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Abstract

The introduction of the Segment Anything Model

(SAM) has paved the way for numerous seman-

tic segmentation applications. For several tasks,

quantifying the uncertainty of SAM is of partic-

ular interest. However, the ambiguous nature of

the class-agnostic foundation model SAM chal-

lenges current uncertainty quantification (UQ) ap-

proaches. This paper presents a theoretically mo-

tivated uncertainty quantification model based on

a Bayesian entropy formulation jointly respect-

ing aleatoric, epistemic, and the newly introduced

task uncertainty. We use this formulation to train

USAM, a lightweight post-hoc UQ method. Our

model traces the root of uncertainty back to under-

parameterised models, insufficient prompts or

image ambiguities. Our proposed determinis-

tic USAM demonstrates superior predictive ca-

pabilities on the SA-V, MOSE, ADE20k, DAVIS,

and COCO datasets, offering a computationally

cheap and easy-to-use UQ alternative that can

support user-prompting, enhance semi-supervised

pipelines, or balance the tradeoff between accu-

racy and cost efficiency.

1. Introduction

In the last years, significant effort and resources have been

spent into the development of foundation models. One

well-established model is the Segment Anything Model

(SAM) (Kirillov et al., 2023) that segments arbitrary objects

in images based on multi-modal prompts. SAM enables

researchers and engineers to rapidly develop new appli-

cations (Zhang et al., 2023a) such as interactive segmen-

tation (Wu & Xu, 2024) or satellite imagery (Ren et al.,

2024) without the need for expensive data annotation or

model training. Similarly, the adoption of deep learning

in critical domains such as medical diagnosis (Wang et al.,
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Figure 1. Large and Tiny SAM with our epistemic UQ on the

DAVIS dataset. The Large model predicts an accurate mask while

the Tiny model fails in the area of the tail. Our USAM MLP ∆
∗

θ

estimates a potential epistemic gap of 7.5% intersection over union

(IoU) directly from the Tiny model, helping the user to balance the

trade-off between efficiency and accuracy.

2019) or autonomous driving (Yan et al., 2024a; Gottwald

et al., 2024) intensified research in uncertainty quantification

(UQ) to make systems more reliable and safe. Moreover,

UQ helps to improve model training (Kaiser et al., 2022),

supervisability (Vujasinović et al., 2024), and in other ap-

plications (Paul et al., 2024; Kaiser et al., 2024; Wehrbein

et al., 2025; Kruse & Rosenhahn, 2025). UQ is therefore

also moving into focus with regard to SAM (Zhang et al.,

2023b; Jiang et al., 2024). Like other segmentation methods,

SAM exhibits uncertainty caused by various factors. For

example, Figure 1 illustrates the prediction of SAM using

tiny and large backbones. While the tiny model is more

cost-efficient, it fails to segment the details on the fishtail.

Knowing about potential accuracy gaps (i.e. uncertainty)

based on under-parameterization can help determine if a

switch to a larger model is worthwhile. Existing applica-

tions rely on SAM’s inherent confidence score or apply stan-

dard approaches like test-time augmentation (Deng et al.,

2023) which are resource-intensive and poorly suited be-

cause SAM is subject to a unique kind of uncertainty. In ad-

dition to model (epistemic) and data uncertainty (aleatoric),

the task is undefined, i.e. the object to segment is unknown

a priori, and the user defines the prior with a prompt. Thus,

SAM also underlies task uncertainty because the prompt is

potentially describing multiple valid tasks or SAM fails to
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Figure 2. The SAM framework with our USAM extension and Bayesian entropy approximation to quantify uncertainty. Starting from the

the bottom left, an image xI is the input. A user defines one or more coordinate prompts xP to specify his desired segmentation task a.

The image and prompt are encoded into embeddings, concatenated together with random embeddings, and fed into the mask decoder

which applies attention, MLPs and upsampling layers. The SAM framework estimates three potential masks that address different tasks Â.

Additionally, SAM estimates the IoU between the ground truth of a and the masks corresponding to Â, denoted as SamScore. We extract

and concatenate the mask and confidence tokens (Kirillov et al., 2023) to train MLPs that estimate the expected predictive, epistemic,

task, and prompt uncertainty. Furthermore, the process to calculate the entropy of uncertainty is visualized in blue. Multiple prompts are

chosen by the user, augmentations t are applied to the input, and models of different size θ ∈ Θ are used to apply variational inference.

decode it.

To advance UQ research for SAM and better classify the

sources of uncertainty, this paper:

• Introduces a complete UQ formulation for SAM,

• Presents its Bayesian UQ approximation, and

• Introduces USAM, an estimator that outperforms ex-

isting methods in estimating sources of uncertainty.

Our formulation of UQ in SAM divides the predic-

tive uncertainty into uncertainties stemming from under-

parameterized models (epistemic uncertainty), insufficient

image prompts (aleatoric prompt uncertainty), or ambiguous

images (aleatoric task uncertainty). The Bayesian approxi-

mation employs Monte Carlo sampling (Mooney, 1997) to

quantify those. Since the Bayesian formulation is an impor-

tant basis for our investigations, but unfortunately computa-

tionally expensive, we introduce UncertainSAM (USAM), a

simple training strategy to train a lightweight estimator that

accounts for the same uncertainties. USAM uses multi-layer

perceptrons (MLPs) to directly estimate uncertainties from

SAM’s pretrained latent representations, enabling practical

use without bells and whistles in arbitrary applications. Our

experimental results demonstrate that our UQ methods ac-

curately estimate if a prompt should be refined, supervision

is required, or larger models improve the prediction. The

last application, combined with the efficiency of our MLPs,

can reduce the energy requirements of applications. While

the computational expensive Bayesian approximation is the-

oretically grounded, USAM is also relevant for practical

usage. Notably, the simple MLPs of USAM perform on

par or surpass the Bayesian approximation and existing UQ

methods, establishing a new state-of-the-art in UQ for SAM.

Easy-to-use code is available here1.

Section 2 recapitulates SAM, UQ, and UQ in SAM. Then,

Section 3 introduces the Bayesian approximation and our

novel USAM to estimate uncertainty. Section 4 shows in-

depth experimental evaluation concluded in Section 5.

2. Segment Anything and Uncertainty

This section offers preliminaries and related work to SAM

and UQ. Then, we present a new Bayesian formulation of

UQ in SAM that is used later in our method.

2.1. Segment Anything Model (SAM)

SAM (Kirillov et al., 2023) is a foundation model for class-

agnostic image segmentation. It predicts image masks for

arbitrary objects based on an input image xI and one or more

multi-modal input prompts xP. An overview, extended with

our contributions, is presented in Figure 2. Formally, SAM

estimates the pixel-wise probability of being foreground

y for an unknown ground truth y. The framework com-

prises three basic blocks: The image and prompt encoders

as well as the mask decoder. A Vision Transformer (Doso-

vitskiy et al., 2021) is used to encode the input image, while

multi-modal prompt encoders encode prompts. Prompts can

be point or box coordinates encoded as positional encod-

ing (Tancik et al., 2020), text encoded with CLIP (Radford

et al., 2021), or dense masks added to the image embedding

with convolutions. The resulting embeddings are combined

with a randomly chosen embedding and fed into the mask

decoder which updates and fuses all prompts. The resulting

1https://github.com/GreenAutoML4FAS/UncertainSAM
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new embedding l is split into a mask and IoU token. The

mask token is projected with multi-layer perceptrons (MLP)

and multiplied with the upsampled image embedding to cre-

ate pixel-wise foreground probabilities, i.e. the object mask.

The IoU token is fed into another MLP that estimates the

intersection over union (IoU) (Jaccard, 1901) to the ground

truth, denoted as SamScore in this paper.

Since the ground truth mask y may be unknown even to

the user encoding it into the prompt, we omit the notion

of ground truth and instead define the user-encoded propo-

sition as the task a. Depending on the image xI, multiple

prompts {xP,1, xP,2, . . .} can represent the same task a and

multiple tasks {a1, a2, . . .} can be represented by the same

prompt xP, e.g. different granularities in hierarchical struc-

tures. To tackle this task ambiguity, SAM adds the random

embedding to the latent. With multiple random embeddings,

multiple masks based on different task assumptions â ∈ Â

are generated. Selecting the closest to ground truth mask

and using the minimum loss (Guzmán-rivera et al., 2012;

Charpiat et al., 2008) during training induces variability in

the network that only depends on the random embedding.

During test time, the mask with highest SamScore is kept.

2.2. Uncertainty Quantification (UQ)

According to (Gawlikowski et al., 2023), a neural network

(NN) parameterized with weights θ from the function space

Θ maps a set of inputs to a set of targets. The finite training

set D is used to condition θ during optimization, enabling

the NN to predict targets for new samples. UQ aims to

quantify the confidence that the prediction is correct.

From a Bayesian perspective (Gal & Ghahramani, 2015),

the predictive uncertainty distribution is defined as

p(y∣x,D)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Predictive Uncertainty

= + p(y∣x, θ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Aleatoric

p(θ∣D)
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
Epistemic

dθ (1)

over all parameter configurations θ ∈ Θ conditioned on

the unseen input sample x and the training data D. The

formulation allows to decompose uncertainty into more fine-

grained aspects, namely the Aleatoric uncertainty inherent

in x and the Epistemic uncertainty that originates from im-

perfect θ. The posterior distribution p(θ∣D) over all θ is

infeasible, and p(y∣x, θ) is often undefined. Thus, many

methods approximate both terms using Monte Carlo simula-

tion (MC) (Mooney, 1997).

The epistemic posterior distribution p(θ∣D) can be approx-

imated with MC samples θ ∈ Θ. For example, model

ensembles (Lakshminarayanan et al., 2017) reduce Equa-

tion (1) to a tractable sum of a few models, while cost in-

tensive Bayesian neural networks (BNN) (Goan & Fookes,

2020) sample from an approximation of Θ. Efficient BNN

approaches (Gal & Ghahramani, 2016) assume Θ to be

Bernoulli-distributed modeled with Dropout (Srivastava

et al., 2014). The aleatoric uncertainty p(y∣x, θ) is some-

times undefined or biased. Variational inference can ap-

proximate it applying test-time augmentations (Wang et al.,

2019), where the input measurement x is slightly perturbed

(e.g. with flips and rotations) with static θ. This approach

assumes that target values y of ambiguous samples are over-

fitted on sample-specific biases during training and only

memorized by spurious patterns. Perturbations activate dif-

ferent biases, approximating the distribution of y.

For convenience, some methods (Lahlou et al., 2023; Quil-

lent et al., 2024) quantify uncertainty with the variance or

entropy of the sampled distribution. This allows determinis-

tic approximations of the epistemic, aleatoric, or predictive

variance/entropy. For example, DEUP (Lahlou et al., 2023)

trains a NN to estimate the epistemic variance of MC sam-

pling, Compensation learning (Kaiser et al., 2023) predicts

pixel-wise aleatoric uncertainty, or Quillent et al. (2024)

spatial aleatoric uncertainty. Deterministic UQ methods are

lightweight, applicable post-hoc, and efficient.

While the presented methods work well in practice, the the-

oretical foundations for separating aleatoric and epistemic

uncertainty remain debatable and under active discussion.

The task-agnostic nature of SAM further amplifies this chal-

lenge, as discussed next. More insights into uncertainty can

be found in (Gawlikowski et al., 2023; Gruber et al., 2023).

2.3. UQ in SAM

SAM inherently faces challenges related to uncertainty, as

ambiguities are present in images or prompts. Quantifying

the reliability of SAM’s prediction is critical, especially in

sensitive domains. For instance, in the medical domain,

SAM exhibits excessive uncertainty, necessitating Yan et al.

(2024b) to retrain SAM or Jiang et al. (2024) to fine-tune the

ability to predict different masks. Existing works have intro-

duced or utilized UQ methods in SAM: Deng et al. (2023)

or Zhang et al. (2023b) approximate aleatoric uncertainty

with the entropy of MC simulations by augmenting prompts,

(Vujasinović et al., 2024) calculate the mean pixel-wise en-

tropy between different object masks to detect errors, or

(Xu et al., 2024) quantify uncertainty with subjective logic

(Jsang, 2018) and use the uncertainty to refine prompts. (Li

et al., 2024) adapt UQ in SAM to sample more diverse

predictions and (Liu et al., 2024) use entropy to improve

finetuning.

Despite these efforts, the implications of SAM’s class- and

task-agnostic framework on UQ remain underexplored. Un-

like other frameworks, the task is undefined a priori and

SAM is trained to cover a large set of tasks A. During

inference, the abstract task a ∈ A is defined by the user

and represented by a prompt, e.g. a persons that should be

segmented is encoded by a single point coordinate. Decom-
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posing SAM’s input into the image xI and the prompt xP,

and explicitly including the subtask of estimating the task,

the Bayesian formulation from Equation (1) extends to

p(y∣xI,D, a)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Predictive Unc.

= + + + p(y∣xI, â, θ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Aleatoric

p(â∣xI, xP, θ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Prompt Decoder

p(xP∣xI, a)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Prompt Encoder

p(θ∣D)
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
Epistemic

dθdxPdâ . (2)

In this formulation, SAM estimates the task probability

p(â∣xI, xP, θ) given the human encoded prompt xP. This

introduces new potential sources of uncertainty: Ambiguity

in prompt en- and decoding. The first stems from the user

inspecting the image content, the latter from SAM’s interpre-

tation of xI and xP. SAM inherently tackles task ambiguities

with a multi-mask approach that follows Bayesian concepts

to estimate epistemic uncertainty. SAM generates three

masks representing predictions for different â ∈ Â using dif-

ferent random input embeddings (see Figure 2). However,

the true task probability p(â∣xI, xP, θ) is intractable.

Reviewing the former mentioned methods, MC variations of

θ like ensembles or BNNs to estimate epistemic uncertainty

are not applicable post-hoc and are highly cost-intensive for

foundation models. Aleatoric approximations that augment

the prompt xP (Deng et al., 2023; Zhang et al., 2023b) only

address aleatoric uncertainty that stems from memorized bi-

ases in the task decoder. Image augmentations like in (Wang

et al., 2019; Lahlou et al., 2023) may only address the image

encoder, neglecting prompt-induced uncertainties. It shows

that the task-agnostic nature of SAM challenges current UQ

strategies. To address these challenges, we propose a more

fine-grained decomposition of uncertainty in SAM. Beyond

epistemic uncertainty, we subdivide aleatoric uncertainty

into prompt and task uncertainty.

3. Method

As shown, SAM necessitates a more fine-grained evaluation

of uncertainty. First, we formulate Bayesian approximations

of the predictive, epistemic, prompt, and task uncertainty

to evaluate known ideas and to baseline our main method.

To make UQ usable for applications, we secondly present

USAM that directly estimates the sources of uncertainty

from SAM’s latent without sampling or retraining.

The task is to quantify the probability that SAM’s fore-

ground mask estimation y is correct, i.e. is equal to the

ground truth y = a. The uncertainty can be quantified for a

single pixel y or entire masks y. This paper quantifies the

latter to address applications that utilize per image evalua-

tions like supervision management (Vujasinović et al., 2024)

or adaptive model scaling (Aggarwal et al., 2024).

3.1. A Bayesian Entropy Approximation

The predictive uncertainty from Equation (2) is intractable.

To address this, we approximate it using ideas from ex-

isting sampling-based methods (Wang et al., 2019; Deng

et al., 2023; Lakshminarayanan et al., 2017). Specifically,

we predict a set of two-dimensional foreground probability

maps Y = {y1, . . . ,yK} using SAM, where the cardinality

is defined as K = ∣T ∣ ⋅ ∣XP∣ ⋅ ∣Â∣ ⋅ ∣Θ∣. It combines the sets

of image augmentations t ∈ T (aleatoric), randomly sam-

pled point-coordinate prompts xP ∈ XP(a) drawn equally

distributed from the ground-truth mask (prompt), the tasks

Â encoded in SAMs mask proposals (task), and all avail-

able pre-trained models Θ of different size (epistemic). The

models are denoted as Θ = {L,B+,S,T} and correspond

to the names Large, Base+, Small, and Tiny. We compute

the task probability p(â∣t(xI), xP, θ) by normalizing over

all SamScores of a prediction. Using the weighted entropy

H(y) = −∑
y∈y

y

∥y∥1
(y log2(y)+ (1− y) log2(1− y)) , (3)

the predictive uncertainty is quantified for an entire image

by calculating the weighted sum of Y

HY(xI, a,T ,Θ, Â,Y) ≈

H
⎛
⎝ ∑

(t,xP,θ,â) ∈

T ×XP(a)×Θ×Â

p(â∣t(xI), xP, θ)
∣T ∣ ⋅ ∣XP(a)∣ ⋅ ∣Θ∣

yt(xI),â,θ,xP

⎞
⎠, (4)

where the indices of y● ∈ Y indicate the prediction config-

uration. Higher entropy HY indicates greater uncertainty,

though the specific source of uncertainty remains unknown.

Thus, we compute entropies for distinct uncertainty sources.

The epistemic model uncertainty is quantified by

HΘ(xI, xP, a,Θ, Â,Y) ≈H⎛⎝∑θ∈Θ
1

∣Θ∣yxI,Best(a,Â),θ,xP

⎞
⎠
(5)

calculated for a given image xI, prompt xP, and the known

ground truth task a. The operator Best(●) selects the best

fitting mask proposal according to the ground truth and thus

follows the standard SAM evaluation protocol. Similar, the

prompt uncertainty is quantified by

HXP
(xI, θ, a, Â,Y) ≈H

⎛
⎝ ∑

xP∈XP(a)

1

∣XP∣
y
xI,Best(a,Â),θ,xP

⎞
⎠

(6)

and requires pre-selected model weights. Finally, we quan-

tify the task uncertainty with all three mask proposals:

HA(xI, xP, θ, Â,Y) ≈H
⎛
⎝∑

â∈Â

p(â∣xI, xP, θ)yxI,â,θ,xP

⎞
⎠.

(7)
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Figure 3. Training objectives of our MLPs. They estimate the gap

between simple and cheap (left) and refined (right) predictions.

This Bayesian framework allows the quantification of pre-

dictive uncertainty HY , epistemic model uncertainty HΘ,

aleatoric prompt uncertainty HXP
, and aleatoric task uncer-

tainty HA through MC simulations. They allow evaluating

known concepts for the task-agnostic SAM setting.

More details to T , XP, Â, and Θ are given in Appendix A.

Note that Â depends on the respective xI, xP, and θ which

we omit in the equations due to space limitations.

3.2. USAM: A Deterministic Estimator

While the Bayesian entropy approximation closely reflects

Equation (2), the computational effort is huge, ground truth

is required, and a user needs to draw multiple prompts.

To address these limitations, we introduce USAM and ex-

tend SAM with lightweight estimators that directly estimate

uncertainty proxies. We do this by concatenating SAMs

256-dimensional mask and IoU tokens, further denoted as

l, and feeding them into MLPs that are trained to predict

uncertainty as indicated in Figure 2. The simple design of

the MLPs aligns with the architecture of SAM’s inherent

MLP for predicting the SamScore, as described in the Ap-

pendix of (Kirillov et al., 2023). They have three layers

and a sigmoid activation, but we use 512 input dimensions

and hidden states due to the concatenated input tokens. All

MLPs are trained to minimize the mean squared error to the

objectives that are discussed next and visualized in Figure 3.

For each dataset image xI ∈ X , we predict the set Y and

extract the tokens l. Additionally, we predict y∗P using a

refined prompt x∗P ∪XP that consists of all single-coordinate

prompts and represents a user that spends high-effort to

create a prompt with high certainty. We calculate the IoU

values from Y to the ground truth to train USAM. Given

an arbitrary l that can stem from any model in Θ, our first

MLP USAMxP∗
(l) estimates the IoU that is achieved us-

ing the respective input image xI and the refined prompt

x∗P . Furthermore, USAMT(l), USAMS(l), USAMB+(l),
and USAML(l) estimate the expected IoU that the Tiny,

Small, Base+, and Large SAM model achieve, respec-

tively, and are in summary denoted as USAMθ(l). The

last MLP USAMSAM(l) estimates the accuracy achieved

with the mask selected by the SamScore, i.e. without apply-

ing Best(●) and comparing to the ground truth as done in

SAMs evaluation.

During test-time with a given SAM model θ that cre-

ates the tokens l, we quantify the predictive uncertainty

by predicting and inverting the expected IoU with 1 −

USAMθ(l). A low expected IoU indicates a higher un-

certainty without indicating the cause. To quantify the

prompt uncertainty, we calculate the expected gap ∆XP
(l) =

USAMxP∗
(l) − USAMθ(l) between the single-coordinate

and refined prompt. Similar, we quantify the task un-

certainty by estimating the gap ∆A(l) = USAMθ(l) −
USAMSAM(l) between the supervised and unsupervised

mask selection. The model uncertainty is quantified with

the expected gap ∆Θ(l) = USAML(l) − USAMT(l) be-

tween Large and Tiny SAM. Since all models are trained

equally and only differ in size, we expect high epistemic

uncertainties causing the largest drop in the tiniest model.

Furthermore, additional MLPs estimate ∆●(l) directly from

the latent and are denoted as ∆∗
●
(l). They aim to recog-

nize patterns that indicate specific uncertainties. The direct

MLPs estimate the expected gap without the expected IoU,

thus focusing on the relevant aspects during optimization

while further reducing computation. USAM is a lightweight

alternative to the Bayesian approximation.

4. Experiments

This paper presents a theoretical close approximation and

the efficient USAM to quantify SAM’s uncertainty. The fol-

lowing section presents experimental results that investigate

the methods and highlight the effectiveness for practical

tasks. First, we describe the experimental settings. Then,

we analyse the ability to estimate the uncertainty that lies in

insufficient models, inaccurate prompts, or ambiguous tasks.

Finally, we analyze the overall segmentation uncertainty

and present qualitative results of our MLPs.

4.1. Setting

In our experiments, we use SAM models pretrained by (Ravi

et al., 2024) to implement the Bayesian approximation and

USAM. The MLPs of USAM are trained with the SGD opti-

mizer (weight decay 0.001). Hyperparameters are optimized

using the Bayesian optimization framework SMAC3 (Lin-

dauer et al., 2022). The number of epochs is limited to

between 5 and 80, the batch size between 16 and 256, the

learning rate between 0.0001 and 0.1, and SGDs momen-

tum between 0.1 and 0.9. During SMAC3 optimization, we

split the training set into 80% training and 20% validation

subsets. Our best trained models on the large-scale dataset

SA-V are publicly available in our code repository.

Combining the dataset selection of (Kirillov et al., 2023)

5
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Figure 4. Samples with low (certain) and high (uncertain) uncertainty scores. The uncertainty is quantified with USAM, i.e.the expected

difference between simple and refined prompts (∆∗XP
), supervised and SamScore selection (∆∗A), and the Tiny and Large model (∆∗Θ).

and (Ravi et al., 2024), we run experiments on different

scaled instance segmentation datasets DAVIS (Perazzi et al.,

2016), ADE20k (Zhou et al., 2019), MOSE (Ding et al.,

2023), COCO (Lin et al., 2015), and SA-V (Ravi et al.,

2024). The training is performed only using the training

data of the respective dataset without access to validation

data. Due to missing public test data for DAVIS, COCO, and

ADE20k, we use the validation set for extensive evaluation.

For similar reasons, we use the SA-V trained models to

evaluate on the MOSE train data.

To rank competing methods, we employ the mean inter-

section over union (a.k.a. mIoU) of predicted and ground

truth masks. The uncertainty estimation capability is evalu-

ated with the area under curve (AUC) of the mIoU, when a

variable ratio between 0% and 100% of the most uncertain

samples are corrected or refined with a better estimate. De-

pending on the evaluated task, we correct uncertain samples

with the ground truth or refine the prediction using a larger

model, better prompts, or task supervison. Good uncertainty

estimation methods assign large scores to samples that are

likely wrong. Therefore, a correction of those samples leads

to better mIoUs and the AUC increases, such that a better

UQ estimation is indicated. For readability, we normalize

the AUC between the best and worst possible results (rel.

AUC). All corresponding absolute values can be found in

the Appendix. We follow (Ravi et al., 2024; Kirillov et al.,

2023) and choose the best mask proposal during evaluation.

We compare our MLPs to the introduced Bayesian baseline

and to further standard UQ approaches derived from SAM.

On one hand, we use the inverse SamScore as an indica-

tor for uncertainty. A larger SamScore indicates a higher

expected IoU and is a proxy for UQ. Furthermore, we use

the mean entropy of the pixel-wise foreground probabilities

Table 1. Model uncertainty quantification. The table shows the

area under curve (AUC) when predicting a variable fraction of the

most uncertain samples with the Large model, others with the tiny

one. The uncertainty is determined by the respective method.

[rel. AUC in %]↑ DAVIS ADE20k MOSE COCO SA-V

S
A

M SamScore 64.25 52.85 68.44 57.97 58.83

Entropy 71.78 53.48 71.56 61.61 63.49

B
ay

es HY 51.48 52.06 61.36 54.27 55.39

HΘ 73.46 57.65 75.60 64.43 65.66

U
S

A
M ∆Θ 66.85 60.32 71.78 63.66 61.23

∆∗
Θ

59.08 61.55 73.05 66.60 63.71

that correspond to the predicted mask and denote it as HStd.

Mask entropy is often used as UQ method in applications,

e.g. in (Vujasinović et al., 2024).

4.2. Model Uncertainty

As commonly known, larger models have a larger predictive

ability compared to smaller ones. This is also true for SAM.

However, even if large models are often superior, they go

along with larger energy consumption and hardware require-

ments (Glandorf et al., 2023). Ideally, a large model should

only be used when the small model is significantly more

uncertain and is expected to have a lower accuracy. Thus,

we evaluate the ability to estimate the uncertainty stemming

from the model. We predict the test set with the Tiny model

and re-predict a ratio of the most uncertain samples with

the Large model. The ratio parameter reflects the trade-off

between accuracy and energy consumption.

Table 1 shows the AUC of the mIoU with a corresponding

plot given in Figure 5 (Model Selection). The Bayesian

entropy HΘ and our direct USAM MLP ∆∗
Θ

are on-par and
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Figure 5. Performance gain while improving predictions selected with UQ on the COCO dataset. We evaluate the SamScore, mask entropy

HStd, the Bayesian entropy approximations HY , HA, HXP
, HΘ and our USAMθ , ∆∗A, ∆∗XP

, ∆∗Θ. The dashed line denotes an oracle

estimation. Beginning from left to right, the first plot shows the improvement when replacing a ratio of the most uncertain predictions of

the Tiny model with the Large models. The second plot shows the improvement, when using refined prompts to the most uncertain samples.

The third and foruth, when the best mask in Â is selected ignoring the SamScore and if a ratio of the most uncertain predictions is replaced

by the ground truth. It shows that our MLPs are consistently superior to all other methods or on-par with the Bayesian approximation.

Table 2. Prompt uncertainty quantification. The table shows the

area under curve (AUC) when predicting a variable fraction of the

most uncertain samples with a refined prompt containing multiple

point coordinates, others with a single-coordinate prompt. The

uncertainty is determined by the respective method.

[rel. AUC in %] ↑ DAVIS ADE20k MOSE COCO SA-V

S
A

M SamScore 71.82 69.12 66.85 60.55 54.13

Entropy 77.13 70.15 69.24 68.05 63.56

B
ay

es HY 54.11 60.82 63.74 61.25 55.78

HXP
80.75 79.41 74.33 74.20 67.69

U
S

A
M ∆XP

75.04 83.23 74.21 78.17 70.15

∆∗XP
75.53 83.41 74.50 78.89 71.27

the most precise UQ methods. Moreover, the default UQ

method SamScore is consistently outperformed by all other

methods, except from HY . The weak performance of HY
is reasonable, because it includes all uncertainty aspects

including the task and prompt uncertainty that are irrelevant

and potentially misleading for this evaluation. However,

USAM performs often best and requires negligible com-

putational efforts compared to the Bayesian entropy and

is therefore the preferred method to preserve energy. The

only setting in which USAM is not competitive is on the

small-scale DAVIS dataset, indicating that more data vari-

ance is required for training which is also observable in the

next experiments. Additional insights about the impact of

the model size are briefly analyzed in the Appendix: Ta-

ble 9 shows that SAM with the largest backbone is superior

in most situations on all datasets. Furthermore, Table 10

shows that the large model is notably more robust to image

corruptions and noise.

Table 3. Task uncertainty quantification. The table shows the area

under curve (AUC) when predicting a variable fraction of the

most uncertain samples with the correct task, otherwise with the

one selected by the SamScore. The most uncertain samples are

determined by the respective method.

[rel. AUC in %]↑ DAVIS ADE20k MOSE COCO SA-V

S
A

M SamScore 68.36 66.31 70.58 64.09 58.87

Entropy 68.77 76.49 73.55 74.56 70.88

B
ay

es HY 74.88 64.53 67.32 68.12 70.50

HA 43.86 52.79 66.04 57.55 78.13

U
S

A
M ∆A 94.05 93.08 94.21 94.85 94.17

∆∗A 94.31 92.38 94.01 94.87 94.61

4.3. Prompt Uncertainty

Similar to the former experiment, we evaluate the ability to

quantify uncertainty stemming from prompts. We do this

by predicting the dataset with a simple coordinate prompt

in the centroid of the mask and replace a ratio of the most

uncertain prompts with refined ones consisting of 8 equally

distributed coordinate prompts from the ground truth mask.

The AUC of the mIoU is reported in Table 2 with a cor-

responding plot in Figure 5 (Prompt Refinement). Similar

to the former experiment, the Bayesian entropy HXP
and

our direct USAM MLP ∆∗XP
perform superior with ∆∗XP

being slightly better. The experiment shows that our method

can be used to notify users when prompts lead to uncertain

results.

4.4. Task Uncertainty

During evaluation of the class-agnostic open set segmenta-

tion problem, the best mask proposal per sample is used for

evaluation. This does not reflect the workflow in real-world
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Table 4. Uncertainty quantification. The table shows the area un-

der curve (AUC) when correcting a variable fraction of the most

uncertain samples. The most uncertain samples are determined by

the respective method. The non-corrected samples are predicted

with the Large SAM model. Similar numbers are given for the

Tiny, Small, and Base+ models in the Appendix, Table 14.

[rel. AUC in %]↑ DAVIS ADE20k MOSE COCO SA-V

S
A

M SamScore 83.36 75.40 89.48 79.60 80.80

HStd 82.00 70.23 82.09 74.27 79.60

B
ay

es

HY 38.79 46.87 56.58 45.36 57.32

HΘ 84.24 74.39 84.02 78.26 85.90

HXP
87.16 83.79 86.23 79.13 83.23

HA 52.24 52.69 66.07 56.96 60.51

USAML 91.59 92.60 92.78 90.01 89.37

Table 5. Pearson correlation between different UQ measures on the

COCO validation dataset using by the Large SAM model. IoUGT

denotes the real intersection over union between SAMs prediction

and the ground truth. Equivalent tables obtained by the other SAM

models are available in the Appendix, Tables 15 to 17.

IoUGT SamS HStd HY HΘ HA HXP
USAML ∆∗

Θ
∆∗A ∆∗XP

IoUGT 1.00 0.49 -0.30 0.10 -0.54 -0.09 -0.42 0.71 -0.26 -0.17 -0.15

SamS 0.49 1.00 -0.44 -0.09 -0.63 -0.14 -0.41 0.58 -0.38 -0.53 -0.24

HStd -0.30 -0.44 1.00 0.41 0.81 0.36 0.74 -0.38 0.69 0.49 0.66

HY 0.10 -0.09 0.41 1.00 0.26 0.42 0.39 0.17 0.23 0.33 0.27

HΘ -0.54 -0.63 0.81 0.26 1.00 0.33 0.74 -0.60 0.62 0.45 0.51

HA -0.09 -0.14 0.36 0.42 0.33 1.00 0.36 -0.11 0.31 0.17 0.17

HXP
-0.42 -0.41 0.74 0.39 0.74 0.36 1.00 -0.42 0.61 0.39 0.53

USAML 0.71 0.58 -0.38 0.17 -0.60 -0.11 -0.42 1.00 -0.37 -0.23 -0.21

∆∗
Θ

-0.26 -0.38 0.69 0.23 0.62 0.31 0.61 -0.37 1.00 0.35 0.72

∆∗A -0.17 -0.53 0.49 0.33 0.45 0.17 0.39 -0.23 0.35 1.00 0.29

∆∗XP
-0.15 -0.24 0.66 0.27 0.51 0.17 0.53 -0.21 0.72 0.29 1.00

pipelines, in which the mask with the highest SamScore is

chosen. Thus, uncertainty stemming from ambiguous tasks

with multiple valid results can be used to ask for supervision.

The UQ from ambiguous tasks is evaluated in Table 3. Dif-

ferent to the former experiments, we choose SAMs mask

proposal with the highest SamScore. Then, for a ratio of the

most uncertain samples, we replace it by the mask proposal

that is best fitting to the ground truth. USAM is performing

best with a large gap as visualized in Figure 5 (Task Super-

vision). Interestingly, the Bayesian entropy is not a suitable

approximation in this setting. However, the quality of our

USAM is superior and the favorable method.

4.5. Segmentation Uncertainty

Uncertainty correlates to the expected segmentation error.

Thus, we measure the capability of predictive uncertainty

quantification with the mIoU when correcting a ratio of

the most uncertain samples with the ground truth. Table 4

presents the AUC of the mIoU scores. Without exception,

our MLP USAML that predicts the expected IoU clearly

Table 6. Token ablation. The UQ performance of USAM when

removing mask or IoU tokens from the MLP input on the COCO

dataset, measured in relative AUC as in the main experiments.

Mask

Token

IoU

Token

Model

Uncertainty

Prompt

Uncertainty

Task

Uncertainty

: 6 61.19% 72.08% 86.89%

6 : 62.63% 76.42% 91.96%

6 6 63.66% 78.30% 94.82%

Table 7. Runtime of SAM with and without UQ methods on a

regular image performed on a NVIDIA RTX3050 Ti. Entropy is

calculated on SAMs logit map, ∣T ∣ and ∣XP∣ denote the number of

applied image and prompt augmentations used for MC sampling,

and USAM contains the calculation of all our proposed MLPs.

Compared to the runtime of all other UQ methods, our USAM is

faster and easier to implement.

[ Seconds
Iteration

] ↑ SAM +Entropy +∣T ∣ = 5 +∣XP∣ = 8 +USAM

Large 0.437 0.452 2.187 0.500 0.441

Base+ 0.205 0.233 1.028 0.289 0.210

Small 0.134 0.157 0.688 0.232 0.142

Tiny 0.122 0.149 0.584 0.198 0.139

outperforms all other methods. Interestingly, the prompt and

model uncertainty HXP
and HΘ lead to acceptable results,

too, indicating that those are the main causes of predictive

uncertainty. It is important to note that the SamScore is

not on-par even if it is optimized to solve exactly this task

during SAM’s training. A corresponding plot is given in

Figure 5 (Segmentation Uncertainty).

4.6. Qualitative results and Discussion

Visual examples reveal insights about SAM’s capabilities

as shown in Figure 4 and in the Appendix. On the left

side, samples with high and low prompt uncertainty ∆XP

are shown. With a single coordinate prompt in the centroid

of the blue highlighted mask, SAM is able to segment the

person, but struggles with the partially occluded bike. Better

prompts could help to indicate the segments. In the middle

Model

Uncertainty

Predictive Uncertainty

Task

Uncertainty

Prompt Uncertainty

0.2 0.6 1.0

SamScore (0.45)

(Kirillov

et al., 2023)

HStd (0.49)

(Vujasinović

et al., 2024)

Our Bayesian

H● (0.36)

Our USAM

∆∗
●

(0.68)

[rel. AUC in %]

Figure 6. Uncertainty quantification capabilities on the COCO

Dataset extracted from Tables 1 to 4 with their enclosed areas.
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column, the upper image has high task certainty ∆A, be-

cause a coordinate prompt on the mobile is not pointing to

other objects (e.g. the girl). Contrary, the centroid of the

blue area in the lower image could belong to the person, the

kite, or both together. With respect to the model uncertainty

∆Θ in the right column, visual inspection shows that the

Tiny model is consistently accurate on clearly visible dogs,

but drops on homogeneous structures as the zebras com-

pared to the Large model. This indicates different strengths

of the pre-trained SAM models.

A view on the correlations between our calculated values

in Table 5 helps to understand the behaviour of uncertainty

and UQ. Compared to our MLP that estimates the IoU, the

SamScore has a lower correlation to the overall uncertainty

IoUGT. This is interesting, because both are trained on the

same objective and ours only differs in the usage of the mask

token as input, the optimization with SMAC3, and is trained

post-hoc. Furthermore, the IoUGT is highly correlated to

the Bayesian model and prompt entropy (HΘ, HXP
) that

are explicitly modelled in this paper. The large correlation

to HΘ supports the findings that a lot of uncertainty stems

from the model (Appendix, Tables 9 and 10).

The runtime comparison presented in Table 7 shows that

the MLPs of our USAM perform UQ efficiently with the

lowest computational overhead. Bayesian methods based

on MC sampling heavily increase the computation time

depending on the number of samples. Also the calculation

of the logit entropy is slower than the lightweight execution

of our proposed MLPs.

To further investigate our method, we set either the IoU to-

ken or the mask token to 0 to remove potentially informative

patterns. We evaluate using the tiny model across the three

tasks described in the main experiments performed on the

COCO dataset. The results that are shown in Table 6 indi-

cate that both tokens contribute to the predictive capability,

yet they remain accurate as standalone features. Both in

combination lead to the best results.

All in all, the lightweight and straight forward USAM leads

to unexpected superior results which outperforms all other

methods. A graphical comparison with corresponding en-

closing area values is visualized in Figure 6. Since all results

we present are applied post-hoc, an integration into the cost-

intensive training of SAM may lead to improved results

and should be considered in the future. We already provide

USAM here. The Bayesian predictive entropy HY does not

lead to competitive results in the presented practical prob-

lems. However, the well-performing HΘ, HXP
, and HA

show that Equation (4) includes all aspects that are relevant

to quantify uncertainty and can be used for benchmarking.

5. Conclusion

This paper formalizes UQ in the context of SAM by split-

ting it into epistemic model as well as aleatoric prompt and

task uncertainty. To model those uncertainties, we evaluate

a theoretically grounded Bayesian entropy approximation.

To overcome the computational costs, we introduce USAM

that consists of deterministic MLPs to estimate the same

uncertainties efficiently. Our experiments demonstrate com-

pelling results, comparing the Bayesian and deterministic

approaches with standard SAM UQ methods. We reliably

identify the source of uncertainty in real-world applications,

like prompt refinement, supervision of SAMs proposals,

and adaptive model scaling. Remarkably, our lightweight

USAM perform better or on-par with the Bayesian approach

which are therefore the new state-of-the-art. Despite their

simplicity, the improvements delivered by USAM, even for

tasks similar to those handled by the SamScore, underscores

the potential for future iterations of SAM to address UQ

more effectively. Our contributions help to improve uncer-

tainty handling mandatory in safety critical domains.
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A. Details to A Bayesian Entropy Approximation

Section 3 introduces a Bayesian entropy approximation that formalizes a UQ baseline for our evaluation based on known

Monte Carlo sampling concepts. For better reproducability, we recapitulate some main aspects with more detailed notations.

The predictive uncertainty from Equation (2) is intractable. Thus, we approximate it by combining ideas of former

sampling methods (Wang et al., 2019; Deng et al., 2023; Lakshminarayanan et al., 2017). We predict a set of predictions

Y = {y1, . . . , yK}. The cardinality is defined by multiple sampling sets K = ∣T ∣ × ∣XP∣ × ∣Â∣ × ∣Θ∣. We use sets of 5

image augmentations t ∈ T , the identity (i.e. no pertubation), vertical flip, JPEG compression (10% and 30% image

quality), Gaussian blur with a kernel size of 5 pixel, and Gaussian noise. The prompts xP ∈ XP are 8 randomly sampled

point-coordinate drawn equally distributed from the ground-truth mask that corresponds to a. The 3 task estimations Â

are defined by SAMs mask predictions and encode the three most likely tasks. Finally, the 4 publicly available pre-trained

models of different size define the set of weights Θ = {L,B+,S,T} (Large, Base+, Small, and Tiny). It is important to note

that the prompts XP are depending on xI and a, and the estimated mask proposals Â depend on the image xI, prompt xP,

and model θ. Correctly, they need to be denoted as XP(xI, a) and Â(xI, xP, θ). We omit the correct notation due to space

limitations. We assume that the relation is evident and self-explaining in the equations.

The probabilities in Equation (2) underlined with Prompt Decoder, Prompt Encoder, and Epistemic are not defined. Thus,

we set the prompt probability and the model probability to

p(xP∣t(xI), a) =
1

∣XP∣
and (8)

p(θ∣D) = 1

∣Θ∣ . (9)

Moreover, we approximate the task probability p(â∣t(xI), xP, θ) using the SamScore. Since SAM was trained on a large

scale dataset with a large set of tasks, we assume SAM to inherently estimate a better IoU to more frequent, i.e. more likely,

tasks. We normalize over all three SamScores of a prediction to get the task probability:

p(â∣t(xI), xP, θ) =
SamScore(â)

3a∈Ât(xI),xP,θ
SamScore(a) (10)

Applying the sampling sets and the probability definitions, the predictive uncertainty is defined as

p(y = 1∣x,D, a) ≈ ∑
(t,xP,θ,â) ∈

T ×XP×Θ×Â

p(â∣t(xI), xP, θ)
∣T ∣ ⋅ ∣XP∣ ⋅ ∣Θ∣

p(y∣t(xI), â, θ). (11)

All further details can be found in the main paper.
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Table 8. Hyperparameter optimization results using (Lindauer et al., 2022) in descending order. The results are obtained during training of

the USAMT(l) model trained on ADE20k. Variations are performed on the batch size, epochs, learning rate, and momentum.

Rank Loss (MSE) Batch Size Epochs Learning Rate Momentum Rank Loss (MSE) Batch Size Epochs Learning Rate Momentum

1 0.02436 106 79 0.00131 0.83033 36 0.02505 164 41 0.00186 0.82966

2 0.02436 110 79 0.00128 0.83276 37 0.02518 87 49 0.01451 0.51234

3 0.02437 98 79 0.00118 0.82986 38 0.02521 194 68 0.0013 0.80417

4 0.02437 98 79 0.00116 0.83177 39 0.02521 193 68 0.00126 0.815

5 0.02438 105 79 0.00112 0.832 40 0.02532 224 68 0.00148 0.79977

6 0.02439 193 70 0.00242 0.81485 41 0.02536 208 75 0.04111 0.24591

7 0.02439 176 79 0.00148 0.82823 42 0.02555 27 72 0.00241 0.86083

8 0.02439 98 80 0.00134 0.83175 43 0.0256 129 72 0.00064 0.8245

9 0.0244 106 76 0.00131 0.83136 44 0.02561 19 75 0.00211 0.83676

10 0.02441 98 74 0.00128 0.83464 45 0.02564 93 68 0.0275 0.58042

11 0.02442 98 75 0.00128 0.83464 46 0.02566 199 30 0.03576 0.64499

12 0.02443 102 80 0.00108 0.82989 47 0.02569 80 61 0.01084 0.78907

13 0.02444 102 79 0.00118 0.83004 48 0.0257 215 40 0.057 0.64422

14 0.02445 153 68 0.00248 0.82004 49 0.02575 46 31 0.02255 0.25254

15 0.02446 167 79 0.00132 0.82778 50 0.02576 256 55 0.08722 0.52532

16 0.02446 95 74 0.00143 0.82605 51 0.02577 158 55 0.02941 0.70937

17 0.02447 152 68 0.00235 0.81844 52 0.02579 65 66 0.0467 0.17168

18 0.02447 150 70 0.00227 0.81485 53 0.02579 22 73 0.00306 0.83178

19 0.02448 153 70 0.0024 0.82183 54 0.02604 128 79 0.06786 0.48176

20 0.02451 164 62 0.00183 0.83002 55 0.02624 220 41 0.03376 0.86587

21 0.02452 92 67 0.00128 0.78672 56 0.02636 170 78 0.04239 0.62245

22 0.02453 107 80 0.00215 0.83304 57 0.0265 103 44 0.0888 0.38777

23 0.02457 106 79 0.00208 0.83412 58 0.02667 223 33 0.03961 0.88511

24 0.02457 94 75 0.00214 0.82338 59 0.02675 151 63 0.07027 0.30754

25 0.02457 95 69 0.00227 0.81132 60 0.02707 80 53 0.06813 0.56828

26 0.02465 182 70 0.00144 0.83128 61 0.0274 100 77 0.00023 0.84102

27 0.0247 164 51 0.00198 0.82948 62 0.02757 119 35 0.03685 0.85836

28 0.02472 97 67 0.00245 0.8231 63 0.02767 121 39 0.03343 0.88359

29 0.02474 91 75 0.00301 0.83894 64 0.02852 58 49 0.05615 0.57001

30 0.02481 233 47 0.01569 0.12675 65 0.02874 228 66 0.00175 0.27064

31 0.02489 94 67 0.00105 0.74238 66 0.02907 170 35 0.09892 0.41356

32 0.02494 27 80 0.00131 0.83092 67 0.0292 92 33 0.00125 0.27468

33 0.02496 245 35 0.01568 0.48597 68 0.02988 223 38 0.0018 0.34614

34 0.025 164 36 0.00238 0.83041 69 0.02999 224 49 0.00143 0.33011

35 0.025 24 80 0.00131 0.83033 70 0.03083 23 71 0.07553 0.65109
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Table 9. The ratio of samples per dataset where models of different

size perform best. Larger models consistently perform better on

average, but not on every individual sample. The performance gap

between large and small models depends on the dataset.

Ratio
Dataset

DAVIS ADE20k MOSE COCO SA-V

M
o

d
el

S
iz

e Tiny 6.38% 18.24% 7.85% 15.64% 15.72%

Small 10.40% 20.55% 11.06% 17.65% 18.39%

Base+ 27.76% 27.69% 25.63% 27.46% 28.01%

Large 55.44% 33.50% 55.44% 39.24% 37.86%

Table 10. The impact of image augmentations and noise (Averaged

over all datasets) on model performances evaluated with models

with different size. We flipped and scaled the image, removed color

(Gray) and high-frequent patterns (JPEG), and added Gaussian

blur or noise. All models are scale and flip invariant but decrease

the performance when adding noise. Interestingly, the smaller

model with fewer weights is more prone for most image noise.

[mIoU in %] Augmentation

Normal Flip Scale Gray GBlur GNoise JPEG

M
o
d
el

S
iz

e Tiny 76.47 -0.01 -0.07 -2.06 -8.08 -19.36 -16.80

Small 77.42 -0.03 -0.09 -1.91 -8.54 -17.55 -15.97

Base+ 78.64 -0.05 -0.06 -1.58 -8.77 -17.94 -16.62

Large 79.58 -0.05 -0.10 -1.45 -8.67 -14.08 -12.99

Table 11. Model uncertainty quantification. The table shows the

area under curve (AUC) when predicting a variable fraction of the

most uncertain samples with the largest model, others with the

tiny one. The uncertainty is determined by the respective method.

Supplementary data to Table 1. Compared to Table 1, this table

shows absolute AUC. To help interpreting the values, the best

(Oracle) and worst (Worst) possible correction order based on the

uncertainty score is added.

Standard Measures

[AUC in %] DAVIS ADE20k MOSE COCO SA-V

Oracle 82.518 64.603 82.131 76.032 81.805

Worst 77.778 59.761 77.685 71.169 77.235
S

A
M SamScore 80.823 62.320 80.728 73.988 79.924

HStd 81.180 62.351 80.867 74.165 80.137

B
ay

es

HY 80.218 62.282 80.414 73.808 79.767

HΘ 81.260 62.553 81.047 74.302 80.236

HA 80.475 62.233 80.478 73.794 79.805

HXP
81.236 62.424 81.016 74.320 80.224

Classifiers Trained on DAVIS

[AUC in %] DAVIS ADE20k MOSE COCO SA-V

U
S

A
M ∆Θ 80.946 62.396 80.513 73.852 79.528

∆∗
Θ

80.578 62.397 80.427 73.815 79.708

Classifiers Trained on ADE20k

[AUC in %] DAVIS ADE20k MOSE COCO SA-V

U
S

A
M ∆Θ 80.996 62.682 80.690 73.983 79.917

∆∗
Θ

80.417 62.741 80.326 73.849 79.834

Classifiers Trained on COCO

[AUC in %] DAVIS ADE20k MOSE COCO SA-V

U
S

A
M ∆Θ 81.044 62.451 80.877 74.265 80.105

∆∗
Θ

81.105 62.482 80.933 74.408 80.145

Classifiers Trained on SA-V

[AUC in %] DAVIS ADE20k MOSE COCO SA-V

U
S

A
M ∆Θ 81.038 62.457 80.856 74.130 80.034

∆∗
Θ

81.040 62.417 80.898 74.239 80.147
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Figure 7. Samples with uncertainty estimations. Complementary samples to Figure 4. The ground truth mask is visualized by the blue

mask and SAM’s prediction of the Tiny model in green.
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Figure 8. Samples with uncertainty estimations. Complementary samples to Figure 4. The ground truth mask is visualized by the blue

mask and SAM’s prediction of the Tiny model in green.
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Table 12. Prompt uncertainty quantification. The table shows the

area under curve (AUC) when predicting a variable fraction of the

most uncertain samples with a refined prompt containing multiple

point coordinates, others with a single-coordinate prompt. The

uncertainty is determined by the respective method. Supplementary

data to Table 2. Compared to Table 2, this table shows absolute

AUC. To help interpreting the values, the best (Oracle) and worst

(Worst) possible correction order based on the uncertainty score is

added.

Standard Measures

[AUC in %] DAVIS ADE20k MOSE COCO SA-V

Oracle 82.483 70.917 80.912 76.159 81.177

Worst 77.500 61.976 76.523 70.854 76.341

S
A

M SamScore 81.079 68.156 79.457 74.066 78.959

HStd 81.343 68.248 79.562 74.464 79.415

B
ay

es

HY 80.197 67.414 79.321 74.103 79.039

HΘ 81.618 68.616 79.790 74.616 79.532

HA 80.428 66.723 79.248 73.794 78.960

HXP
81.524 69.077 79.786 74.790 79.615

Classifiers Trained on DAVIS

[AUC in %] DAVIS ADE20k MOSE COCO SA-V

U
S

A
M ∆XP

81.240 67.801 79.362 73.931 79.047

∆∗XP
81.264 67.671 79.374 74.084 78.989

Classifiers Trained on ADE20k

[AUC in %] DAVIS ADE20k MOSE COCO SA-V

U
S

A
M ∆XP

81.386 69.418 79.555 74.563 79.276

∆∗XP
81.227 69.434 79.449 74.480 79.213

Classifiers Trained on COCO

[AUC in %] DAVIS ADE20k MOSE COCO SA-V

U
S

A
M ∆XP

81.594 68.903 79.780 75.001 79.626

∆∗XP
81.610 69.081 79.793 75.039 79.656

Classifiers Trained on SA-V

[AUC in %] DAVIS ADE20k MOSE COCO SA-V

U
S

A
M ∆XP

81.507 68.769 79.741 74.817 79.734

∆∗XP
81.488 68.832 79.723 74.824 79.788

Table 13. Task uncertainty quantification. The table shows the

area under curve (AUC) when predicting a variable fraction of

the most uncertain samples with the correct task, otherwise with

the one selected by the SamScore. The most uncertain samples

are determined by the respective method. Supplementary data to

Table 3. Compared to Table 3, this table shows absolute AUC. To

help interpreting the values, the best (Oracle) and worst (Worst)

possible correction order based on the uncertainty score is added.

Standard Measures

[AUC in %] DAVIS ADE20k MOSE COCO SA-V

Oracle 74.583 59.938 76.687 70.635 76.688

Worst 60.567 51.860 70.400 61.273 66.643
S

A
M SamScore 70.149 57.216 74.837 67.273 72.556

HStd 70.205 58.039 75.024 68.253 73.762

B
ay

es

HY 71.063 57.073 74.633 67.650 73.724

HΘ 69.870 57.827 74.956 67.916 73.517

HA 66.715 56.125 74.552 66.661 74.490

HXP
69.112 56.870 74.810 67.678 73.524

Classifiers Trained on DAVIS

[AUC in %] DAVIS ADE20k MOSE COCO SA-V

U
S

A
M ∆A 73.749 58.506 75.625 69.338 73.131

∆∗A 73.785 58.289 75.307 69.096 72.860

Classifiers Trained on ADE20k

[AUC in %] DAVIS ADE20k MOSE COCO SA-V

U
S

A
M ∆A 73.682 59.379 76.223 69.916 75.767

∆∗A 73.581 59.323 75.968 69.712 75.458

Classifiers Trained on COCO

[AUC in %] DAVIS ADE20k MOSE COCO SA-V

U
S

A
M ∆A 73.958 59.274 76.323 70.152 75.946

∆∗A 74.135 59.268 76.311 70.155 75.970

Classifiers Trained on SA-V

[AUC in %] DAVIS ADE20k MOSE COCO SA-V

U
S

A
M ∆A 73.680 59.165 76.304 70.009 76.102

∆∗A 73.842 59.104 76.266 69.984 76.146
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Table 14. Uncertainty quantification. The table shows the area

under curve (AUC) when correcting a variable fraction of the most

uncertain samples. The most uncertain samples are determined

by the respective method. Oracle denotes an optimal uncertainty

quantification. Supplementary material to Table 4 in the main

paper. Compared to Table 4, this table shows absolute AUC. To

help interpreting the values, the best (Oracle) and worst (Worst)

possible correction order based on the uncertainty score is added.

Model Tiny

[AUC in %] DAVIS ADE20k MOSE COCO SA-V

Oracle 94.621 88.322 93.696 91.501 94.473

Worst 83.036 72.780 83.647 80.491 83.564

S
A

M SamScore 92.274 84.695 92.366 88.897 92.482

HStd 92.353 83.647 91.614 88.309 92.355

B
ay

es

HY 87.783 80.166 89.724 85.727 89.983

HΘ 93.349 84.693 92.638 89.597 93.256

HXP
92.773 85.433 92.218 88.975 92.740

HA 89.219 80.688 90.258 86.697 90.441

USAMT 93.665 87.074 92.852 90.322 93.222

Model Small

[AUC in %] DAVIS ADE20k MOSE COCO SA-V

Oracle 95.087 88.684 94.182 91.878 94.718

Worst 83.816 73.101 84.491 81.022 84.064

S
A

M SamScore 92.935 84.967 92.900 89.277 92.885

HStd 93.071 84.068 92.305 88.889 92.772

B
ay

es

HY 88.348 80.462 90.299 86.147 90.320

HΘ 93.768 84.949 93.064 89.915 93.489

HXP
93.326 85.857 92.764 89.436 93.066

HA 89.808 81.145 90.803 87.156 90.761

USAMS 94.143 87.489 93.431 90.793 93.608

Model Base+

[AUC in %] DAVIS ADE20k MOSE COCO SA-V

Oracle 95.839 89.173 94.896 92.401 95.119

Worst 85.224 73.586 85.881 81.766 84.941

S
A

M SamScore 93.502 85.189 93.786 89.372 93.247

HStd 93.743 84.395 93.225 89.311 93.231

B
ay

es

HY 89.380 80.819 91.125 86.757 90.863

HΘ 94.361 85.225 93.650 90.313 93.813

HXP
94.313 86.634 93.680 89.938 93.584

HA 90.407 81.868 91.736 87.642 91.282

USAMB 94.994 87.998 94.200 91.328 93.981

Model Large

[AUC in %] DAVIS ADE20k MOSE COCO SA-V

Oracle 96.291 89.361 95.394 92.735 95.407

Worst 86.336 73.896 87.080 82.473 85.595

S
A

M SamScore 94.635 85.556 94.519 90.641 93.523

HStd 94.500 84.757 93.905 90.095 93.405

B
ay

es

HY 90.198 81.144 91.784 87.128 91.219

HΘ 94.722 85.400 94.065 90.504 94.023

HXP
95.013 86.854 94.249 90.593 93.762

HA 91.536 82.045 92.572 88.318 91.533

USAML 95.454 88.217 94.793 91.710 94.365

IoUGT SamS HStd HY HΘ HA HXP
USAMT ∆∗

Θ
∆∗A ∆∗XP

IoUGT 1.00 0.46 -0.39 0.06 -0.63 -0.12 -0.53 0.76 -0.37 -0.20 -0.25

SamS 0.46 1.00 -0.63 -0.22 -0.68 -0.31 -0.54 0.63 -0.56 -0.82 -0.36

HStd -0.39 -0.63 1.00 0.41 0.81 0.36 0.74 -0.48 0.69 0.49 0.66

HY 0.06 -0.22 0.41 1.00 0.26 0.42 0.39 0.11 0.23 0.33 0.27

HΘ -0.63 -0.68 0.81 0.26 1.00 0.33 0.74 -0.66 0.62 0.45 0.51

HA -0.12 -0.31 0.36 0.42 0.33 1.00 0.36 -0.15 0.31 0.17 0.17

HXP
-0.53 -0.54 0.74 0.39 0.74 0.36 1.00 -0.51 0.61 0.39 0.53

USAMT 0.76 0.63 -0.48 0.11 -0.66 -0.15 -0.51 1.00 -0.52 -0.27 -0.35

∆∗
Θ

-0.37 -0.56 0.69 0.23 0.62 0.31 0.61 -0.52 1.00 0.35 0.72

∆∗A -0.20 -0.82 0.49 0.33 0.45 0.17 0.39 -0.27 0.35 1.00 0.29

∆∗XP
-0.25 -0.36 0.66 0.27 0.51 0.17 0.53 -0.35 0.72 0.29 1.00

Table 15. Correlation between different UQ measures on the

COCO validation dataset using by the Tiny SAM model. IoUGT

denotes the real intersection over union between SAMs prediction

and the ground truth. Supplementary data to Table 5.

IoUGT SamS HStd HY HΘ HA HXP
USAMS ∆∗

Θ
∆∗A ∆∗XP

IoUGT 1.00 0.45 -0.38 0.07 -0.62 -0.12 -0.50 0.74 -0.34 -0.20 -0.23

SamS 0.45 1.00 -0.56 -0.22 -0.68 -0.27 -0.50 0.57 -0.49 -0.69 -0.33

HStd -0.38 -0.56 1.00 0.41 0.81 0.36 0.74 -0.48 0.69 0.49 0.66

HY 0.07 -0.22 0.41 1.00 0.26 0.42 0.39 0.12 0.23 0.33 0.27

HΘ -0.62 -0.68 0.81 0.26 1.00 0.33 0.74 -0.66 0.62 0.45 0.51

HA -0.12 -0.27 0.36 0.42 0.33 1.00 0.36 -0.15 0.31 0.17 0.17

HXP
-0.50 -0.50 0.74 0.39 0.74 0.36 1.00 -0.50 0.61 0.39 0.53

USAMS 0.74 0.57 -0.48 0.12 -0.66 -0.15 -0.50 1.00 -0.48 -0.28 -0.32

∆∗
Θ

-0.34 -0.49 0.69 0.23 0.62 0.31 0.61 -0.48 1.00 0.35 0.72

∆∗A -0.20 -0.69 0.49 0.33 0.45 0.17 0.39 -0.28 0.35 1.00 0.29

∆∗XP
-0.23 -0.33 0.66 0.27 0.51 0.17 0.53 -0.32 0.72 0.29 1.00

Table 16. Correlation between different UQ measures on the

COCO validation dataset using by the Small SAM model. IoUGT

denotes the real intersection over union between SAMs prediction

and the ground truth. Supplementary data to Table 5.

IoUGT SamS HStd HY HΘ HA HXP
USAMB+ ∆∗

Θ
∆∗A ∆∗XP

IoUGT 1.00 0.35 -0.35 0.07 -0.59 -0.11 -0.46 0.72 -0.31 -0.20 -0.20

SamS 0.35 1.00 -0.52 -0.29 -0.61 -0.27 -0.45 0.42 -0.42 -0.66 -0.32

HStd -0.35 -0.52 1.00 0.41 0.81 0.36 0.74 -0.45 0.69 0.49 0.66

HY 0.07 -0.29 0.41 1.00 0.26 0.42 0.39 0.12 0.23 0.33 0.27

HΘ -0.59 -0.61 0.81 0.26 1.00 0.33 0.74 -0.64 0.62 0.45 0.51

HA -0.11 -0.27 0.36 0.42 0.33 1.00 0.36 -0.14 0.31 0.17 0.17

HXP
-0.46 -0.45 0.74 0.39 0.74 0.36 1.00 -0.48 0.61 0.39 0.53

USAMB+ 0.72 0.42 -0.45 0.12 -0.64 -0.14 -0.48 1.00 -0.44 -0.28 -0.29

∆∗
Θ

-0.31 -0.42 0.69 0.23 0.62 0.31 0.61 -0.44 1.00 0.35 0.72

∆∗A -0.20 -0.66 0.49 0.33 0.45 0.17 0.39 -0.28 0.35 1.00 0.29

∆∗XP
-0.20 -0.32 0.66 0.27 0.51 0.17 0.53 -0.29 0.72 0.29 1.00

Table 17. Correlation between different UQ measures on the

COCO validation dataset using by the Base+ SAM model. IoUGT

denotes the real intersection over union between SAMs prediction

and the ground truth. Supplementary data to Table 5.
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