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Abstract

Interpreting transcriptome data is an important yet challenging aspect of bioinformatic analy-

sis. While gene set enrichment analysis is a standard tool for interpreting regulatory

changes, we utilize deep learning techniques, specifically autoencoder architectures, to

learn latent variables that drive transcriptome signals. We investigate whether simple, varia-

tional autoencoder (VAE), and beta-weighted VAE are capable of learning reduced repre-

sentations of transcriptomes that retain critical biological information. We propose a novel

VAE that utilizes priors from biological data to direct the network to learn a representation of

the transcriptome that is based on understandable biological concepts. After benchmarking

five different autoencoder architectures, we found that each succeeded in reducing the tran-

scriptomes to 50 latent dimensions, which captured enough variation for accurate recon-

struction. The simple, fully connected autoencoder, performs best across the benchmarks,

but lacks the characteristic of having directly interpretable latent dimensions. The beta-

weighted, prior-informed VAE implementation is able to solve the benchmarking tasks, and

provide semantically accurate latent features equating to biological pathways. This study

opens a new direction for differential pathway analysis in transcriptomics with increased

transparency and interpretability.

Author summary

The ability to measure the human transcriptome has been a critical tool in studying health

and disease. However, transcriptome datasets are too large and complex for direct human

interpretation. Deep learning techniques such as autoencoders are capable of distilling

high-level features from complex data. However, even if deep learning models find pat-

terns, these patterns are not necessarily represented in a way that humans can easily

understand. By bringing in the prior knowledge of biological pathways, we have trained

the model to “speak the language” of the biologist, and represent complex transcrtomes,

in simpler concepts that are already familiar to biologists. We can then apply the tool to
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compare for example samples from lung cancer cells to healthy cells, and show which bio-

logical processes are perturbed.

Introduction

Transcriptomics is a powerful tool in characterizing cellular activity under various conditions,

which allows researchers to discover the underlying associations between transcripts or genes

and pathological or environmental factors. Therefore, transcriptomics data are widely applica-

ble in multiple areas of biomedical research, varying from understanding disease mechanisms

[1], detecting biomarkers [2, 3], to tissue-specific regulatory gene identification [4]. The broad

application of the technology leads to generating a considerable amount of transcriptomic

sequencing data and constructing a few specific public platforms hosting the relevant biologi-

cal datasets, such as ArrayExpress [5] and NCBI GEO [6]. In all these biomedical tasks,

human-understandable interpretation of the experimental transcriptomics data serves as the

pivotal component to understanding the underlying biology. However, this interpretation

remains a challenge in the face of large and complex datasets. Here we explore the potential for

machine learning models to learn a simplified representation of the transcriptome in terms of

commonly understood biological processes, and thus increase the interpretability.

While gene set enrichment analysis (GSEA) [7] is a standard tool for interpreting regulatory

changes to the transcriptome, the method highly relies on a list of well-detected differentially

expressed genes (DEGs) between the conditions of interest. Furthermore, most of the state-of-

the-art models for differential expression analysis (DEA) are based on the linear assumption

across samples, the representatives of which include the models from limma [8, 9], DESeq2

[10], and Seurat [11]. However, variation in measured expression levels, whether of biological

or technical origin, may not always behave linearly. Given the potential for synergistic effects

between genes, this assumption of linearity might lead to a loss of power. Complex sources of

variation are also present in combined public datasets, consisting of a large number of samples

from multiple sources, and influenced by non-biological factors such as batches or processing

centers. These limitations daunt the exploration of large-scale transcriptomics data for answer-

ing fundamental biological questions.

The goal of this study is to utilize deep learning techniques to bring transparency into

which biological process patterns are represented in a transcriptome dataset, and thus to facili-

tate the interpretation of experimental results. Deep learning with artificial neural networks

has witnessed rapid development in recent years and outperformed the traditional approaches

in handling massive and complex data from multiple areas because of its high-level feature

extraction at a non-linear space and objective data processing [12–16]. This development also

enables more possibilities in understanding the transcriptomics data and has successfully con-

tributed, for example to drug repurposing and development [17, 18], phenotype classification

[19] and genomics functional characterization [20] with a more in-depth understanding of

transcriptomics data.

We are specifically interested in autoencoders as a class of methods that can reduce

dimensionality and learn the major features in complex data [21]. Autoencoders achieve this

by passing the data through a bottleneck layer (a layer with fewer nodes than in the input

layer) and optimizing the model with the objective of generating an output that is as similar as

possible to the input. These methods have been explored in the context of transcriptomes in a

few representative publications, including [20, 22–26], demonstrating that interesting biologi-

cal features are captured in the latent space of the model. However, these studies take different
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approaches to the challenge of associating latent representations with human-understandable

biological concepts. [22] implemented an autoencoder and interpreted that latent space by

correlating latent features with phenotypes post hoc. [20] on the other hand sought to con-

strain the latent space to represent known pathways by restricting the network connectivity,

i.e., each latent node represents a pathway, and only genes known to be involved in that path-

way are connected to the node upstream. In the study of [22], the network is free to learn any

representation from that data, but the burden of interpretation is left to post hoc analysis. In

the case of [20], the network is restricted directly in its architecture based on gene set

definitions.

Here, we see an opportunity to implement a solution that finds a middle path in which the

network is encouraged to learn a latent representation based on known biological concepts,

but still has the freedom to learn relationships among genes from the data. Specifically, we pro-

pose an autoencoder variant using a novel technique of introducing pathway-informed priors.

The basis for this approach is the Bayesian framework implemented in variational autoenco-

ders (VAE) [27]. The VAE framework inherently provides the opportunity to involve priors in

the training process to learn latent representations. With the introduction of biologically

meaningful priors, our approach here aims to integrate prior knowledge from the domain

(here, we use Hallmark pathways defined by MSigDB and selected pathways as two examples)

and still retain the flexibility of the data-driven deep learning approach. This approach is most

comparable to those presented by Zhao [25] and Lotfollahi [26], with the commonality that

the goal is to produce latent features that correspond to known biological concepts. However,

compared to our approach of incorporating canonical pathway knowledge as priors, both

Zhao [25] and Lotfollahi [26] provide pathway definitions to constrain the decoder architec-

ture. The prior-based approach provides an additional opportunity to calibrate the strength of

the effect of prior following the established beta-VAE approach [28].

Specifically, We make use of a hyperparameter, beta, in a similar way described by [28],

which can add weight to the influence of the priors on the training solution. Thus, using the

beta, we can control the extent to which the model conforms to pathway concepts previously

defined by MSigDB or KEGG versus being free to define latent variables in any way that best

encodes the transcriptome in a reduced representation. The fine-tuning of this hyperpara-

meter enables control over the tension between direct biological interpretability and the ability

to deviate from canon or find new patterns.

In this study, we implement and compare several standard autoencoder implementations:

(i) fully connected autoencoder (simpleAE) [29], (ii) variational autoencoder (simpleVAE),

(iii) beta-VAE (beta-simpleVAE), as well as (iv) novel derivatives using prior biological data:

priorVAE, and (v) beta-priorVAE. In order to benchmark the performance of the series of

models proposed here, we perform tissue and disease classification (e.g., adenocarcinoma,

small cell lung cancer (SCLC), leukemia) based on the latent variables discovered in the models.

This study explores the feasibility of the prior-based VAE approach in increasing the transpar-

ency and interpretability of transcriptomes, as well as how the hyperparameter beta controls

the balance of using prior information versus learning novel patterns directly from the data.

Materials and methods

Datasets and preprocessing

The dataset employed for the training of the model and subsequent analyses was downloaded

from ArrayExpress [5], with Accession ID E-MTAB-3732 [30]. This dataset comprises 27,887

Affymetrix HG-U133Plus2 arrays, sourced publicly. All samples underwent quality control fil-

tering and were annotated for disease status and cell line information. The data was
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normalized using fRMA [31–34] within the R Bioconductor platform by the dataset’s author.

The dataset contains samples from healthy individuals, those with diseases (including cancer),

and cell lines. The original dataset has been divided into a training and a test set at an 8:2 ratio,

with stratification based on the source organs of the samples. The curated gene signature data-

set, used in the previous generation, is the Hallmark gene set, sourced from Human MSigDB

Collections [35]. We also sourced pathways from KEGG [36–38], which were filtered to

remove disease pathways.

The human transcriptomes in this dataset contained 54,675 transcripts per sample. Because

of concerns around overfitting and model performance for such a large input layer, efforts

were made to reduce the representation of the transcriptome prior to passing it as input into

the neural network. Thus, the experiments included variations in input type. In the first input

variation, the data were fed into the model on the transcriptome level without further process-

ing. For the second input variation, the transcripts were collapsed into the gene-level using the

platform annotation offered by Gene Expression Omnibus (GEO) [6]. The normalized expres-

sion values of the transcripts were transformed into the original level by applying a power

function. The original expressions were averaged, and the original scale was restored with a

log2 transformation. This resulted in an input size of 23,375 genes.

For the third input variation, the goal was to decrease the number of trainable parameters

in the models further. We performed a community detection, and then selected a gene for

each community as a representative of the whole community. The community detection algo-

rithm began with gene-level expression values. A graph representation of the set of genes was

then initialized with a k-nearest neighbors approach (NearestNeighbors function from the

sklearn Python package [39]), with edge weights defined as the absolute value of the correla-

tion between the two genes across samples. The next step was to detect clusters in the gene

graph. We use the Leiden algorithm [40] to define clusters, which we interpret as communities

in this graph. A total of 2032 communities were defined using a resolution value of 0.02. A sin-

gle gene was chosen as a representative of each community for use as the final input. Commu-

nity representatives were based on the criteria of having the highest sum of correlation with all

the other genes in the same community.

Model architectures

The experiment systematically trained and compared five architectures of autoencoders,

including one fully-connected autoencoder without prior information (simpleAE) and four

variational autoencoders (VAE) architectures. Besides the variational autoencoder with unit

Gaussian prior (simpleVAE) and the beta-constrained variational autoencoder with unit

Gaussian prior (beta-simpleVAE), we also presented a novel technique of introducing path-

way-informed priors (priorVAE) and tested the influence of the hyperparameter beta over this

biological relevant prior VAE (beta-priorVAE).

We construct three fully-connected linear layers in the encoder of all the autoencoder archi-

tectures (number of trainable parameters equal to the dimension of features, 1000 and 100,

respectively). The leaky rectified linear unit (Leaky ReLU) serves as the activation function

between encoder layers.

The bottleneck layer of the simpleAE is a dense layer with 50 dimensions. For the VAEs,

the bottleneck is implemented as two fully-connected, 50-dimension layers: one for learning

σs and one for learning μs, which are then sampled using the reparametrization trick before

going on to the decoder. The decoders in all models mirror the three dense layers of the encod-

ers. The Softplus activation function is added to the last layer of the decoder for reconstruction

to output values on the same scale as gene expression input values.
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The loss function for the simpleAE is the mean squared error (MSE) between the decoder

output and the original input values. For VAE, the loss function has two terms: (i) the recon-

struction loss, also MSE, and (ii) the KL divergence between the latent distributions and unit

Gaussian prior distributions. For the prior- and beta-priorVAE implementations, the loss

functions are described in detail below.

The preparation of pathway-informed priors

Pathway-informed prior distributions were generated for each sample in the form of (σ2) and

(μ) parameters using a bootstrapping procedure. We defined μ as the average gene expression

level of genes within each pathway definition, and σ2 as the variance across bootstrapping iter-

ations. Pathway definitions were taken from MSigDB Hallmarks [35] or the KEGG database

[36–38].

Loss function for biological priors

Generally, variational autoencoders take the form found in Fig 1 and have been previously

described in detail [27]. In short, it has been established that neural network training can per-

form variational inference when the loss function takes the form:

¼ Eq�ðzjxÞ½logpyðxjzÞ� � KLðq�ðzjxÞjjpðzÞÞ ¼ Lrecon þ LKL ¼ LVAEarchitectures

Here, x 2 R is a vector of expression values for a sample in the set of all samples, X. The gener-

ative model pθ(x|z) is learned, where z (z 2 R) are latent variables with a prior p(z) such that z
can generate the observed data x.

The reconstruction loss term Lrecon can be measured by the mean squared error (MSE)

between the input and the reconstructed output. In most VAE implementations, a Gaussian

distribution is used for p(z) to make a tractable KL calculation. The assumption of unit Gauss-

ian, N ð0; IÞ, as priors leads to the simplified expression:

KLðq�ðzjxÞ; pðzÞÞ ¼
1

2
� log s2 þ 1ð Þ þ s2 þ m2½ �

In order to implement pathway-informed priors with any parameter values, the KL divergence

had to be implemented more generically for any two Gaussian distributions to measure the

distance between qϕ(z|x) and p(z), where qϕ(z|x) *N ðm1; s
2
1
Þ and p(z) *N ðm2; s

2
2
Þ:

KLðq�ðzjxÞ; pðzÞÞ

¼ �

Z

pðzÞ log q�ðzjxÞdx þ
Z

pðzÞ log pðxÞdx

¼ log
s2

s1

þ
s2

1
þ ðm1 � m2Þ

2

2s2
2

�
1

2

The models beta-simpleVAE and beta-priorVAE involve the addition of hyperparameter

β (β> 1) to put more weight on the LKL term, as described in [28]:

Lbeta� VAEarchitectures
¼ Eq�ðzjxÞ½log pyðxjzÞ� � bKLðq�ðzjxÞjjpðzÞÞ

¼ Lrecon þ bLKL
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Fig 1. A conceptual illustration of variations autoencoder architectures. A: An overview of the system architecture.

A pathway-derived prior is generated on the transcript or gene level, as described in the following sections. The three

alternative input types (transcript-level, gene-level, and community-level) correspond to three different model

variants. B: As a latent variable framework, the model assumes that latent variables (Z) are determinants of the

measured data (X). To learn Z, p(Z|X) is approximated by q(Z|X), and modeled as the encoder portion of the network.

The latent values represent probability distributions, which are implemented in the bottle-neck layer as values for mu

(μ) and sigma (σ). Finally, the decoder is conceptually equivalent to p(X|Z).

https://doi.org/10.1371/journal.pcbi.1011198.g001
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Evaluation methods

Hyperparameter analysis. The hyperparameter analysis was conducted using the sweep

function from the wandb platform. The hyperparameter search space consisted of variables for

model architectures, beta, learning rate, batch sizes and epoch. Using multidimensional ran-

dom sampling, 54 value combinations were selected. Additional models were generated for

systematically walking over values for beta.

Classification benchmarks. Five datasets were selected as classification tasks for the pur-

pose of benchmarking. Classifiers utilizing latent dimensions of the models being tested as fea-

tures were implemented using the LogisticRegression function (with the solver set to ‘lbfgs’)

from the sklearn Python package [39]. The performance score was determined using the

cross_validate function from the same package. For the multiclassification task of tissue identi-

fication, the analysis was performed iteratively on healthy samples from the eight most preva-

lent organs. The classification task was framed as distinguishing one target tissue from all

other tissues. The average score was computed across all combinations.

Differential gene expression and gene set overrepresentation analysis. The differential

expression analysis was conducted using limma [9] and corrected for batch effects by consider-

ing the study from which the sample originated as a batch. Significantly differential expressed

genes are defined as those having adjusted p-values smaller than 0.05. The significant genes

were selected to run the overrepresentation analysis using the EnrichR [41, 42] package in R.

Results

Input layer

The Affymetrix HG-U133Plus2 chip captures expression at the transcript level, providing an

input space of roughly 50,000 features. Concerned that this would result in a parameter space

that was too large for the available data, we experimented with collapsing the inputs to the

gene level and even further to ‘representative genes’ using a network-based clustering tech-

nique. A comparison of the choice of inputs can be found in S1 Fig, which reports the correla-

tions between input and output transcriptomes. We concluded that gene-level input was a

sufficient reduction in the parameter space based on the results. Furthermore, we explored an

alternative gene expression normalization strategy based on z-score, which would have

emphasized relative changes in gene expression over absolute changes. However, the standard

RMA normalization provided in the original dataset was superior. The correlation between

input and their pairwise reconstructed samples has decreased from 0.9852 ± 0.0089 to

0.9007 ± 0.0105 for the priorVAE, and from 0.9691 ± 0.0143 to 0.8587 ± 0.0237 for the beta-

priorVAE after training on the z-score normalized dataset with the same model architectures.

Due to these initial assessments, the results reported below are based on gene-level input, with

the original normalization.

Learning latent representations with several autoencoder architectures

Five autoencoder variations were trained on the full set of transcriptomes provided by the

ArrayExpression dataset, E-MTAB-3732, containing 27887 samples. As shown in Table 1,

common to each architecture is a 50-dimensional latent space. For the models, simpleAE, sim-

pleVAE, and beta-simpleVAE the 50 latent dimensions were learned strictly from the data,

without attributing any prior biological concepts, and are simply enumerated 1 through 50.

For the priorVAE and beta-priorVAE, the 50 latent nodes are associated with the 50 pathways

found in the MSigDB Hallmarks gene sets, and accordingly, each latent node can be labeled

with the gene set name.
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The first step in our evaluation strategy focused on the performance according to the main

components of the loss function, as seen in Table 2. (i) reconstruction loss, (ii) the Kullback–

Leibler (KL) divergence between the latent distributions and the prior distributions, and (iii)

the combined total loss.

Taking these metrics together, it is clear that the introduction of hyperparameter β results

in a lower KL divergence at the cost of a slightly worse reconstruction loss. The introduction of

priors resulted in little change to the loss terms compared to their non-prior counterparts.

To further explore reconstruction performance, we computed correlation coefficients

between input transcriptomes vs. the output transcriptomes. A complete pairwise correlation

analysis across samples shows how similar input and output transcriptomes are to each other

in the context of the natural variability across samples (Fig 2). Each model was able to repro-

duce reasonable output transcriptomes, which correlated with R between 0.97 and 0.8. In

most cases, the closest pairwise correlations were between the input and output models,

although this was not the case for many samples in the beta-simpleVAE, and a single sample in

the beta-priorVAE. Together with the performance shown in Fig 2, it is clear that increasing

the beta hyperparameter and emphasizing the influence of the priors comes at a cost to recon-

struction performance.

We performed further analysis of the reconstruction results to identify whether certain cell

types or particular genes were more or less problematic for reconstruction. S2 Fig shows the

reconstruction correlations across tissues, with the reconstruction performance being compat-

ible across tissues, despite noticeable heterogeneity in blood samples in particular. To assess

whether particular genes were “harder” to reconstruct, we calculated a gene-by-gene error

metric and assessed that as a function of expression level (S3 Fig). The gene with the highest

error was RPS4Y1, followed by XIST. A further assessment of the reconstruction effects was

visualized using t-SNE [43] (S4 Fig). The reconstructed plots indicate similar clustering pat-

terns compared with the original.

Table 1. An overview of the structures of the five architectures.

Model Latent Nodes Beta Prior Loss Function

SimpleAE 50 values, unlabeled none none MSE
SimpleVAE 50 Gaussians, unlabeled none unit Gaussian MSEþ 1

2
� log s2 þ 1ð Þ þ s2 þ m2½ �

Beta-SimpleVAE 50 Gaussians, unlabeled beta = 250 unit Gaussian MSEþ b ∗ 1

2
� log s2 þ 1ð Þ þ s2 þ m2½ �

� �

PriorVAE 50 Gaussians, pathway-derived none pathway names MSEþ log s2

s1
þ

s2
1
þðm1 � m2Þ

2

2s2
2

� 1

2

� �

Beta-PriorVAE 50 Gaussians, pathway-derived beta = 250 pathway names MSEþ b ∗ log s2

s1
þ

s2
1
þðm1 � m2Þ

2

2s2
2

� 1

2

� �

https://doi.org/10.1371/journal.pcbi.1011198.t001

Table 2. Benchmark results for the five architectures on the test set.

Model Recon. Loss KL(w.β) KL(n.β) Total Loss (w.β)

SimpleAE 2674.6 NA NA NA

SimpleVAE 2780.8 184.5 184.5 2965.3

Beta-SimpleVAE 5899.7 7.4 1846.8 7746.5

PriorVAE 2758.5 160.3 160.3 2918.8

Beta-PriorVAE 5740.2 8.1 2012.9 7753.1

Loss function values broken down into reconstruction loss, KL divergences with β (w.β), without β (n.β)

https://doi.org/10.1371/journal.pcbi.1011198.t002

PLOS COMPUTATIONAL BIOLOGY An autoencoder trained with priors from canonical pathways for interpreting transcriptomes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011198 July 3, 2024 8 / 22

https://doi.org/10.1371/journal.pcbi.1011198.t001
https://doi.org/10.1371/journal.pcbi.1011198.t002
https://doi.org/10.1371/journal.pcbi.1011198


Fig 2. Reconstruction performances using correlation coefficients between input and output transcriptomes. A-E: The clustered

pair-wise correlation heatmaps of the selected input and their reconstructed output for A: simpleAE, B: simpleVAE, C: priorVAE, D:

beta-simpleVAE, E: and beta-priorVAE. Selected input samples and their corresponding reconstruction output are enumerated as

1–20. ‘_Train’ represents the input train sample and ‘_Recon’ represents the reconstructed output. F: The average correlation between

the input and its corresponding reconstruction output.

https://doi.org/10.1371/journal.pcbi.1011198.g002
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Ideally, the latent dimension should contain enough information to capture the essential

biological features. To systematically evaluate how well the models can perform in this regard,

we have used the latent features as input into classification models for five validation tasks: (i)

distinguishing leukemia vs normal bone marrow, (ii) distinguishing lung vs breast adenocarci-

noma, (iii) lung adenocarcinoma vs healthy lung, (iv) lung adenocarcinoma vs small cell lung

cancer, and (v) distinguishing tissue types. Of these five tasks, two were too trivial to provide a

proper point of comparison among the models: lung adenocarcinoma vs healthy, and lung

adenocarcinoma vs small cell lung cancer. However, these comparisons could still be used

later in our evaluation of differential pathway analysis. The classification performance after

five-fold cross-validation is reported in Fig 3.

Across the three classification models, a clear pattern emerges that the beta-simpleVAE per-

forms worse than the others. The beta-priorVAE also has a tendency to perform slightly lower

than the remaining models. For leukemia vs normal, a high precision and slightly lower recall

indicates that some leukemia samples are difficult to distinguish from normal. In the case of

breast cancer vs lung cancer, the situation is more balanced.

For the benchmarking task of classifying tissue types, eight target organs were selected

based on available samples. In this classification task, the simpleAE, simpleVAE and priorVAE

perform with an average precision above 80%. Beta-weighting leads to worse classification per-

formance in both beta-simpleVAE and beta-priorVAE. However, beta-priorVAE performs

much better in this validation task than the former (roughly 0.76 vs. less than 0.6, Fig 3).

Impact of hyperparameter choices on performance

When designing the main models presented here, decisions about the layer size, learning rate,

batch size, and beta values were made best on reasonable expectations. However, it is impor-

tant to assess the stability of the model and the consequences that these choices as well. This

type of post-hoc hyperparameter analysis has an advantage over a hyperparameter optimiza-

tion strategy (i.e. searching the hyperparameter space for the best performance and then pre-

senting the best models) because it does not require a third set of data for validation and

decreases the risk of over-fitting. The results of this assessment are found in S5B Fig.

Upon performing a multidimensional hyperparameter sweep, the beta coefficient in the

loss function had a substantially higher importance score compared to learning rate and batch

size (S5A Fig). The impact of the number and size of encoder/decoder layers was relatively

modest, with the lowest-loss models found among the two hidden layer models over the single

and triple hidden layer variants (S5B Fig).

We performed additional benchmarks as part of a sweep across beta values. The correlation

between the latent values and priors increased with beta, tangentially approaching 1.0, with

notable saturation around 250, with an average correlation of 0.797 (S5C Fig). Beta was also

positively correlated with reconstruction loss and negatively correlated with KL loss (S5D Fig).

Across biological classification tasks, betas was generally negatively correlated with perfor-

mance. Several tests, particularly in the lung cancer classification set, exhibited a drop in per-

formance shoulder at beta = 500 (S5E–S5G Fig).

Larger latent spaces—KEGG and wild cards

We also investigated the outcome of the modeling with larger latent spaces: 1) by choosing a

selection of KEGG pathways [36–38] to represent the latent layer for the prior-based autoenco-

ders and 2) by providing an additional unlabeled latent variable with a unit Gaussian prior.

The MSigDB Hallmarks gene set catalog was chosen for models presented above because it is

small (only 50 gene sets, facilitating direct human interpretation) and as the name indicates,

PLOS COMPUTATIONAL BIOLOGY An autoencoder trained with priors from canonical pathways for interpreting transcriptomes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011198 July 3, 2024 10 / 22

https://doi.org/10.1371/journal.pcbi.1011198


promises to contain the most representative pathways and processes. KEGG is an excellent

alternative due to its expert curation, and manageable size. After removing disease-related

gene sets, we proceeded with 149 KEGG pathways.

Fig 4 reports the classification benchmarks for models with KEGG vs MSigDB latent spaces.

Overall the results were very similar. The most consistent trend was that the KEGG priorVAE

model (without beta weighting) with a wild card dimension performed consistently highest

Fig 3. The performance of the AE models across several sample classification tasks. Sample classification was based on multivariate logistic regression models as a

function of the latent representation provided by each of the autoencoder architectures.

https://doi.org/10.1371/journal.pcbi.1011198.g003
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Fig 4. The performance of the KEGG-based models across classification tasks. KEGG-based models are compared to MSigDB-based models. Sample

classification was based on multivariate logistic regression models as a function of the latent representation provided by each of the autoencoder architectures.

https://doi.org/10.1371/journal.pcbi.1011198.g004
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with regard to tissue comparison. Further results of using a KEGG-based latent space are

reported later in the section on differential analysis.

Influence of priors on learned latent representation

The goal of bringing pathway-derived priors into the model is to produce latent representa-

tions that both accurately represent the full transcriptome and also directly correspond to rec-

ognizable biological concepts. However, these goals are at odds, as we reported in (Fig 5 and

S6 Fig). In the case of the priorVAE, the latent variable allograft rejection does retain a high

correlation with the prior scores (R = 0.82). However, all the other 49 pathways are with a cor-

relation weaker than 0.5, and only six pathways are to some extent correlated with the prior,

even with a far less stringent threshold of 0.4. 21 out of 50 pathways correlate negatively with

the prior scores. In contrast, the latent variables of the beta-priorVAE retain their connection

to their pathways, with 48 of 50 pathways correlating higher than 0.6. Fig 5C indicates that the

beta-priorVAE provides latent values with a high level of semantic meaning, providing a direct

means for interpreting complex transcriptome datasets.

Differential analysis

The beta-priorVAE provides a simplified representation of the transcriptome in terms of 50

features corresponding to 50 pathways in the case of MSigDB, and 149 for KEGG. A compara-

tive analysis across samples and conditions is now possible directly on the basis of these fea-

tures. Analogous to performing a differential expression analysis on genes, we performed a

differential latent variable (i.e. differential pathway) analysis using the model results. We

included the four disease scenarios from the classification benchmark in this differential analy-

sis: (i) lung adenocarcinoma vs small cell lung cancer (ii) lung vs breast adenocarcinoma, (iii)

lung adenocarcinoma vs healthy lung, and (iv) leukemia vs normal bone marrow.

Applying the MSigDB autoencoder to the differential analysis of adenocarcinoma vs small

cell lung cancer, identified complement and TNF-alpha signaling via NFKB as major distin-

guishing factors (Fig 6). The KEGG model was in agreement regarding this latter pathway and

also proposed IL-17 Signalling. In the case of leukemia versus healthy bone marrow, the top

MSigDB pathway identified by the beta-priorVAE was UV response followed by epithelial mes-
enchymal transition [44, 45] (S7 Fig). The KEGG model proposed different differential path-

ways, including ECM-receptor interaction andmRNA surveillance. When comparing lung

adenocarcinoma vs healthy, the top MSigDB pathway, angiogenesis was extremely significant

(p< 10−25), followed by proliferation-related pathways (S8 Fig). The KEGG model produced

vitamin B6 metabolism and again ECM-receptor interaction, as was the case for leukemia. In

the case of breast vs lung adenocarcinoma, the MSigDB pathway identified coagulation as the

top hit, followed by xenobiotic metabolism (S9 Fig). We then applied a more traditional bioin-

formatic method of analysis as a point of comparison with the differential pathway analysis

reported above. Specifically, we performed differential gene expression analysis, followed by

gene set enrichment analysis, on the adenocarcinoma vs small cell lung cancer datasets. The

resulting pathway analysis for KEGG is reported in Table 3. This approach resulted in several

top hits consistent with RNA degradation artifacts. However, because the analysis included the

full set of KEGG pathways (recall that the KEGG pathways for the latent spaces were filtered to

exclude diseases), on if the gene sets found were in fact small cell lung carcinoma. The combi-

nation of these results indicates that the differential gene analysis is valid, but suffers from the

data quality of the samples.

A final analysis was performed due to the observation that the comparison between the

priorVAE and beta-priorVAE show clearly a trade-off between capturing the biological
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Fig 5. The semantic meaningfulness of the latent variables in the prior-based models, shown as the correlation

between the biological priors and the latent μ of prior-based models on the test set. The correlation of each

dimension is shown in A: for priorVAE and B: for beta-priorVAE. Subplot C summarizes these correlations to directly

compare the semantic interpretability of the two models.

https://doi.org/10.1371/journal.pcbi.1011198.g005
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Fig 6. Differential latent space analysis of adenocarcinoma vs small cell lung cancer. Heatmaps show latent values pathways defined by A: MSigDB and B:

KEGG. C and D show the top differentially expressed latent variables based on the p-values for MSigDB and KEGG respectively.

https://doi.org/10.1371/journal.pcbi.1011198.g006
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variability in the models’ latent space, but meanwhile, adhering to prior biological concepts

found in the set of Hallmark pathways. To further investigate the effect of hyperparameter beta

on performance, we ran the benchmarks across a range of values for beta (S10 Fig) The classifi-

cation performance seems to decrease consistently with an increasing beta, although for beta

values up to 100, the trend is close to flat. This implies that we can find a beta value that bal-

ances the need to capture biological features and, at the same time, adhere to the pathway

labels provided via the priors.

Discussion

The results of these experiments demonstrate that autoencoders are capable of generating a

simplified representation of a transcriptome that still retains the key biological information

necessary to differentiate different cells under different conditions. Furthermore, it is also pos-

sible to constrain the training process in a way that forces the network to find a latent represen-

tation corresponding to human-understandable biological concepts. Here we have achieved

this by taking advantage of the VAE framework, which allows for integrating prior knowledge.

There is a trade-off between efficiently representing the complexity of a transcriptome, and

adhering to a panel of chosen biological concepts, in our case, defined by 50 Hallmark

pathways.

An early decision made in this pipeline was to proceed with gene-level instead of tran-

script-level or community-level input. The motivation for reducing the size of the input to the

neural network is that oversized inputs increase the risk of overfitting and reduce the likeli-

hood that the model will find a latent representation that is a good abstraction of the original

data. In our hands, the community detection-based approach, which would have reduced the

input space the most did not perform better than the larger gene-level input, although it was

better than using the raw transcript input. However, we cannot exclude the possibility that

superior community detection approaches, perhaps sourced from network inference methods

would provide yet a further improvement to our models.

The primary goal of utilizing pathway-based priors in the priorVAE and beta-priorVAE

models was to generate a latent space that would be immediately interpretable to a biologist

because the model will describe a transcriptome in terms of features that are familiar to a biol-

ogist. However, we have observed that latent features do not always retain the identity of their

associated priors. In the case of the priorVAE (i.e. beta = 1), the model has substantial freedom

to deviate from the pathway priors, and in fact, does so for many features. However, by

Table 3. Overrepresented KEGG gene sets by traditional differential expression analysis.

KEGG Term P.value Adjusted.P.value Combined.Score

Ribosome 1.93 � 10−7 5.47 � 10−5 37.43

Protein processing in endoplasmic reticulum 3.58 � 10−7 5.47 � 10−5 34.22

Lysosome 2.12 � 10−6 2.16 � 10−4 31.95

Endocytosis 4.07 � 10−6 3.10 � 10−4 23.38

Mitophagy 7.17 � 10−6 4.37 � 10−4 37.22

Autophagy 4.30 � 10−5 2.19 � 10−3 21.51

Hedgehog signaling pathway 6.37 � 10−4 2.78 � 10−2 20.44

Glycosaminoglycan degradation 9.26 � 10−4 3.14 � 10−2 33.00

Valine, leucine and isoleucine degradation 8.94 � 10−4 3.14 � 10−2 18.78

Non-small cell lung cancer 1.56 � 10−3 4.76 � 10−2 14.45

https://doi.org/10.1371/journal.pcbi.1011198.t003
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boosting the requirement to adhere to the pathway concepts with the beta hyperparameter, the

immediate biological interpretation of the latent space is achievable (Fig 5).

Although beta does help direct the model to retain the association of the latent variables

with their respective pathways, a side effect of this “strictness” is that the model no longer has

the flexibility to learn sources of variation in the dataset that are not covered by the pathway

definitions. For example, technical covariates such as RNA degradation could be such a source

of variation. The results here show that in fact the introduction of wild card latent variables

that are not contained to associate with any particular prior does improve the model accuracy.

In particular, this was the case with regard to the tissue classification benchmark.

The beta-priorVAE with the current setting shows an overall satisfying correlation between

the latent variables and prior scores, which enables an interpretation of the biological pathways

involved in the chosen vignette. In the use case of adenocarcinoma vs small cell lung cancer,

the t-test results indicated that TNF and NFKB signaling pathways were major distinguishing

factors (Fig 6). Notably, there was also consensus between the KEGG and MSigDB models on

this point. Although NFKB is generally implicated in cancer [46], it has been reported that its

link with prognosis specific to adenocarcinoma [47]. Furthermore, coagulation is among the

top 7 significant differentiators between the two lung cancer phenotypes in the MSigDB

model. While coagulation function is associated with the prognosis in NSCLC patients as

described in [48, 49], both [50] and [51] reported an absence of similar correlation between

coagulation and the SCLC prognosis. In the KEGG model, arachidonic acid metabolism was a

top hit, and this potentially also a differentiating factor between the cancer types because genes

of this pathway are upregulated specifically in adenocarcinoma [52]. Thus, the literature

reports that The literature is, therefore, consistent with the latent representation in that the

concept of coagulation is a differentiating feature between the two diseases. Thus, the evalua-

tion supports the feasibility of such architecture in making transcriptomes more intuitively

transparent and interpretable.

Although our primary motivation for including priors in our VAE was to make the latent

space directly interpretable, the traditional motivation for including priors was to increase

model accuracy. For most of our benchmarks, model accuracy generally decreased when we

increased the emphasis on priors via the beta parameter. This implies that the reconstruction

portion of the loss function is the main driver of performance in these benchmarks in compar-

ison to the KL divergence term. However, an interesting point of comparison in our experi-

ments is between the beta-simpleVAE and beta-priorVAE, which have the same emphasis on

priors (i.e., the same betas), but in the latter model, prior biological knowledge is incorporated.

Table 2 and S10 Fig show an increase in performance when using a biological prior vs. a unit

Gaussian prior, indicating that in this local comparison, prior biological information can be

beneficial.

We have provided evidence that the key sources of biological variation are captured in the

latent space. At the primary level, the successful reconstruction as demonstrated by the

reconstruction loss, as well as high correlation coefficients between inputs and outputs, indi-

cate that the latent representations are reliable. This is further supported by the fact that can-

cer types and tissue types can be distinguished using only the latent features. However, the

performance for classifying tissues is surprisingly mediocre. The question is whether this is a

limitation of the information found in the latent representation or an inadequate classifica-

tion procedure. The latter scenario is supported by the high reconstruction accuracy and the

fact that the multivariate logistic regression may be inadequate without proper feature

selection.
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Conclusion

The training and post hoc experiments demonstrate that (i) autoencoder models can find sim-

plified representations of transcriptomes that still retain biological information, (ii) using path-

way-derived priors, we can encourage the models to find latent representations that still

adhere to concepts that are familiar to biologists, and (iii) latent features can provide a direct

means of comparison among samples and conditions that can provide an immediate biological

interpretation. This area of research should be explored further, with attention to alternate

pathway definitions to define the priors and thus the latent space, additional model architec-

tures, and integration into bioinformatic workflows.

Supporting information

S1 Fig. Input vs output correlations for various input types: Transcript, gene, or commu-

nity input. The pairwise correlation plots include both input and output transcriptomes. The

Boxplots depict the correlations between every input and their respective output.

(PDF)

S2 Fig. Heatmap reporting the correlation between input and output transcriptomes anno-

tated by tissue type. The rows and columns are ordered by sample, so the diagonal reports the

correlation for the input-output pair for one sample.

(PDF)

S3 Fig. Analysis of reconstruction performance at the gene level. The absolute error between

input and output gene levels was calculated for each gene and plotted as a function of the aver-

age expression level.

(PDF)

S4 Fig. t-SNE plots comparing original input and reconstructions across tissue types. A

Shows the performance for the prior VAE and B for beta-prior VAE.

(PDF)

S5 Fig. Post-hoc hyperparameter analysis. A sweep (random search) of the hyperparameter

space was performed, resulting in 60 evaluated models. A: importance and correlation met-

rics provided by wandb. B: model results summarized by encoder architecture. X-axis labels

refer to the size of the hidden layers in the encoder and decoder. C: Sweep results for the

beta-priorVAE model across beta values, reporting the correlation between latent values and

priors. D: Sweep results for beta, reconstruction loss, KL loss, and total loss. E-G: Effects of

beta sweep on classification tasks for E: leukemia vs health, F: lung vs breast cancer, and G:

tissue.

(PDF)

S6 Fig. The scatter plot of the priors (x-axis) and the latent μ (y-axis) of all test samples for

A: priorVAE and B: beta-priorVAE. These plots show the extent to which the model adheres

to the original meaning of the pathway labels.

(ZIP)

S7 Fig. Differential latent space analysis of adenocarcinoma vs non-small cell lung cancer.

Heatmaps show latent values pathways defined by A: MSigDB and B: KEGG. C and D show

the top differentially expressed latent variables based on the p-value for MSigDB and KEGG

respectively.

(PDF)
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S8 Fig. Differential latent space analysis of adenocarcinoma vs healthy lung samples. Heat-

maps show latent values pathways defined by A: MSigDB and B: KEGG. C and D show the top

differentially expressed latent variables based on the p-value for MSigDB and KEGG respec-

tively.

(PDF)

S9 Fig. Differential latent space analysis of breast vs lung adenocarcinoma. Heatmaps

show latent values pathways defined by A: MSigDB and B: KEGG. C and D show the top dif-

ferentially expressed latent variables based on the p-value for MSigDB and KEGG respec-

tively.

(PDF)

S10 Fig. The average precision score of the beta-simpleVAE and the beta-priorVAE models

on the tissue classification with different values for hyperparameter beta.

(PDF)
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