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Explainable Reinforcement Learning via Dynamic Mixture Policies

Maximilian Schier1∗, Frederik Schubert1, and Bodo Rosenhahn1

Abstract— Learning control policies using deep reinforcement
learning has shown great success for a variety of applications,
including robotics and automated driving. A key area limiting
the adaptation of RL in the real world is the lack of trust
in the decision-making process of such policies. Therefore,
explainability is a requirement of any RL agent operating in
the real world. In this work, we propose a family of control
policies that are explainable-by-design regarding individual ob-
servation components on object-based scene representations. By
estimating diagonal squashed Gaussian and categorical mixture
distributions on sub-spaces of the decomposed observations, we
develop stochastic policies with easy-to-read explanations of the
decision-making process. Our design is generally applicable to
any RL algorithm using stochastic policies. We showcase the
explainability on an extensive suite of single- and multi-agent
simulations, set- and sequence-based high-level scenes, and
discrete and continuous action spaces, with performance at least
on-par or better compared to standard policy architectures.
In additional experiments, we analyze the robustness of our
approach to its single additional hyper-parameter and examine
its potential for very low computational requirements with tiny
policies.

I. INTRODUCTION

Reinforcement Learning (RL) has shown great perfor-
mance in robotics [1], automated vehicles [2], [3], [4] and
other areas of control, such as drones [5]. While the perfor-
mance of controllers learned with RL is outstanding, neural
network policies trained with RL are inherently difficult to
explain, which is an issue for the application of such policies
in the real world [6]. Explaining the decision-making process
of a controller may likely become an increasingly important
legal requirement for its application. In any case, the ability
to explain a policy enables the identification of corner cases
for failures, and confirm that correct decisions are made
for the right reasons. Even if a controller seems to operate
correctly in test situations, an explanation may reveal that
the behavior was caused through spurious correlations. A
well-known example from the computer vision community
is many models acting as “Clever Hans”-classifiers on the
Pascal VOC data set, identifying horses based on a water-
mark rather than the rest of the image containing the horse
[7]. Similar observations have been made for RL policies
operating on images, attending to scores or clocks [8].

While the output of neural network policies can be at-
tributed to individual inputs using saliency maps, this ap-
proach can also be problematic [8], and does not reveal how
interactions in the input space influence the output space.
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Fig. 1. In this intersection scenario, the blue agent wants to cross the
unregulated intersection turning left. Using our proposed mixture distribu-
tion policy, its decision-making can be faithfully visualized. Each vehicle is
associated with a diagonal squashed Gaussian distribution over the action
space to form a stochastic policy, which can be interpreted as shown in the
box. The yellow and orange vehicles leaving the intersection are ignored in
the decision. For the green vehicle, a slight braking action while steering
left is selected, thus the blue vehicle would pass in front of it. However, the
red vehicle is given more weight, which is indicated by the increased action
explanation visualised as a larger box. Here a stronger braking action while
steering right is selected. The resulting action distribution is shown in the
box. Braking harder and steering to the right is more likely if the stochastic
policy is sampled.

An explainable RL (XRL) policy should generally be perfor-
mant, have a direct connection between its explanation and
the decision-making process, and offer a good visualization
with low cognitive load [9].

In this work, we propose a novel approach to policies
that are intrinsically explainable regarding observed objects,
which can be easily adapted to popular RL frameworks
using stochastic policies such as SAC [1]. These frameworks
commonly use squashed Gaussian or categorical distribu-
tions to model the policy on continuous or discrete action
spaces, respectively [1], [10]. We propose using mixtures
of the corresponding parametric family instead, where each
mixture component is estimated using a “myopic” policy
observing only a sub-space of the observation space. Thus,
this approach effectively implements a post-fusion of the
observed sub-spaces, which has several key advantages. With
our proposed method the policies are explainable by design
and the explanation is faithful, since the resulting action
distribution is constructed from the explaining components.
In this work, we apply this approach to high-level object
perceptions, thus we select each of the dynamic objects as
sub-space for one policy. Our main contributions are:

• We present a novel formulation of stochastic policies
on discrete and continuous action spaces: diagonal



squashed Gaussian mixture distributions and categorical
mixture distributions

• We integrate these distributions into SAC, proposing
a novel explainable policy architecture for high-level
observations

• We demonstrate that our proposed explainable policies
match or outperform the performance of regular poli-
cies on common problems and are highly interpretable
regarding the influence of individual objects

• Upon acceptance, we publish our implementation

II. RELATED WORK

While mixture distributions have not been used to model
an explainable stochastic policy as we propose, they have
seen numerous applications in other aspects of reinforce-
ment learning. Mixtures of Gaussians have previously been
employed as Q-value- and value-functions. Choi et al. imple-
ment a distributional deep Q-network using a parameterized
mixture of Gaussians [11], Shahriari et al. follow a similar
appraoch for MPO [12], which is closely related to earlier
work by Nam et al. for PPO [13]. A Mixture of Gaussians for
the critic has also been proposed for Deep Set architectures
on dynamically-sized observation spaces [14].

The deconstruction of the action-space based on sub-
spaces of either a statically- or dynamically-sized observation
space can also be related to recent advances regarding the
improvement of sample-efficiency for Q-functions by using
separable Q-functions [15]. Another related field of research
is the factorization of joint action spaces in a multi-agent
setting with a central critic [16] to learn a robust set of
policies for different sub-systems simultaneously.

In the broader topic of explainable RL (XRL) for automo-
tive, Paleja et al. have proposed learning decision trees [17]
for continuous action spaces and statically sized observation
spaces. Differentiable logic machines on discrete action and
observation spaces have been proposed [18]. Generic policies
without special design for explainability can to some degree
be explained by methods such as saliency maps, which
visualize the importance of input regions, most commonly
used are pertubation-based saliency [19] or attention-based
saliency [20].

Another important current trend in developing explainable
policies is using large language models (LLMs) or vision
language models (VLMs) to provide natural language ex-
planations for the decision-making of a policy [21]. LLMs
and VLMs can achieve good performance for complex data
modalities and natural language explanations are easy to
understand. However, these models generally require a very
large volume of training data, there is a lack of open-
source VLMs, the models are not guaranteed to be faithful
in reasoning and have very high computational cost for
inference [21], [22].

III. APPROACH

In this section, we describe mixture distributions in the
Soft Actor-Critic reinforcement learning framework. We
then introduce our proposed architecture using parameterized
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Fig. 2. Our proposed explainable policies using mixture distributions allow
straight-forward interpretation on dynamic scenes. Traditionally, multi-layer
perceptrons and Deep Sets are employed for fixed-sized and dynamically-
sized observation spaces respectively. We utilize the proposed mixture
distribution to independently estimate action distributions per sub space.
Positional encodings are employed if the collection is ordered.

mixture distributions on sub-spaces of the observation for
explainable policies.

A. Soft Actor-Critic

We use the entropy regularized reinforcement learning
framework from Soft Actor-Critic (SAC) [1]. The goal of
entropy regularized RL is learning a stochastic policy π∗ :
S → P(A) on the observation space S and action space A,
which maximizes the expected entropy regularized return J :

π∗ = argmaxπ J(π) , with (1)
J(π) = E

s∼D,a∼π
[Q(s, a)− α log π(a|s)] , (2)

where Q estimates the expected future entropy regularized
return following policy π. SAC learns off-policy using sam-
ples from the replay buffer D. The entropy regularization
coefficient α balances entropy and future-reward. For an in-
depth explanation of SAC we refer to [1], [23].

B. Mixture Distributions

Let p1(x), . . . , pk(x) be a set of probability density
functions. Following notation from [24], for given weights
ϕ1, . . . , ϕk such that

∑
i ϕi = 1, f(x) is a mixture distribu-

tion with density f(x) =
∑

i ϕipi(x). If the mixture compo-
nents are functions of a parametric family, p(x;ψ) parameter-
ized by ψ, we can write f(x;ψ1, . . . , ψk) =

∑
i ϕip(x;ψi).

Furthermore, let ϕ =
[
ϕ1, . . . , ϕk

]
, f can be further param-

eterized with the component weights: f(x;ϕ, ψ1, . . . , ψk).

C. Mixture Policies on Discrete Action Spaces

On discrete action spaces categorical distributions are
commonly used for stochastic policies [25], [10]. Let n
be the number of possible actions, and s ∈ S be an
observation with k observation components. We propose
using a parameterized categorical mixture distribution as the
policy with the following probability function:

b(a;ϕ,θ) =

k∑
i=1

ϕiθi,a , (3)



where ϕ =
[
ϕ1, . . . , ϕk

]
are the component weights per

observation component and θ =
[
θ1, . . . ,θk

]
are the param-

eters of the mixture distributions, with θi =
[
θi,1, . . . , θi,n

]
such that

∑n
j=1 θi,j = 1. Such a mixture distribution can be

sampled from by ancestral sampling:

z ∼ Categorical(·;ϕ)
a ∼ Categorical(·;θz) .

However, this sampling procedure is not differentiable re-
garding ϕ and θ to optimize π using gradient ascent on (2).
Instead, we rewrite the objective (2) with the expected value
over actions in closed form as in [10]:

J(π) = E
s∼D

[
n∑

a=1

π(a|s)(Q(s, a)− α log π(a|s))

]
. (4)

D. Mixture Policies on Bounded Continuous Action Spaces

Gaussian distributions are commonly used for continuous
action spaces [26], [1], for given mean µ and standard
deviation σ the probability density function is:

g(x;µ, σ) =
1

σ
√
2π

exp

(
− (x− µ)2

2σ2

)
. (5)

Since the Gaussian distribution has infinite support and ac-
tion spaces are usually bounded, algorithms like SAC apply
a squashing [1]. For an unbounded action u ∼ g(·;µ, σ) the
bounded action is a = tanh(u). Thus the probability density
function with finite support [-1, 1] is:

h(a;µ, σ) =
g(tanh−1(a);µ, σ)

1− a2
, (6)

see [1] for a proof. Given an observation with k components
and a bounded action a ∈ [−1, 1]n. We propose using
a diagonal squashed Gaussian mixture distribution for the
policy instead, with parameters ϕ ∈ Rk, µ ∈ Rk×n, and
σ ∈ Rk×n and the following probability density function:

c(a;ϕ,µ,σ) =

k∑
i=1

ϕi

n∏
j=1

h(aj ;µi,j , σi,j) . (7)

Such a distribution can be sampled by drawing a component,
individually sampling the component along each axis and
squashing:

z ∼ Categorical(·;ϕ)
uj ∼ N (·;µz,j , σz,j)

a =
[
tanhu1 . . . tanhun

]
However, the above approach is not differentiable regarding
all parameters ϕ, µ and σ. Thus, we propose rewriting the
objective (2) such that all mixture components are sampled:

J(π) = E
s∼D

[ k∑
i=1

ϕi E
u∼N (·;µi,σi)

[Q(s, tanhu)−

α log π(tanhu|s)]
]
.

(8)
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Fig. 3. Explanation of an agent with our explainable categorical mixture
policy on the Country Road scenario using discrete actions. The explanation
matrix encodes the probability of selecting one of the three longitudinal
control inputs for steering and four lateral control inputs for accelerator
and brake, which are activated independently. An explanation how to read
the matrix is given in the box, where the intensity shows probability, thus
black has no probability. The agent observes cones marking the boundary of
the track. With our proposed architecture the influence on decision-making
per object can be directly visualized. Most cones are ignored, as they have
no attached explanation. The first cones following the left-hand curve are
given high weight, as shown by the size of the attached explanations. The
resulting combined probability distribution is the one shown in the box.

The sampling of u ∼ N (·;µi,σi) is realized using reparam-
eterization:

u = µi + ϵ⊙ σi, with ϵ ∼ N (·;0,1), (9)

where ⊙ is element-wise multiplication. The objective in
(8) requires evaluation of Q k-times compared to once per
sample in (2), since all components are individually sampled.

E. Regularization

To prevent the collapse of the mixture distribution, z ∼
Categorical(·;ϕ) can optionally be entropy regularized. This
can force the policy π to be more diverse in the attended
components by adding JR to the objectives (4) or (8):

JR(π) = −κ
k∑

i=1

ϕi log(ϕi) , (10)

where κ is a hyper-parameter.

F. Network Architecture

In this section we briefly describe the network architec-
tures used for the critic and our proposed explainable policy.

1) Critic: For the critic Q we use the previously suggested
Deep Set with Learned Fourier Features architecture [2] for
scenes with set-based observation spaces, and regular MLPs
for ordered fixed-sized sequences, like lists of trajectory
points, which is a common choice [3]. As mentioned in
the previous section, differentiating the new objectives (4)
and (8) requires evaluation of Q for the same observation
s multiple times. In the discrete case, Q is realized as
Q : S → Rn, efficiently predicting a vector of all state-action
values for a given state at once [10]. In the continuous case,
Q first embeds s using a feature extractor F , then a critic C
estimates the state-action value: Q(s, a) = C(F (s), a). Thus
by storing the intermediate result of F (s), we can achieve a



large gain of performance if F is computationally expensive
compared to C.

2) Actor: An overview of our explainable policy archi-
tecture is given in Figure 2 with a comparison to baseline
policies on set- or sequence-based observation spaces [2],
[27]. In our proposed architecture, per sub-space of the obser-
vation, for example a single other vehicle or single trajectory
point, the policy network estimates the parameters of the
action distribution. Static information like vehicle odometry
is concatenated to each input. Furthermore, if components
of the sub-space are ordered, for example the observation
space is a sequence, a positional encoding is concatenated.
The policy is an MLP, which estimates the parameters ψ of
a single mixture component and its component weight ϕ.
We propose to optionally estimate ϕ from an earlier hidden
layer than ψ, as indicated in Figure 2, which can substantially
reduce the computational cost when sampling the policy. To
train the policy in SAC, the default objective (2) is replaced
by either (4) or (8) depending on action space, optionally
adding the regularization from (10).

IV. ENVIRONMENT

We evaluate our proposed method on several driving
scenarios using the CarEnv [2] simulation. This simulation
uses a dynamic single-track vehicle model which makes
control difficult. In all scenarios, vehicle odometry is given
as xodo =

[
vx vy β ω ωf ωr

]
, where (vx, vy) is the

velocity in the vehicle reference frame, β the current steering
angle, ω the yaw rate, and ωf and ωr the rotation speed of
front and rear axle, respectively. The action space is given
as u =

[
us ua ub

]
, where steering us, accelerator ua

and brake ub are controlled independently. The following
scenarios are used:

A. Country Road

This task was established in previous work [2]. The
agent controls a vehicle following a track by observing road
boundary markers, which mark the left and right edges.
For an illustration of the environment, see Figure 3. The
k dynamic objects are perceived as the set xdynamic =
{
(
xi yi 1left,i 1right,i

)
}ki=1, where (xi, yi) is an ob-

ject’s position in vehicle reference frame and 1left,i indicates
that it is a left boundary marker, and 1right,i that it is a right
one. Static observation is the vehicle odometry: xstatic =
xodo. The agent gains reward by navigating the track quickly
and safely, without leaving the track surface. The reward is:

r(s, a) = −1fail − 0.2 ·1collision +0.01 ·ntrack ·vego , (11)

where 1fail indicates leaving the track surface, immediately
terminating the episode, 1collision indicates colliding with
a boundary marker, ntrack is the track direction at the
projection of the vehicle, and vego is the velocity vector of
the vehicle.

B. Tracking

A very common problem in automated driving involves the
tracking of a reference trajectory using a learned controller
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Fig. 4. Explanation of our explainable policy on the Tracking scenario.
Here, the agent controls the vehicle observing the track centerline as an
ordered sequence of points. The explanation is presented in the same way
as in Figure 3.

[3]. As a recently proposed addition [28], we modify the
Country Road scenario of CarEnv to use the centerline of
the track as reference instead of boundary markers. As such
the object observation is changed to an ordered sequence
of k centerline points: xdynamic =

((
px,i py,i

))k
i=1

, where
(px,i, py,i) is the position of the i-th point in the vehicle
reference frame. We use k = 25 points with a spacing of
2m. See Figure 4 for an illustration.

C. Intersection

We also evaluate our proposed method on a novel
multi-agent scenario for the CarEnv simulator, called In-
tersection. Here, multiple agents must learn to navigate
an unregulated four-way intersection cooperatively. The
agents have partial observability from their own view and
do not share information, thus they operate decentral-
ized. We implement this scenario using CarEnv’s dynam-
ics model, making the problem more difficult compared
to simulations with kinematics. The object observations
of each agent are the set of other vehicles: xdynamic =
{
(
xi yi vx,i vy,i cos θi sin θi

)
}ki=1, where (xi, yi) is

the other vehicle’s position in the vehicle reference frame,
(vx,i, vy,i) the other vehicle’s velocity vector in the vehi-
cle reference frame and θi the orientation relative to the
agent’s vehicle’s own orientation. Static observations are the
ego-vehicle odometry and N navigation points: xstatic =
xodo||

[
px,1 py,1 . . . px,N py,N

]
, with (px,j , py,j) as

the relative position of the j-th navigation point in vehicle
reference frame. Theses navigation points indicate to the
agent which exit of the intersection to use. Quickly following
the centerline of the agent’s lane is rewarded, while collisions
are punished. Each agent receives a reward of 1 when it
completes its route, 0 if it collides but is not moving, and
−1 if it collides while moving. All these events remove it
from the simulation. Otherwise, on non-terminal transitions,
the reward is:

r(s, a) = k1 · ntraj · vego − k2 · dtraj · ∥vego∥ , (12)

where ntraj is the reference trajectory direction at the foot
point of the ego vehicle, and dtraj the distance to the foot
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Fig. 5. Final performance on the Country Road scenario using continuous
and discrete actions. Using discrete actions, our explainable policy is signif-
icantly better, achieving higher episodic return and lower early termination
rate (ETR). For continuous actions performance is slightly better, but not
significant at p = 0.05.

point. Thus, the agent is rewarded for following the reference
trajectory through the intersection while keeping the tracking
error small. The coefficients k1 = 0.005 and k2 = 0.002
were chosen empirically.

V. EXPERIMENTS
In this section, extensive experiments are performed to

compare our explainable policy with a standard SAC ar-
chitecture on both discrete and continuous action spaces,
sequence- and set-based observation spaces as well as single
agent and multi agent scenarios. Furthermore, the computa-
tional cost of our proposed method is analyzed. At first the
training setup is described.

A. Experimental Setup

In all experiments, we train 20 agents per configuration
with individual seeds. We evaluate their performance using
bootstrapping to estimate interquartile mean (IQM) and its
confidence intervals (CI) [29]. We report 95% confidence
intervals in tables and as shaded areas in graphs. Our
experiments include agents with discrete and continuous
action spaces. We discretize the continuous action space of
u =

[
us ua ub

]
individually with 3 steps for steering

and 2 steps for accelerator and brake control. Thus, the
discrete action space is given by udiscrete ∈ {−1, 0, 1} ×
{−1, 1} × {−1, 1}. For single agent scenarios 1 000 000
environment steps are used for training, a buffer size of
1 000 000, batch size of 256, Polyak update step τ = 0.005
(from [1]), learning rate lr = 0.0001 and discount factor
γ = 0.95 (from [2]). For multi agent scenarios 3 000 000
environment steps are used, a buffer size of 8 000 000 and
batch size of 512. One gradient step is carried out per
collected transition. Automatic entropy adjustment from [23]
is used with a target entropy of −n for continuous actions
and 0.5 · log(n) for discrete actions. Hyper-parameters not
taken from the literature were optimized using grid searches.
For our explainable policy we always use an MLP with
hidden dimensions 256 − 256 − 256, where the mixture
component weight is estimated from the final hidden layer
unless stated otherwise, and set κ = 0.001 from (10).

B. Single Agent Performance

First, we evaluate the episodic return achieved on the
single agent scenarios. On Country Road, for the baseline
SAC policy and all critic networks, we use the Learned
Fourier Feature Deep Set-based network architecture pro-
posed by earlier work [2]. The integration of our proposed
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Fig. 6. Final performance on the Tracking scenario. Our proposed
explainable policies on both continuous and discrete action spaces perform
at least on-par with the baseline in both episodic return and early termination
rate, with differences not significant at p = 0.05, while offering much better
explainability.

architecture is straight-forward as described in section III-
F.2: per observed cone, a policy processes the cone encoding
concatenated with ego-vehicle odometry. The results are
shown in Figure 5. Our explainable policy performs on-par
with the baseline on the continuous action space and sig-
nificantly better than the baseline for discrete action spaces,
achieving a higher episodic return of 85.22 compared to the
baseline with 82.24. Early termination rate is also lowest
for our explainable policy using discrete actions with 9.3%.
This is achieved while also being explainable regarding the
influence of individual objects on decision-making, as shown
in Figure 3 and the supplementary video.

Next, we evaluate performance on the Tracking scenario,
where the policy must solve the same problem using a dif-
ferent observation space, perceiving the track as a sequence
of centerline points rather than a set of objects. Both for
the baseline policies and the critic networks, an MLP is
used as established in the literature on similar tasks [3],
[28]. Hidden dimensions of 256 − 256 − 256 are used, as
determined by a grid search. For our explainable mixture
policy, we want to explain decision-making per point of the
reference as shown in Figure 4, thus we infer the explainable
policy per reference point. As these points are ordered, we
add a positional encoding to maintain ordering through the
set of observations. The results of the experiment are shown
in Figure 6. There are no statistically significant differences
between any two methods. However, our explainable policy
using discrete actions once again achieves good results with
an episodic return of 80.00 and early termination rate of
17.0%, while also being more explainable. See Figure 4 and
the supplementary video for examples.

C. Multi Agent Performance

Next, we evaluate the performance on the Intersection
scenario (Figure 1), where multiple vehicles controlled in a
decentralized fashion must cross an unregulated intersection.
We use curriculum learning, where the number of vehicles
is randomly selected from 1, 2, 4 and 8 and the simulation
restarted after 60 s of simulated time. Furthermore, periodic
re-initializing [30] of the neural networks is used every
200 000 steps. We employ a similar Deep Set architecture for
the critic and baseline policies as used for Country Road. The
performance in comparison to the baseline over the course
of the training is shown in Figure 7. Using both discrete
and continuous action spaces, our explainable policies are
more sample efficient, completing significantly more trips
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Fig. 7. Sample efficiency on the multi agent Intersection scenario.
Our explainable policies are more sample efficient, achieving significantly
more completed trips than the baselines at early stages of the training
without sacrificing safety (early terminations), while also offering better
explainability.
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Fig. 8. Influence of different choices of the mixture regularization
coefficient κ for our explainable policy on the final agent performance on
the Country Road scenario with discrete action space. Baseline is the regular
policy architecture.

early in the training. The discrete version of our explainable
policy also has significantly more trip completions at the
end of training with 61.68 (CI 95% [60.98, 62.04]) than
the discrete baseline 59.77 (CI 95% [58.02, 60.47]) and is
with significance the safest of all policies with 1.62 early
terminations (CI 95% [1.22, 1.95]) compared to the discrete
baseline with 3.04 early terminations (CI 95% [2.71, 3.52]).
These good results are again attained while offering far more
insights into the decision-making of the policy, see Figure 1
and the supplementary video for examples.

D. Analyses

Our architecture introduces a single hyper-parameter, κ, to
regularize the entropy of the mixture components. The aim
when using a positive kappa is to prevent quick convergence
to a single component. The importance of κ and robustness of
the algorithm regarding its choice are evaluated. Performance
using different positive and negative values as well as no
regularization on the discrete Country Road scenario are
analyzed in Figure 8. A choice of κ = 0.001, which is
the value used in all experiments, achieves the best episodic
return with significance. However, within a reasonable range
the algorithm is robust to the choice of κ, with no choice per-
forming significantly worse than the regular policy baseline
in terms of episodic return.

TABLE I
COMPARISON OF TRAINABLE PARAMETER COUNT, FLOATING POINT

OPERATIONS (FLOPS), AND EPISODIC RETURN ON THE Country Road

SCENARIO FOR BASELINE POLICY AND OUR PROPOSED POLICY

DEPENDING ON HIDDEN LAYERS FOR COMPONENT WEIGHTS (ϕd).

Architecture FLOPS Params. Episodic Return ↑
IQM CI 95 %

Baseline 7 096 281 200 710 77.89 [75.59, 79.80]
Ours (ϕd = 1) 988 262 136 455 79.12 [77.28, 80.39]
Ours (ϕd = 2) 14 015 078 136 455 78.70 [76.26, 80.55]
Ours (ϕd = 3) 27 041 896 136 455 81.23 [79.58, 82.18]

E. Compute Efficiency

Finally, we analyze the efficiency of our proposed policies.
As mentioned in Section III-F.2, we have proposed estimat-
ing the component weights from an earlier hidden layer than
the mixture components for faster inference. We compare
the number of trainable parameters and arithmetic operations
between the baseline and our proposed architecture with
different depths ϕd for the mixture component weights in
Table I on the Country Road scenario using a continuous
action space. The entire policy is an MLP with depth 3
and width 256 as in the main experiments. The depth at
which the component weight is estimated has no influence
on the number of parameters, as all hidden dimensions are
identically sized. With fewer trainable parameters and far
lower number of FLOPS, when estimating ϕ using a single
hidden layer (ϕd = 1), our proposed policy still performs
on-par with the baseline.

VI. CONCLUSIONS & FUTURE WORK

In this paper we have presented a novel formulation for
reinforcement learning policies using mixture distributions
which are naturally explainable. We have shown competitive
performance compared to standard RL policies on different
established scenarios in automotive applications using high-
level representations, like object features and waypoints. For
future research, we want to further investigate the application
to different data modalities. For example, patches of an
image may be suitable sub-spaces for camera observations,
and we want to investigate application to slices of a lidar
scan. While we have applied the mixture distributions to
improve explainability, they also introduce multi-modality,
for example a vehicle avoiding a head-on collision may
be able to steer left or right. Mixture distributions may
help remedy policies quickly converging to either choice
of direction, which warrants further research. Finally, we
have analyzed the application to SAC in this paper, an
algorithm selected due to its importance to the robotics and
AD communities. However, our explainable policies can be
applied to any RL framework with stochastic policies, thus
testing on on-policy methods such as PPO may also be an
interesting direction for future research.
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