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This document provides supplementary material for the
paper HyperSparse Neural Networks: Shifting Exploration
to Exploitation through Adaptive Regularization. At first,
Sec. A gives detailed information about the implementation
of our method. Subsequently, Sec. B presents more detailed
results of the intersection of largest weights during training
and the final pruning mask. The weight distribution after
training with our introduced method shown in the main pa-
per is analyzed for a wider set of configurations in Sec. C.
Moreover, Sec. D and Sec. E elaborate the gradient and the
compression behaviour during regularization presented in
the main paper more into detail.

A. Detailed Experimental Setup
As described in [14], we evaluated our method on the

datasets CIFAR-10/100 [9] and TinyImageNet [2] with the
models ResNet-32 [6] and VGG-19 [13]. CIFAR-10 is a
dataset for a classification task with 50 000 training and
10 000 validation samples on 32x32 color-images labeled
with 10 classes. Respectively CIFAR-100 has 100 classes
and the same amount of samples. The dataset TinyIma-
geNet consists of 100 000 training and 10 000 validation
samples with an image-size of 64x64, where samples are
labeled with a set of 200 classes.

As done in [14], we train our models for 160 epochs
on CIFAR-10/100 and 300 epochs on TinyImageNet using
SGD-optimizer, with an initial learning rate of 0.1 and a
batch size of 64. We decay the learning rate by factor 0.1 at
epoch 2/4 and 3/4 of the total number of epochs. The weight
decay is set to 1 · 10−4. In our experiments all results are
averaged over 5 runs.

In the original implementation of SmartRatio [14],
weights in the final linear layer are pruned with a fixed prun-
ing rate of 70%. Thus, too much weights remain when train-
ing on ResNet-32 with a pruning ratio of 99.8% on dataset
CIFAR-100 and TinyImageNet. To this reason, we change
the pruning ratio in the linear layer to 90% for this two
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training settings only. The methods SNIP [10], GraSP [16],
SmartRatio [14], and LTH [5] suggest rules to obtain fixed
masks. This mask is applied to the model weights before
training. In contrast, IMP [7] iteratively trains a model to
epoch T and prunes 20% of the remaining weights until
the desired pruning rate is reached. After each iteration the
weights and learning rate are reset to epoch k and retrained
again to epoch T . To be comparable, we define k = 20
and T = 160 for CIFAR-10/100 as well as k = 40 and
T = 300 for TinyImageNet. As described in [4], RigL per-
formes better with a longer training duration. To this reason
we extend the optimization time of the uniform distributed
RigL-method by training for 360 epochs with a learning rate
of 0.1, followed by the fine-tuning-step of 160 epochs on
CIFAR-10/100 and 300 epochs on TinyImageNet. The fine-
tuning step is equal to ART. All further hyperparameters of
RigL are adopted from [4].

Our proposed method ART, described in Sec. 3.2 in the
main paper, consists of three steps. In the first step we train
our model to convergence for 60 epochs using a fix learning
rate of 0.1. Subsequently we enable the used regularization
term, with a small initialisation rate of λinit = 5 · 10−6 and
increasing factor of η = 1.05. To reduce noise in choosing
the best pruned model, we average the accuracy ψ(ν(We)⊙
We) over epoch (e − 1, e, e + 1), where e describes the
current epoch and ν denotes magnitude pruning that obtains
a binary mask. The first two steps are used to obtain the
weights and masks for fine-tuning. During fine-tuning, we
use the training schedule described above as done in [14].

B. Mask intersection in Regularized Training

In this section we show further results of our experiments
measuring the mask intersection over epoch e from Sec. 4.4
in the main paper. We measure the relative overlap between
the weights with highest magnitude at epoch e and the final
mask in different settings with different models, datasets,
regularization losses, and pruning rates. Therefore, Tab. 1
shows the important keypoints of intersection at the end of



pre-training (epoch 60) and one epoch before the final mask
was found (e = K − 1). We observe that our regularization
loss LHS has a higher intersection in nearly all settings at
epoch 60 and epochK−1 compared to L1 and L2 loss. This
indicates that our HyperSparse loss changes less parameter
while reordering weights from remaining to pruned and vice
versa.

In addition, Tab. 1 presents the total number of training
epochs to obtain the final mask (including step 1 and step 2).
It shows that our HyperSparse loss needs less epochs to
terminate in nearly all settings. Since ART terminates, if
the best pruned model outperforms the unpruned model at
epoch e, we deduce that LHS creates a well performing
sparse network faster compared to L1 and L2 loss.

C. Weight Distribution
In this section, we show further experiments of the

weight distribution per layer in the final mask, as evalu-
ated in Sec. 4.4 in the main paper. We analyse the resulting
masks for dataset CIFAR-10 and CIFAR-100, pruning-rate
κ ∈ {90%, 98%, 99.5%} as well as for model ResNet-32
and VGG-19. Weight distributions obtained by the methods
IMP [7], SRatio [14] and ART using HyperSpase loss are
analyzed. All values are averaged over 5 runs.

In Fig. 1, we show the resulting weight distributions for
ResNet-32. Note that the model is grouped in three residual
blocks (RES), two downsampling blocks (DS) and a lin-
ear layer (LL). We observe that ART + LHS and IMP have
comparable distributions of weights. Both methods show a
relative constant distribution in the residual layers, except
the last one. This last layer has an decreasing number of
weights, especially in the simpler task given in CIFAR-10.
In comparison, SRatio uses a fixed keep-ratio in a quadratic
decreasing manner and thus the weight distribution is not
dependent on data. Since ART and IMP outperform SRatio
by far in accuracy (Tab. 1 in the main paper), this hand-
crafted rule has adverse effect on performance. Moreover,
we observe a relatively high number of weights in the down-
sampling layer for ART and IMP, which indicates that these
layers are more important.

Further, we present the weight distribution for VGG-19
in Fig. 2. We observe that the layer around index 5 has
more weights for ART and IMP. Nearly no weights remain
in layer with index higher than 10, except the final linear
layer. Considering the increasing sparsity, the weight dis-
tribution is shifted towards the earlier layers with low in-
dex. We deduce that in higher sparsity regimes the weight
in earlier layer are more important in VGG-19. The hand-
crafted rule of SRatio shows a relatively flat weight distri-
bution. Overall, the number of weights in the linear layer
increases for CIFAR-100, due to the increasing number of
classes compared to CIFAR-10 in ResNet-32 and for VGG-
19.

D. HyperSparse Gradient Analysis

In this section, we analyze the gradient of our Hyper-
Sparse regularization loss with respect to the model weights
w ∈ W . Assuming that important weights have large mag-
nitudes, we show that HyperSparse subsides to no regular-
isation for important values and evolves to a strong penal-
ization for unimportant values. This behaviour allows ex-
ploitation in the set of the important weights that remain af-
ter magnitude pruning. Furthermore, we show that our loss
ensures a smooth transition in the gradient between unim-
portant and important weights, such that exploration in the
set of unimportant weights is possible during training.

Gradient. Our loss evolves sparseness and adapts on the
weight magnitude by utilizing the non-linearity of the Hy-
perbolic Tangent function

tanh(x) =
ex − e−x

ez + e−x
∈ (−1, 1), (1)

which is the reason for the name HyperSparse. The max-
imum of the derivative of tanh is 1 at x = 0 and strongly
vanishes close to zero for large values:

argmax
x

d tanh(x)

dx
= 0 and lim

x→±∞

d tanh(x)

dx
= 0 .

(2)
In this paper, the Hyperbolic Tangent function of a magni-
tude tanh(| · |) is denoted by t(·) for simplicity.

For the sake of completeness, we recapitulate the defini-
tion of HyperSparse from Eq. (2) in the main paper:

LHS(W ) =
1

A

|W |∑
i=1

(
|wi|

|W |∑
j=1

t(s · wj)

)
−

|W |∑
i=1

|wi|

with A :=
∑
w∈W

t(s · w)

and ∀w ∈W :
dA

dw
= 0,

(3)

and want to note again, thatA denotes a pseudo-constant
term that is considered to be a constant in the gradient com-
putation, and s is a scaling factor discussed in the end of this
section. In this section, sum notations as

∑|W |
i=1 will be sim-

plified by
∑

wi
or by

∑
w if w is unique. Furthermore, we

will leave out declarations of set memberships like wi ∈W
and state that every w is in the set of model weights W .
Also the scope of formulations is consistently defined as
∀w ∈W .

With this notations and simplifications, the derivative of



Eq.(3) w.r.t. to a weight wi can be defined as follows:

dLHS

dwi
=

d

dwi

|wi|
∑

wj
t(s · wj)

A︸ ︷︷ ︸
I

+

d

dwi

∑
wn ̸=wi

|wn|
∑

wj
t(s · wj)

A︸ ︷︷ ︸
II

−sign(wi)

=sign(wi) ·
|wi| · t′(s · wi) +

∑
wj
t(s · wj)

A︸ ︷︷ ︸
I

+

sign(wi) ·
∑

wn ̸=wi
|wn| · t′(s · wi)

A︸ ︷︷ ︸
II

−sign(wi)

=sign(wi) ·
[ ∑

wj
t(s · wj)

A =
∑

wj
t(s · wj)

+∑
wn

|wn| · t′(s · wi)

A =
∑

wj
t(s · wj)

− 1

]
=sign(wi) ·

t′(s · wi) ·
∑

wn
|wn|∑

wj
t(s · wj)

.

(4)

The gradient consists of a term that is depending on the
weight distribution in W and the derivative t′ = dt

dwi
at

the considered weights magnitude |wi| scaled with s. The
behaviour of HyperSparse can be explained with the gra-
dients for very small and very large magnitudes: For large
magnitudes |wi| ≫ 0, the derivative in Eq. (4) collapses to

dLHS

dwi

∣∣∣∣
|s·wi|≫0

≈ sign(wi) · 0 = 0 (5)

which is effectively no regularisation. For very small values
wi ≈ 0, the derivative

dLHS

dwi

∣∣∣∣
|s·wi|≈0

≈ sign(wi) ·
∑

wn
|wn|∑

wj
t(s · wj)

(6)

is larger and increases, if the weights in W are clearly sep-
arated in two sets of important (large magnitude) and unim-
portant weights (low magnitude). The gradient of weights
that are not assigned to one of those sets is between Eq. (5)
and (6) and therefore allows an easier exploration of those
weights during training.

Aligning with s. In the definition of HyperSparse, the
scaling factor s aligns the loss with the actual weight dis-
tribution. The aim is that weights |w| > |wκ| are not or
softly and |w| < |wκ| strongly penalized. A weight dis-
tribution does not need to be aligned with the derivative of
the Hyperbolic Tangent function such that large weights are

#Epochs
to Final Mask

Intersection
at e = 60

Intersection
at e = K − 1

κ LHS L1 L2 LHS L1 L2 LHS L1 L2
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0
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-
32

90% 87 95 23 0.46 0.35 0.41 0.84 0.72 0.83
98% 112 130 194 0.29 0.15 0.1 0.86 0.54 0.4
99.5% 136 152 177 0.23 0.12 0.17 0.91 0.54 0.49

V
G

G
-

19

90% 64 66 185 0.77 0.71 0.46 0.87 0.83 0.67
98% 76 81 230 0.51 0.45 0.02 0.83 0.76 0.7
99.5% 104 118 232 0.32 0.19 0.02 0.82 0.59 0.52

C
IF

A
R

-1
00

V
G

G
-

19

90% 68 71 211 0.66 0.6 0.13 0.85 0.81 0.67
98% 96 106 238 0.39 0.28 0.02 0.83 0.64 0.66
99.5% 116 121 226 0.27 0.16 0.01 0.85 0.62 0.48

R
es

N
et

-
32

90% 99 113 177 0.45 0.28 0.2 0.88 0.63 0.49
98% 123 134 183 0.34 0.2 0.18 0.91 0.61 0.49
99.5% 147 150 163 0.26 0.19 0.28 0.95 0.7 0.62

Table 1: Complementary key-points to the experiments
about mask intersection in Sec. 4.4 in the main paper. The
intersection indicates the relative overlap of weights with
highest magnitude during training to remaining weights in
the final mask obtained by ART. For simplicity, we only
show the intersection at the end of pre-training (e = 60) and
one epoch before the final mask was found (e = K − 1).
In addition, this table shows the number of training epochs
to the final mask. The information are demonstrated for L1,
L2 and HyperSparse loss LHS , over different pruning rates
κ, models and datasets.

mapped close to 0 and small weights close to 1. To fix this,
we align W by scaling wκ with s so that it lies on the in-
flection point of the gradient. The desired scaling factor can
be derived by

t′′′(s · |wκ| ≈ 0.6585) = 0 (7)

and setting s = 0.6586
|wκ| . Large scaling factors s lead to ram-

pant gradient distribution at weight wκ towards weights of
low magnitude. Examples can be found in Fig. 1 in the main
paper.

E. Interpretable Compression
This chapter discusses the process of knowledge com-

pression that compresses patterns from a pre-trained dense
network into a sparse network that consists of the set of 1−κ
highest weights, where κ denotes the desired pruning rate.

The first subsection presents the CIFAR-N [17] dataset
that is used to analyze the compression behavior in Sec. 4.5.
We show how it relates to CIFAR [9] and how we visu-
alize the label distribution with the modern CLIP frame-
work [12]. Then we elaborate the introduced metric Com-
pression Position more in detail. For the sake of complete-
ness, we lastly present and discuss figures and tables that
show results for additional settings that could not be pre-
sented in the main paper due to lack of space.



CIFAR-N

To analyze human-like label errors and to provide real-
world label noise for researchers, Wei et al. introduced the
CIFAR-N [17] dataset that uses the CIFAR [9] training data
S = {(xn, yn)}Nn=1, but has different ground truth labels.
Every sample was labeled by 3 different persons, inducing
their subjective human bias, such that the dataset formula-
tion can be defined as S = {(xn, {y1n, y2n, y3n})}Nn=1. They
show, that single persons consistently induce an error rate
between 10-20% (compared to original CIFAR). Moreover,
they show that human-like label noise is harder to tackle in
robust learning scenarios compared to synthetic label noise.

We use the multi-label ymi from CIFAR-N and the
most likely correct label yi from CIFAR-10 and derive a
“hardness-score” hi. For a sample (xi, yi), the score

hi =
∣∣{ymi ∈ {y1i , y2i , y3i }

}
|ymi ̸= yi

}∣∣ ∈ [0, 3] (8)

describes, how often a sample was mislabeled in CIFAR-
N and therefore relates to the difficulty. To illustrate the
distribution of classes and labels, we map all images of
CIFAR-10 to the latent space of the high performing diffu-
sion model CLIP [12] that is using vision transformers [3]
and is trained on large training data. After mapping the
images to the CLIP latent space, we reduce the dimen-
sions with the t-SNE [15] algorithm to two dimensions as
shown in Fig. 3. The four sub-figures split the samples
from CIFAR-10 according to their score hi. It shows that all
classes have samples with every score. Moreover, the vari-
ance of the samples per class grows with increasing hard-
ness. As harder samples are more likely to have a larger
distance to cluster centers, because they differ to the “easy”
and unambiguous class templates, the increasing variance
indicates that the CLIP latent space combined with t-SNE is
a good tool to visualize a human-like sample distribution.

According to the well known and often discussed effect
that samples with easy patterns and unambiguous labels are
memorized first [1, 8, 11], samples with a higher hardness-
score should be compressed later in the training process.
We use the hardness-score to evaluate if this effect is also
present in the process of compressing patterns from a pre-
trained dense neural network into a dense sub-network us-
ing our method.

Compression Position (CP)

The next section formally defines the evaluation metric
Compression Position as described in Sec. 4.5 in the main
paper. Measurement of classification capabilities of neu-
ral networks f(W,x) is usually performed by the accuracy
metric

ψ
(
S, f,W

)
=

∣∣{(x, y) ∈ S | f(W,x) = y
}∣∣

|S|
. (9)

The accuracy of a specific class can be obtained by calcu-
lating ψ for a subset Sc ⊂ S with only samples of a spe-
cific class y = c. To answer the question “Which classes
are represented first in a neural network?”, one can mea-
sure the class accuracy after every training epoch e and plot
them. To reduce the complex plot into a single metric, the
area-under-curve (AUC) could be obtained for every spe-
cific class. Drawbacks from the AUC mesurements are, that
the absolute values of AUC are not comparable between dif-
ferent settings (i.e., datasets, models, . . . ). For example,
large and complex data will lead to lower AUCs. More-
over, the class specific accuracy metric is not satisfying for
the question “Which classes are compressed first into the
higher magnitude weights?” that is addressed in this pa-
per. We noticed, that the class accuracy of sparse networks
underlie high noise rates and are therefore hard to interpret.

To tackle the drawbacks and generate a suitable metric
for our work, we introduce the Compression Position (CP)
metric that is basically a sample based accuracy over time.
It aims to quantify the relative position in time between
epoch eS and eE , where a sample x is compressed from
the dense weights W into the weights with high magnitude
ν(W ), so that the sparse neural network is able to predict
the correct ground truth label f(ν(W )⊙W,x) = y.

First, we redefine Eq. (9) into a individual sample based
accuracy for the pruned model that is defined as

ψI
(
x, y, f,W

)
=

∣∣{We ∈ W | f(ν(We)⊙We, x) = y
}∣∣

eE − eS
(10)

and W = {We}eEe=eS denotes a set of weight sets during the
training between epoch eS and eE . The CP metric of x is
the normalized position of ψI

(
x, y, f,W

)
in a sorted list of

the sample accuracy Ψ = sort
({

ψI
(
xn, yn, f,W

)}N

n=1

)
in descending order, such that

CP(x, y, f,W, S) : ψI(x, y, f,W)
!
= ΨCP(x,y,f,W)·|Φ|

(11)
holds. The CP metric indicates the temporal position when
a sample is compressed into the sparse weights ν(W )⊙W ,
because CP increases if the corresponding sample is classi-
fied correct early and continuously in the training process.

Compression Behaviour

We present the main impressions of our investigations about
the compression behaviour on class level in Tab. 3 and on
sample level in Fig. 4 in the main paper. For the sake of
completeness and to strengthen the claims, we report more
detailed results in Tab. 2 and Fig. 4 and 5.

The order of compression Ψsort for a dense, two low spar-
sity, and three high sparsity networks is visualized in Fig. 4
and 5. Every sub-figure shows a consecutive set of 2500



samples from Ψsort and gives an intuition, which patterns
are compressed into the sparse network in the beginning,
middle phase and end of training. First, we observe that
the diversity of classes in the first 2500 samples decreases
with increasing sparsity. Second, it shows that the intra-
class variance increases over time. The first observation
suggests that the highest weights do not make any decisions
at the beginning, or only between a few classes. In the same
way that only a few classes are compressed at the begin-
ning, the remaining classes are compressed in isolation at
the end (see Fig. 5c). This is important for magnitude prun-
ing based methods and high sparsity rates: If the highest
weights have no capabilities in classification for all classes
after dense training, perhaps the basic assumption that high-
est weights encode most important decision rules is wrong.
Interestingly, our experiments consistently show, that the
class deer tends to be compressed first and moreover, deer
is the center in the t-SNE mapped latent space of CLIP. It
seems like deer is the general prototype of the dataset and
therefore we call the effect of preferring one class in the first
compression stage The deer bias. The second observation
reveals the main commonality between dense training and
compression through regularization. Derived from the hu-
man ability to reproduce simple patterns faster, dense and
sparse networks learn the general patterns first during com-
pression and encode the high frequency samples later.

The Tab. 2 quantifies the results discussed before. It
shows the compression rate for every class in CIFAR-10,
subdivided by the hardness score introduced earlier. The
dense networks compression rate for every class is more or
less uniform-distributed. This promotes the first observa-
tion that all classes are encoded into the weights at the same
time in dense networks. With increasing pruning rate κ, the
classes are successively compressed into the high weights
during regularization. The second observation is confirmed
by dividing the classes according to their human label er-
rors. The samples with higher label error are consistently
compressed later into the high weights.
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Figure 1: Distribution of weights per layer in ResNet-32 after pruning. We visualize the results in the left column for
CIFAR-10 and right column for CIFAR-100 as well as for pruning rates κ ∈ {90%, 98%, 99.5%} in each row. The layer
index describes the execution order which means that higher indices are calculated later in inference. All results are averaged
over 5 runs. We group the model in residual blocks (RES), downsampling blocks (DS) and the linear layer (LL). Our
Method ART + LHS distributes weights comparable to IMP [7], but has more weights in the downsampling layers. The
method SRatio [14] has a quadratic decreasing keep-ratio. We observe the linear layer in CIFAR-100 deserves more weights
compared to CIFAR-10, due to the bigger number of classes.
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Figure 2: Distribution of weights per layer in VGG-19 after pruning. We visualize the results in the left column for CIFAR-10
and right column for CIFAR-100 as well as for pruning rates κ ∈ {90%, 98%, 99.5%} in each row. The layer index describes
the execution order which means that higher indices are calculated later in inference. All results are averaged over 5 runs.
In [14], VGG-19 is constructed using multiple convolutional layers, which irregularly increase in the number of parameter
over index i. The model ends with a linear layer. Our Method ART + LHS distributes weights comparable to IMP [7], while
SRatio [14] uses more weights in layers with higher index. We observe the linear layer in CIFAR-100 deserves more weights
compared to CIFAR-10, due to the bigger number of classes.
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1 0.817 0.720 0.525 0.495 0.055 0.615 0.401 0.787 0.279 0.466
2 0.885 0.748 0.586 0.568 0.067 0.665 0.469 0.881 0.373 0.513
3 0.911 0.854 0.652 0.623 0.079 0.758 0.522 0.911 0.465 0.534

H
ig

h
Sp

ar
si

ty
(9

9.
8%

) 0 0.798 0.770 0.296 0.387 0.056 0.618 0.206 0.824 0.308 0.622
1 0.835 0.787 0.317 0.411 0.061 0.647 0.214 0.835 0.331 0.647
2 0.882 0.807 0.342 0.439 0.069 0.678 0.241 0.893 0.399 0.677
3 0.902 0.863 0.363 0.469 0.081 0.741 0.257 0.929 0.469 0.699

Table 2: Compression Position (see Sec. E) for dense NNs (during pre-training) and κ pruned NNs (during regularization) for
all CIFAR-10 classes. Samples of a class are split into 4 subsets according to the number of human label errors in CIFAR-N
to indicate the difficulty. In sparse networks, different classes are compressed at different times and difficult samples are
compressed later. These results are supplemental to Tab. 3 in the main paper.



CIFAR-N 0-Mislabeled
label
airplane
automobile
bird
cat
deer
dog
frog
horse
ship
truck

CIFAR-N 1-Mislabeled
label
airplane
automobile
bird
cat
deer
dog
frog
horse
ship
truck

CIFAR-N 2-Mislabeled
label
airplane
automobile
bird
cat
deer
dog
frog
horse
ship
truck

CIFAR-N 3-Mislabeled
label
airplane
automobile
bird
cat
deer
dog
frog
horse
ship
truck

Figure 3: CIFAR-10N samples in the CLIP latent space, mapped by t-SNE into two dimensions. The datset is split into four
subsets deduced by the hardness score explained in Sec. E. The term “h-Mislabeled” explains that h of 3 persons mislabeled
the corresponding sample. Ellipses indicate the double standard deviation of a class in the t-SNE space. It shows that samples
with higher hardness score h lead to a larger standard deviation and suggest that CLIP in combination with t-SNE is a suitable
visualization tool to show visualize human-like recognition behaviour.
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(a) Dense Model (κ = 0%)
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(b) Low Sparsity (κ = 90%)
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(c) Low Sparsity (κ = 95%)

Figure 4: First 5%, 40%-45%, and 95%-100% CIFAR-10 samples that are compressed into the remaining highest weights
after pruning with κ ∈ {0%, 90%, 95%} deduced by the CP-metric. While dense networks learn samples approximately
uniform-distributed over classes, the highest weights compress decision rules only for a subset of classes in the early learning
stage. Note that we sampled by factor 10 for visualization purposes and ellipses represent the double standard deviation of
cluster centers.
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(a) Low Sparsity (κ = 98%)
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(b) High Sparsity (κ = 99.5%)
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(c) High Sparsity (κ = 99.8%)

Figure 5: First 5%, 40%-45%, and 95%-100% CIFAR-10 samples that are compressed into the remaining highest weights
after pruning with κ ∈ {98%, 99.5%, 99.8%} deduced by the CP-metric. While dense networks learn samples approximately
uniform-distributed over classes, the highest weights compress decision rules only for a subset of classes in the early learning
stage. Note that we sampled by factor 10 for visualization purposes and ellipses represent the double standard deviation of
cluster centers.
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