E(Φ) =−
∫

Ω

H(Φ) ln p1 +(1−H(Φ)) ln p2dx

+ϑ

∫
Ω

|∇H(Φ)| dx+λ

∫
Ω

(Φ −Φ0))
2 dx, (23)

whereH is a regularized version of the Heaviside step func-
tion. The probability densities of the fore- and background,
p1 and p2, are modeled by local Gaussian densities using
the color channelsL, a, andb that are assumed to be in-
dependent as in (14). While the first term maximizes the
likelihood, the second term, weighted by the fixed param-
eterϑ = 2, regulates the smoothness of the contour. The last
term penalizes deviations from the projected surface of the
smoothed posexsmooth

t−d given as level-set functionΦ0, where
the influence of the shape prior is controlled by the param-
eter λ = 0.08. For minimizing (23), local optimization is
performed with gradient

∂kΦ =H ′(Φ)
(

log
p1

p2
+ϑ div

(
∇Φ

|∇Φ |

))
+2λ (Φ0−Φ) (24)

andΦ0 as initial estimate.

5.2 Pose Estimation

The posexsmooth
t−d is finally refined by an iterated closest point

(ICP) approach. To this end, 2D-2D correspondences be-
tween the zero-level ofΦ andΦ0(xsmooth

t−d ) are established by
a closest point algorithm [55]. Since the points on the con-
tour of the projected surface ofxsmooth

t−d relate to 3D vertices
of the mesh, 3D-2D correspondences between the model and
the image can be derived. According to ICP, the pose esti-
mation is performed iteratively where the set of correspon-
dences is updated after each optimization until the pose con-
verges to a local minimum.

For estimating the pose, we seek for the relative trans-
formation that minimizes the error of given 3D-2D corre-
spondences denoted by pairs(Xi ,xi) of homogeneous co-
ordinates. A suitable representation for local optimization
are twistsθξ̂ [10] that express 3D rigid motions asM =
exp(θξ̂ ). A joint j is modeled as zero-pitch screw around a
given axis, i.e., the joint motion depends only on the rotation
angleθ j . Hence, a transformation of a pointXi on the limb
ki influenced bynki joints is given by

X′
i = M(θξ̂ )M(θιki

(1)) . . .M(θιki
(nki

))Xi , (25)

where the mappingιki represents the order of the joints in the
kinematic chain. Since each 2D pointxi defines a projection
ray that can be represented as Plücker lineLi = (ni ,mi) [50],

the error of a pair(X′
i ,xi) is given by the norm of the per-

pendicular vector between the lineLi and the pointX′
i

‖Π
(
X′

i

)
×ni −mi‖2, (26)

whereΠ denotes the projection from homogeneous coordi-
nates to non-homogeneous coordinates. Using the Taylor ap-
proximation exp(θξ̂ )≈ I +θξ̂ , whereI denotes the identity
matrix, Equation (25) can be linearized. Hence, the sought
transformation is obtained by solving the linear least squares
problem

1
2 ∑

i

∥∥∥∥∥Π

((
I +θξ̂ +

ni

∑
j

θιki
( j)ξ̂ j

)
Xi

)
×ni −mi

∥∥∥∥∥
2

2

, (27)

i.e. by solving a system of linear equations.
In order to penalize strong deviations fromxsmooth

t−d and
to avoid an underdetermined system, we extend the linear
system by an additional equation

αθ j = α

(
θ

smooth
j − θ̃ j

)
(28)

for each joint j, whereθ̃ j is the previously estimated abso-
lute joint angle. The parameterα is set relative to the num-
ber of correspondences to achieve a constant weighting for
each frame. In practice, we useα = 0.2 · |{(Xi ,xi)i}|. Since
the local optimization provides only a relative transforma-
tion, the refined posext−d is obtained by applying the rel-
ative transformation to the previously estimated pose. We
remark that the particular choice of the parameters for local
segmentation and optimization influences only marginally
the results of the second layer. The values therefore remain
fixed in our experiments.

6 Experiments

For an experimental evaluation of the proposed multi-layer
framework, we use theHumanEva-II dataset [48] that con-
tains two sequences that were captured by 4 calibrated cam-
eras with resolution of 656× 490 pixels and 60 fps. The
ground truth has been obtained by a marker-based motion
capture system that was synchronized with the cameras. The
sequences show two different subjects S2 and S4 perform-
ing the motions walking, jogging, and balancing. We use the
3D surface mesh model that is available for subject S4 and
does not contain the clothing. Both sequences S2 and S4 are
tracked with this model although the mesh model does not
fit subject S2 as shown in Figure 19. Furthermore, we re-
duced the number of triangles to 5000 and added a skeleton
with 28 degrees of freedom to the mesh. Since not all 20
points of the 3D pose from the marker-based system relate
to joints of our mesh, we have used the first frame of each
sequence to register the 3D markers of the ground-truth to
our mesh. In Figure 12, the registered markers are shown by
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Fig. 11 Comparison between filtering and optimization approaches.
Global stochastic optimization (ISA) provides the best estimates
whereas the standard particle filter (PF) and local optimization (ICP)
perform poorly. The annealed particle filter (APF) performs better than
a combination of particle filtering with local optimization (PFICP) pro-
vided that the parameter for adaptive diffusion is well chosen. Other-
wise, the error for APF becomes very large. The detailed errors with
standard deviations are listed in Table 1.

red dots and the joint locations by blue dots. For comput-
ing the 2D and 3D error, we take the joint locations of the
model, if they are available. Otherwise we use the registered
markers. Since the joint locations of subject S4 do not fit
subject S2, we have used only the registered markers for S2.
In order to register the 3D markers as accurately as possible
to the model, we have manually segmented the first frame
and estimated the initial pose as described in Section 3.4.
We remark that not only the tracking and initialization con-
tribute to the overall error, but also the registration and the
marker-based system introduce some errors. Hence, the re-
ported errors should be regarded only as upper bounds that
allow comparison of different approaches. The experiments
are split into two sections. While Section 6.1 compares fil-
tering approaches to optimization approaches, Section 6.2
demonstrates the performance of the proposed multi-layer
framework.

6.1 Optimization vs. Filtering

We have compared interacting simulated annealing (ISA) to
local optimization (ICP), a standard particle filter (PF) [20],
a variant of the smart particle filter (PFICP) [7], and the
annealed particle filter (APF) [18]. The comparison is per-
formed on the first 820 frames of sequence S4 using the
absolute 3D error as measurement [48]. Since the ground
truth is corrupted for the frames 298− 335, these frames
are neglected in the error analysis. For local optimization,
we apply the iterative closest point approach described in

(a) PF (b) ICP (c) APF (d) ISA

Fig. 12 Top: Absolute 3D errors for frames 2−821 of sequence S4.
While the estimates of the particle filter (PF) are imprecise, local opti-
mization (ICP) gets stuck in local minima. The annealed particle filter
(APF) contains two severe errors (> 100mm) around frames 440 and
590 yielding a large standard deviation, see Table 1. Global stochastic
optimization (ISA) performs very well for the entire sequence.Bot-
tom: Estimates for frame 580 by PF, ICP, APF, and ISA (from left to
right). ICP fails to track the right arm and the legs are disarranged by
the APF.

Section 5.2 to the silhouettes obtained by background sub-
traction, where the prior on physical constraints (16) is in-
tegrated according to [11]. ISA, PF, and APF use the same
energy model defined in Section 3.3. For the particle filter,
we employ the weighting function (10) withβt = 1. This is
similar to the assumption that the likelihood is proportional
to a product of normal densities. The particles are predicted
as described in Section 3.1 without using the mutation oper-
ator since it is not supported by a filtering framework, i.e.,
50% of the particles are shifted according to the predicted
mean and the remaining 50% are directly selected. While
ISA and APF are executed with 250 particles and 15 iter-
ations, which are called layers for APF, we set the number
of particles to 3750 for the particle filter to obtain the same
computational cost. Though the smart particle filter as pro-
posed in [7] uses stochastic meta descent (SMD) [45] for
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local optimization, any local optimization like ICP can be
used in principle. Since our ICP implementation is slower
than SMD, we use 16 particles for PFICP to achieve the
same computation time as PF according to [7]. Since nei-
ther PF, APF, PFICP, nor ICP are suitable for initialization,
the initial pose is provided by ISA.

The errors are plotted in Figures 11 and 12. It shows that
the global stochastic optimization approach clearly outper-
forms the local optimization and the particle filter. While
ICP gets stuck in local minima, the estimates of PF are im-
precise. The annealed particle filter performs better than the
standard particle filter but it still produces two severe errors.
This is reflected in the standard deviation for APF given in
Table 1, which is large in comparison to ISA that performs
very well for the entire sequence. The result that APF per-

error (mm) PF ICP PFICP APF ISA
avg 104.61 63.86 69.70 44.15 38.58
std dev 40.77 27.07 24.75 15.39 6.54

Table 1 Averages and standard deviations of the absolute tracking
error for frames 2− 821 of sequence S4. ISA shows clearly the best
results where the standard deviation is significantly lower than for APF.

forms better than PF seems to contradict the comparison
in [3] where only slightly better results were obtained by
APF. The outcome of APF, however, depends strongly on
the parameter for adaptive diffusion [18] which was not im-
plemented in the previous comparison. The errors for two
different settings, namely 0.4 (APF*) and 0.2 (APF), are
plotted in Figure 11. PFICP does not necessary improve
ICP where the best result has been achieved with a very
large window size for estimating the correction factor. Ap-
proaches like PFICP are in general relatively inefficient since
the additional optimization step limits the number of parti-
cles such that a good approximation of a distribution is in-
feasible. Furthermore, a lot of computation time is wasted
when the particles migrate to the same local minimum.

The performance of APF and ISA on a very fast se-
quence has been evaluated by reducing the frame rate from
60 fps to 15 fps. For the comparison shown in Figure 13, the
parameters for both algorithms are unchanged. While ISA
performs very well for 60 Hz and 15 Hz, the error for APF
increases by more than 30% when the speed is quadrupled.
It might be that the result of APF can be improved by op-
timizing the parameter for adaptive diffusion on 15 Hz but
it is clear that the faster the motion is the more important
global optimization becomes.

Although the optimal numbers of particles and iterations
for ISA are trade-offs between accuracy and computation
cost, Figure 14 shows that large numbers of iterations and
particles improve the estimates only marginally. Indeed, the
error drops until 200 particles and 15 iterations, however

Fig. 13 The effect of a very fast movement is simulated by using only
every 4th frame of sequence S4 (frames 2−821). This corresponds to
a walking and running sequence recorded with 15 fps. While the error
increases slightly by 4.68% to 40.39mm for ISA, the error for APF
rises to 57.63mmby 30.5%.

(a) (b)

Fig. 14 Absolute tracking error of global optimization for frames 2−
821 of sequence S4. Large numbers of iterations and particles improve
the estimates only marginally.From left to right: a) Error with respect
to the number of particles using 15 iterations.b) Error with respect to
the number of iterations using 250 particles.

after 30 iterations the absolute error is still 36.75mm. For
comparison, an error of 38.58mm is obtained by 15 itera-
tions. This indicates that ISA provides estimates near the
global optimum in reasonable time, but when more precise
estimates are required the ratio between accuracy and com-
putation cost is unsatisfactory.

6.2 Multi-layer

For evaluating the performance of the proposed multi-layer
framework, the absolute 3D tracking errors are measured for
the entire sequence S4 that consists of 1257 frames. Fig-
ure 15 shows that the second layer increases the accuracy
of the estimates from the first layer, where 250 particles and
15 iterations are used for ISA and the second layer refines
the estimates with a delay of 5 frames. In particular, the
largest error around frame 380 is significantly reduced by
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Fig. 15 Absolute tracking error for the sequence S4 (frames 2−1258).
The second layer reduces jitter and increases the accuracy of the esti-
mates from the first layer. In particular, the largest error around frame
380 is significantly reduced by the second layer.

the second layer. This is reflected by the results given in Ta-
ble 2, where the average error is reduced by 15.9% and the
standard deviation by 22.4%. The second layer clearly pro-
vides more precise estimates, which cannot be achieved by
an increased number of particles and iterations in reasonable
time; see Figure 14. Our current implementation requires
76 seconds per frame for the first layer and 48 seconds per
frame for the second layer on a standard computer whereas
ISA with 30 iterations would require 152 seconds per frame.

The errors and quantiles for individual joints are pro-
vided in Figure 17. The quantiles show that most joints, par-
ticularly the knees, are very well estimated. It also reveals
that the limb extremities, namely wrists and ankles, are more
difficult to track since hands and feet are relatively small
body parts. The lower quantiles indicate the registration er-
rors of the joint positions, particularly of the ankles. Since
the distances between the upper and lower quantiles for the
wrists and ankles are similar, the larger error of the ankles
might be explained by the registration error.

error (mm) Layer1 L1+Smooth L1+LocOpt L1+Layer2
avg 38.07 35.58 33.23 32.01
std dev 5.84 5.09 5.08 4.53

Table 2 Averages and standard deviations of the absolute tracking
error for the complete sequence S4 (frames 2−1258). The error of the
first layer using only global optimization is significantly reduced by the
second layer. Clearly, a coupling of smoothing and local optimization
provides more precise results than each of them alone.

We have also evaluated the impact of coupling local op-
timization and smoothing for the second layer, which per-
forms better than each of these steps alone. This is shown

Fig. 16 A comparison of the average errors for the complete se-
quences S2 and S4 shows the improvements of our multi-layer frame-
work. The detailed errors with standard deviations are given in Tables 2
and 3.

Fig. 17 Average errors and 0.025-quantiles for individual joints ob-
tained by the multi-layer framework on the entire sequence S4. While
the knees are very well estimated, the error bars for the limb extremities
such as wrists and ankles are larger than for other joints. The quantiles
of the ankles indicate that the ankle joints are not well registered.

in Figure 16. Tables 2 and 3 reveal that the accuracy is pri-
marily increased by local optimization whereas smoothing
reduces the jitter, as indicated by the decreased standard de-
viation. The best results for the second layer were achieved
with a short delay of 5 frames as plotted in Figure 9. Even
without delay, the error is slightly reduced compared to ap-
plying only local optimization. The computation times are
listed in Table 4. For convenience, we also provide the error
of the second layer in Table 5 when a particle filter approach
is used as first layer.

error (mm) Layer1 L1+Smooth L1+LocOpt L1+Layer2
avg 43.82 41.44 39.20 37.53
std dev 10.65 9.67 10.05 9.00

Table 3 Averages and standard deviations of the absolute tracking
error for the complete sequence S2 (frames 1−1202).
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Layer1 L1+Smooth L1+LocOpt L1+Layer2
sec/frame 76 76 124 124

Table 4 Overall computation time on a standard PC for a frame with
4 images.

error (mm) PF + L2 PFICP + L2 APF + L2 ISA + L2
avg 82.70 58.38 37.26 32.49
std dev 43.77 25.32 14.67 5.21

Table 5 Averages and standard deviations of the absolute tracking er-
ror for frames 2−821 of sequence S4. The second layer (L2) improves
the results for all sampling approaches. The results without the second
layer are given in Table 1.

We further applied the multi-layer framework to sequence
S2 that consists of 1202 frames. Since we use the 3D surface
mesh model of subject S4, the model does not fit subject S2,
see Figure 19. Nevertheless, competitive results are obtained
even though the error is larger by 6mm than for sequence
S4, see Tables 2 and 3. The increase of the error seems to
be mainly caused by the wrong model since the camera set-
ting and movement are very similar to S4. Particularly, the
elbow joints of the model are at the wrong position which
causes problems when the elbows are angled. This indicates
that our approach would also work with a generic surface
model like the SCAPE model [2,4]. However, it also reveals
that the quality of the surface mesh has a significant impact
on the accuracy of the estimates.

The influence of a strong prior is demonstrated in Fig-
ure 18. To this end, we learned the physical constraints of the
head movement only by joint samples around zero. While
the estimates from the first layer are biased towards the train-
ing data and do not fit the image data, the second layer re-
duces the bias since it does not rely on the prior. We em-
phasize that the bias is not completely removed, since the
second layer is initialized by the estimates of the first layer,
but the example shows that the estimates of our multi-layer
framework better fit the image data.

In order to allow comparison to other approaches that
have not been mentioned in this section, we provide vari-
ous error metrics for the sequences S2 and S4 in Tables 6
and 7. Each sequence is split into three sets, where the first
set contains only the walking motion, the second the walk-
ing and jogging motion and the third set the entire sequence
consisting of walking, jogging, and balancing. The average
errors and standard deviations are given for global stochas-
tic optimization (one layer) and the multi-layer framework
(two layers). The 2D errors are computed for cameras C1
and C2. The relative error is computed with respect to the
pelvis joint. For a detailed description on the error metrics,
we refer to [48]. We remark that the relative error is higher

(a) Layer 1 (b) Layer 2

Fig. 18 Biased estimates.Top: When the physical constraints are
modeled by a strong prior, the estimates are biased towards the train-
ing data. For this example, only joint samples around zero have been
used. Since the second layer does not make use of the prior, the bias is
reduced.Bottom: Biased estimate of the head by the first layer (left).
The estimate of the second layer better fits the image data (right).

than the absolute error. This indicates that the marker for
the pelvis joint has not been accurately registered to the sur-
face mesh model. In addition, some estimated human body
poses of the multi-layer framework are shown in Figures 19
and 20.

7 Discussion

In this work, we have compared optimization and filtering
approaches for model-based human motion capture that do
not rely on prior knowledge on the dynamics. A quantitative
error analysis has revealed that a recently proposed stochas-
tic optimization technique (ISA) provides significantly bet-
ter estimates than an iterative closest point approach, a stan-
dard particle filter, a variant of the smart particle filter, or the
annealed particle filter. While ISA provides robust and rela-
tively accurate estimates of the human pose, an even higher
precision is only achieved at the expense of high compu-
tational cost. To address this problem, we have introduced
a multi-layer framework that combines the advantages of
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]Layers Dataset 3D (mm) 2D/C1 (pix) 2D/C2 (pix)
absolute relative absolute relative absolute relative

1 Set1 (1−350) 41.50±7.98 45.78±9.00 5.45±1.49 5.85±1.74 5.54±1.78 5.66±1.84
2 Set1 (1−350) 32.23±5.71 33.49±6.03 4.10±1.11 4.24±1.25 4.38±1.36 4.28±1.33
1 Set2 (1−700) 45.04±12.85 48.36±13.68 5.79±1.89 6.04±2.04 6.07±2.35 6.22±2.41
2 Set2 (1−700) 35.86±10.73 37.62±11.42 4.49±1.44 4.65±1.55 4.85±1.86 4.92±2.01
1 Set3 (1−1202) 43.82±10.65 46.57±11.44 5.61±1.57 5.89±1.71 5.95±1.91 6.14±1.96
2 Set3 (1−1202) 37.53±9.00 39.36±9.70 4.77±1.25 4.99±1.34 5.13±1.55 5.25±1.69

Table 6 3D and 2D errors for subject S2. Accurate results are obtained by our multi-layer framework although the sequence has been tracked
with a wrong surface mesh model, see Figure 19.

]Layers Dataset (Frames) 3D (mm) 2D/C1 (pix) 2D/C2 (pix)
absolute relative absolute relative absolute relative

1 Set1 (2−350) 34.59±4.63 43.93±8.24 4.48±1.00 5.66±1.69 4.17±0.72 4.93±1.17
2 Set1 (2−350) 27.65±2.96 33.91±4.97 3.58±0.74 4.40±1.03 3.35±0.51 3.91±0.86
1 Set2 (2−700) 38.53±6.90 47.00±10.60 5.14±1.30 6.22±1.90 5.01±1.38 5.70±1.76
2 Set2 (2−700) 32.14±5.42 37.31±6.55 4.34±1.05 5.04±1.21 4.24±1.14 4.72±1.35
1 Set3 (2−1258) 38.07±5.84 45.25±9.13 5.25±1.17 6.12±1.62 5.00±1.12 5.71±1.53
2 Set3 (2−1258) 32.01±4.53 36.01±5.79 4.42±0.92 4.99±1.04 4.30±0.93 4.71±1.10

Table 7 3D and 2D errors for subject S4. The frames 298−335 are neglected since the ground truth is corrupted for these frames.

global stochastic optimization, local optimization, and fil-
tering. While the first layer relies on ISA, the second layer
refines the estimates where filtering and local optimization
are coupled. The second layer not only increases the accu-
racy, but also reduces jitter and potential bias from the first
layer. The latter is an important issue particularly in medical
applications. In practice, the two layers can be run in par-
allel such that the processing time is not increased. So far
real-time performance cannot be achieved, but we intend to
reduce the computation time further by exploiting the paral-
lel structure of ISA and graphics hardware.

Since the described approach is based on a fixed sur-
face model, its general applicability is still limited. Although
good results are obtained even with a wrong surface model,
we have demonstrated that the quality of the surface mesh
has an impact on the accuracy of the estimates. A solution
to be investigated in future works might be to adapt a generic
human model to the image data. The framework could also
be combined with motion priors which might be useful in
monocular scenarios. The multi-layer framework is appeal-
ing in this case, since the motion priors would reduce the
search space for ISA and the second layer would be neces-
sary to reduce the bias introduced by the priors.
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