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Learned Fourier Bases for Deep Set Feature Extractors in Automotive
Reinforcement Learning

Maximilian Schier1, Christoph Reinders1 and Bodo Rosenhahn1

Abstract— Neural networks in the automotive sector com-
monly have to process varying number of objects per observa-
tion. Deep Sets feature extractors have shown great success on
problems in reinforcement learning with dynamic observations,
achieving state-of-the-art performance on common tasks like
highway driving. However, recent work has shown that neural
networks suffer from a spectral bias, fitting to low frequencies of
scalar features used in such representations, like velocities and
distances. We introduce a novel set feature extractor combining
learned Fourier features with the Deep Sets architecture. The
proposed architecture reduces this spectral bias allowing more
sample-efficient training and better performance by learning
a more detailed representation. Extensive experiments are
conducted on three different environments, including two novel
environments featuring a large number of objects in challenging
random scenarios. Our method outperforms state-of-the-art
approaches and exceeds the performance of existing Deep Sets
architectures on these challenging new tasks.

I. INTRODUCTION

Reinforcement Learning has enjoyed growing success in
many contexts, including automotive [7], [8], [26]. Recent
work has primarily focused on suitable representations for
scenes with a variable number of objects or measurements,
usually referred to as dynamic scenes. For such environ-
ments, set and graph representations have shown enormous
potential, often outperforming static flat representations as
well as occupancy grids or other spatial representations [6],
[7]. Set architectures like Deep Sets [28] are simpler than
most graph neural networks (GNNs), but have been found
to perform as well as graphs on some automotive problems
[8]. Their simplicity is a key advantage as previous studies
have found the computational overhead of GNNs to be
excessively large with full connectivity [8], [6], [22]. In this
work, we focus on improving the Deep Sets architecture
for automotive RL. Previous work from the computer vision
community has shown a spectral bias in neural networks
towards low frequency components and suggested Fourier
bases as a remedy [24], [23]. Applying the same architectural
changes to continuous robot control problems has improved
performance for static representations in reinforcement learn-
ing [1], [27]. Set-based representations usually encode the
scene as a set of statically sized feature vectors, containing
scalar features such as distances or velocities. The Deep Sets
architectures used in previous research in the automotive
community [7], [8] use multilayer perceptrons to encode
the objects composed of such features, thus exhibiting the
same spectral bias. In this work, we propose a novel feature
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Fig. 1: Reinforcement learning on variable-sized high-level
object perceptions is still a difficult task. Our proposed
architecture using a Deep Sets feature extractor on a learned
Fourier bases significantly improves sampling efficiency,
feature representation, and final performance. We evaluate
our method on three tasks: an established highway scenario
(A) and two novel simulation environments for navigating a
winding country road (B) and reverse parking (C).

extractor for dynamic object representations combining the
Deep Sets architecture with a suitable learned Fourier basis
to reduce bias and improve the locality and, thus, attention
of the Deep Sets encoder. We perform extensive experiments
on the well known highway-env [13] environment as well as
a challenging novel environments covering precise continu-
ous vehicle control while parking and navigating a tightly
winding road. To summarize, our main contributions are:

• We present a novel feature extractor architecture for
dynamic scenes combining Deep Sets and learnable
Fourier bases.

• In addition, we present novel benchmark environments
for precise continuous vehicle control based on high-
level object detections.

• Our proposed approach outperforms existing Deep Sets
architectures, as well as static flat and bird’s-eye CNN
encodings.

• Upon acceptance, we publish our implementation of
our agent, all comparative agents, and the novel en-
vironments at https://github.com/m-schier/
LFF-DS.

II. RELATED WORK

Dynamic scene representations have seen some popularity
in automotive reinforcement learning. Most commonly used
are graphs and sets. Early work applied the Deep Sets
architecture [28] in the automotive context to control high-
level discrete lane change actions in a highway scenario [7].

https://github.com/m-schier/LFF-DS
https://github.com/m-schier/LFF-DS


Hügle et. al. also analyze graph neural networks (GNNs)
for the same problem. The performance of set- and graph-
based methods was found to be comparable on the high-
way scenario [8]. With the former methods using deep Q-
networks (DQNs), Hart and Knoll have suggested using
proximal policy optimization on graphs for this problem [6].
GNNs have also been proposed in the context of intersection
navigation to control longitudinal dynamics [22]. Klimke et
al. [10], [11] have applied GNNs to cooperative intersection
management and discovered that applying transformations to
specific features, such as the inverse, may improve perfor-
mance.

Another popular scene representation which is static but
may still encode a variable number of scene objects are
occupancy grids. 2D occupancy grids have been applied to
highway lane change decisions [25] and 1D path segment
grids to intersection navigation [12].

Various automotive simulation environments have been
used by previous work. The SUMO simulator [16] can sim-
ulate complicated urban traffic flow between various traffic
participants. Lateral vehicle control is limited to discrete
lane change actions. The highway-env [13] simulator allows
continuous control in a highway scenario with other traffic
participants. Works on autonomous racing [26], [9] have
used commercial video games with high graphics and vehicle
physics fidelity but no publicly accessible interfaces. TORCS
is a popular open-source 3D racing simulator [17], [20]
which can provide camera observations, though not photo-
realistic, or track curvature. CARLA [4] is a 3D urban
traffic simulator focusing on decision making based on low-
level sensor data. Finally, Trackmania is another commercial
simulator for which a public interface exists [19], but the
problem setting is purely virtual.

III. APPROACH

In this section, the problem formulation using a Markov
Decision Process is given and the concepts of learned Fourier
features and Deep Sets are introduced. Finally, our novel
architecture combining the advantages of the previous archi-
tectures is introduced.

A. Markov Decision Process

The problem of vehicle control is formulated as a Markov-
Decision Process. The agent must control the vehicle be-
havior in accordance with its partial observation of the
environment. At each discrete time step of the simulation,
the agent chooses an action based on the current observation
and receives a reward based on the environment state and
selected action. Such an MDP is commonly described by
the tuple (S,A, T , r, γ), where S is the state space, A the
action space, T : S × A → S the transition function,
r : S × A → R the reward function, and γ the discount
factor which reduces future rewards. An agent’s policy π
determines the probability of selecting an action given the
current states, π : S×A → {0, 1}. The expected total reward
G starting from some initial state is the decaying sum of
the reward of current time step and all future time steps

xdyn
(1)

z

xstatic

xdyn
(2)

xdyn
(n)

...

ϕ
FC FC

Σ [||]

LFF

ρ
FC FC

ϕ...

ϕ...

sin(·)πWx+πb

Fig. 2: Our proposed novel feature extractor combines Deep
Sets and learned Fourier features (LFF) enabling efficient
training on dynamic scene representations. A variable num-
ber of object observations x
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the shared item encoder ϕ. Critically, we propose a learned
Fourier feature as the first layer in the item encoder to reduce
spectral bias through learnable frequencies. The feature-
wise summation of all encoded items is transformed by the
multilayer perceptron ρ and concatenated with static features
xstatic. The output z is used by the policy- or Q-network.

t: G =
∑

t E[γ
tr(st, at)], where each at is chosen by π.

If selecting an arbitrary action a in the first time step this
reward is also called the Q-value Q(s, a) of action a from the
current state s. The objective of the agent is maximizing G,
which is accomplished by selecting the action with largest
Q-value. To determine the Q-value Q∗(s, a) following an
optimal policy for current state s, let us assume that the Q-
values Q∗(s′, a′) of the optimal policy for the next timestep
are known with s′ = T (s, a), a′ ∈ A. The optimal Q-value
for the current state s and some action a is then given by:

Q∗(s, a) = r(s, a) + γmaxa′∈A Q∗(s′, a′). (1)

In deep Q-Learning, a neural network Qθ is used to ap-
proximate the optimal policy Q∗, where θ are learnable
parameters. These are iteratively trained using the mean
squared Bellman error loss:

L = (r + γmaxa′∈A Qθ(s
′, a′)−Qθ(s, a))

2 (2)

which minimizes the difference between predicted Q-value
and the sum of immediate reward and discounted fu-
ture predicted reward. The best action according to the
learned policy πθ can then be determined for a state s by
argmaxa∈A Qθ(s, a).

B. Proposed Architecture

To extract features from a dynamic scene with a set
representation, Deep Sets [28] are commonly used. The Deep
Sets architecture allows permutation-invariant encoding of a
dynamically sized set of statically sized vectors. Deep Sets
uses a permutation-invariant pooling operation. In the context
of this work, we will use feature-wise summation. Given the
two neural networks ϕ : Ru → Rv and ρ : Rv → Rw, the



Environment Realistic setting View Pure Python Open source Physics quality Object perceptions Random tracks

TORCS [17] ✓ 3D ✗ ✓ + ✗ ✗
Trackmania (tmrl) [19] ✗ 3D ✗ ✗ o ✗ ✗
WRC6 [9] ✓ 3D ✗ ✗ ++ ✗ ✗
Car-Racing [2] ✓ 2D ✓ ✓ o ✗ ✓
highway-env (Racetrack) [13] ✓ 2D ✓ ✓ o ✓ ✗
Racecar Gym [3] ✓ 3D ✓ ✓ o ✗ ✗
Ours ✓ 2D ✓ ✓ o ✓ ✓

TABLE I: Qualitative comparison of our new driving environment with various road driving, racing, and rally environments
used in previous work. Our environment is fully open source and purely written in python code making it easy to integrate.
It provides object detections and offers a sufficient level of vehicle physics where the vehicle can skid, understeer, etc. For
training, any number of random road tracks can be generated.

forward pass of Deep Sets on a set X = {x1,x2, . . .}, xi ∈
Ru is then given as:

DS(X) = ρ

(∑
x∈X

ϕ(x)

)
. (3)

The networks ϕ and ρ have previously been commonly
implemented as multilayer perceptrons (MLP) [28], [7], [8].

Neural networks, especially the MLP architecture as used
in Deep Sets, are known to bias towards learning low
frequencies of a low dimensional input [24], [27], [14].
Therefore, learned Fourier features were proposed, which
transforms or lifts the input into a different harmonics basis.
This work uses the learned Fourier feature (LFF) definition
introduced by [27], which proposed using a learned Fourier
basis to improve performance on continuous control tasks
with statically sized input features. The LFF is a network
layer transforming an input vector x ∈ Rd into the output
domain Ro. Its forward pass is defined as:

LFF(x)j = sin

(
d∑

i=1

πWj,ixi + πbj

)
. (4)

The trainable parameters W ∈ Ro×d and b ∈ Ro are
initialized as follows:

Wj,i ∼ N (0, bcut/d), bj ∼ U(−1, 1) , (5)

where bcut is the tunable cutoff frequency.
We propose to integrate a learned Fourier features layer

as part of the item encoder ϕ(·) of the Deep Sets feature
extractor by substituting the first fully connected (FC) layer.
Thus, we extent the advantages of learned Fourier features
from statically sized observation spaces to dynamically sized
ones. Our proposed architecture is shown in Figure 2. This
modification allows the item encoder ϕ(·) to more accurately
estimate high frequency components of the scalar observation
features, e.g. small changes in distance compared to the
maximum range of distances. Such a hypothesis is well
founded as it is known that replacing the first FC layer of an
MLP with an LFF reduces this spectral bias [27], [14], [24].
The Deep Sets item encoder ϕ(·) must learn a transformation
that allows reconstructing the input distribution as accurately
as required for the problem from the feature-wise aggre-
gation. We postulate that the LFF helps the item encoder

to more accurately activate on ranges of the input space,
thus reducing cross-talk from different encoded items on the
same feature channels. Effectively, the encoding using an
LFF aids the Deep Sets architecture to learn a representation
comparable to a histogram of varying granularity. We will
analyze the learned representation later in the experiments.

IV. ENVIRONMENTS

We evaluate our proposed method on multiple RL envi-
ronments representing different automotive problems, which
are briefly presented in this section.

A. Highway Driving

The well established highway-env [13] environment has
been used in previous works as a simulator for highway
traffic. The objective is navigating a 4-lane highway through
traffic as quickly as possible, overtaking other vehicles. Static
input is xstatic = (x, y, vx, vy) with (x, y) as the cartesian
position of the ego vehicle and (vx, vy) the velocity vector
in the global coordinate frame. Dynamic features per other
vehicle are xdyn = (∆x,∆y,∆vx,∆vy) with (∆x,∆y) as
the relative position to the ego vehicle in the global frame
and (∆vx,∆vy) as the relative velocity vector to the ego
vehicle in the global frame. The reward r(s, a) is given by:

r(s, a) = −1fail + 0.4 · vx
vmax

(6)

with vx as the current velocity in forward direction of the
road, vmax the maximum speed, and 1fail indicating collision
with another vehicle or the road boundary.

B. Country Road Driving

We present a novel 2D top-down environment that sim-
ulates driving on a winding road with challenging surface
conditions. The environment features randomly generated
road tracks. Exemplary generated layouts are shown in
Figure 3. The road boundary can be perceived by the agent
only through a set of boundary markers, see Fig. 1B. The
objective of the agent is travelling a maximum distance along
the road within a specified time (in these experiments 60 s)
while not leaving the road area. A qualitative comparison
with existing environments is given in Table I. Our moti-
vation for implementing a new 2D environment is the lack
of easy-to-use environments with dynamically sized object
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Fig. 3: Our simulator environment can generate random road
tracks during training. Tracks are approximately 500m long.
Three examples are shown.

observations. In addition, our environment generates random
scenarios making the task more challenging and encouraging
the learning of generalizing behavior. The vehicle physics are
based on a dynamic bicycle model with a maximum traction
limit according to the circle of forces, thus the vehicle
may understeer, oversteer, and skid if excessively braking,
accelerating, and steering. As such the control task is more
complex than using a kinematic model. The environment is
purely written in Python and requires no external simulators.
It can thus be easily used and still achieves high frame
rates of 200-300 fps on a modern computer using a single
CPU core. The random track generation allows for good
generalization to arbitrary road layouts.

Static input is xstatic = (vx, vy, ω, β) with the ego
vehicle’s velocity vector (vx, vy) in vehicle reference frame,
steering angle β, and angular yaw velocity ω. Dynamic
observations are high-level detections of the boundary traffic
cones xdyn = (x, y,1left,1right), where (x, y) is the position
in the ego vehicle local reference frame and 1left and 1right

indicate that the traffic cone color matches that of the left-
side or right-side boundary cone, respectively.

The reward function is designed to punish collisions with
the track boundary objects (1collision) and leaving the track
with the center of mass (1fail), which also terminates the
episodes. Additionally, the agent receives positive reward
for the scalar projection of its velocity vector vego onto the
forward track direction ntrack to encourage fast driving:

r(s, a) = −1fail − 0.2 · 1collision + 0.01 · ntrack · vego. (7)

The coefficients of the reward terms were determined empir-
ically. Previous work on rally driving has included terms for
the distance to the road center line [9], [17]. We omit such
terms to keep prior knowledge minimal.

C. Parking

Additionally, we also present a new parallel parking prob-
lem in our environment. The ego vehicle starts in a random
pose in front of a parallel parking spot and must precisely
park backwards. The parking spot is marked by traffic cones
in our test, but these object perceptions can stand in for any
objects that might realistically define a parking spot, such
as points on an outline. Episodes are truncated after 15 s
unless a collision with the boundary happens, in which case
the episode terminates. The environment is perceived like
xdyn on Country Road. The ego state is xstatic = (vx, β)

perceiving longitudinal velocity vx and steering angle β. This
is sufficient as a kinematic model is used to simulate the
vehicle motion at the low speeds of parking.

The reward for this problem encourages quickly aligning
the vehicle with the target parking pose, which is positioned
in the center of the spot in direction of the road. Let (x, y, α)
be the pose of the vehicle and (u, v, κ) the target pose. The
reward r is given by:

r(s, a) = −1collision + c · rpose(s, a), with (8)

rpose(s, a) = max

(
0, 1− |x− u|

xmax

)
(9)

·max

(
0, 1− |y − v|

ymax

)
·max (0, cos(α− κ)) .

We empirically set c = 0.05, xmax = 40m, ymax =
5m. This objective jointly rewards all aspects of the pose
while also punishing collisions with the boundary through
1collision. Since a good pose is continuously rewarded, the
agent is encouraged to arrive quickly.

D. Actions

Action spaces on all environments are continuous. The
agent controls the steering angle on all environments, in our
environment steering rate is limited to 60 °/s, on Highway
any steering angle can immediately be applied. Longitudinal
motion on Highway and Parking is controlled through a
single continuous action in range [-1, 1] from maximum
deceleration to maximum acceleration. On Country Road
two continuous actions in range [0, 1] control the throttle
and brake independently. The agent interacts with all envi-
ronments at a rate of 10 s−1, which is considered to be a
good trade-off between performance and training efficiency
in challenging state-of-the-art applications [26].

V. EXPERIMENTS

In this section, we briefly describe the training setup
and evaluate the performance of LFF-DS in comparison
to regular Deep Sets and other popular representations.
We analyze the influence of different Fourier features, the
robustness to hyperparameter changes and we visualize the
finer apprehension of object positions through our suggested
architecture.

A. Experimental Setup

We use a Soft Actor-Critic (SAC) [5] agent for all ex-
periments, which is the selected architecture for most of
the state-of-the-art methods in continuous action automotive
RL [26], [21]. We train for 1 000 000 environment steps,
and carry out an equal amount of gradient steps. We set
the buffer size to 1 000 000, learning rate to 3 · 10−4, and
discount factor γ = 0.95. As suggested by previous work
[20] Ornstein-Uhlenbeck noise [15] is applied to the actions
on the Country Road task where the agent controls throttle
and brake independently as we have found it to improve
the training for all tested methods. The parameters of the
noise are set to µ = 0, σ = 0.2, θ = 0.15, ∆t = 0.1. Ten
agents are trained per environment and configuration. For



Highway Country Road Parking
Agent Reward ↑ CI95 Reward ↑ CI95 Reward ↑ CI95

CNN 40.74 [29.36, 42.82] 76.89 [38.66, 80.97] 1.84 [-0.82, 5.17]
Flat 12.32 [11.31, 13.37] 23.31 [16.16, 25.77] 5.45 [5.25, 5.68]
DS 46.91 [45.23, 48.61] 83.08 [81.88, 83.79] 5.83 [5.62, 6.09]
LFF-DS (ours) 46.62 [45.71, 48.50] 88.72 [85.62, 91.49] 6.46 [6.38, 6.53]

TABLE II: Interquartile mean of reward over ten training runs. Best results are highlighted in bold, second best are underlined.
Deep Sets based architectures (DS, LFF-DS) outperform CNNs and flat encodings. Our proposed learned Fourier features
item encoder (LFF-DS) further enhances performance significantly on the Country Road and Parking scenarios.
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Fig. 4: Interquartile mean of reward on all environments during training as well as 95% confidence intervals as shaded
region. Our proposed architecture LFF-DS achieves significantly higher reward during most points in training compared to
regular Deep Sets on Country Road and Parking. On highway, differences between both are present but not statistically
significant with p < 0.05. CNN and flat encoding perform significantly worse than LFF-DS at allmost all time steps.

evaluation, we report the interquartile mean (IQM) and esti-
mate confidence intervals (CI) using stratified bootstrapping
with 50 000 iterations according to best practice in the RL
community [1]. We compare the following methods:

• A regular Deep Sets feature extractor, serving as an
ablation baseline (DS)

• A CNN feature extractor operating on an occupancy
grid encoding of the set items (CNN)

• An MLP feature extractor operating on a flattened
version of the set items with a presence marker per
item (Flat)

• Our proposed architecture integrating an LFF with the
item encoder of a Deep Sets feature extractor (LFF-DS)

We evaluate all agents on three environments described in
Section IV. All features are normalized by division with the
maximum observable values. LFF-DS and DS share the same
architecture, with just the first layer being an FC instead of an
LFF layer, thus the number of parameters is equal. The exact
configurations of all architectures are provided in Table III.
For LFF-DS we set bcut = 30 on Country Road and bcut = 3
on Highway. For the CNN, we base the feature extractor for
Highway on previous work performing an architecture search
on three-lane highway lane change decisions [7]. On Country
Road, the standard CNN feature extractor for the ALE
benchmark is used [18], as the representation is comparable
in width and height. The Deep Sets and flat architectures
were determined using a random search with 20 tries. We
only carried out an architecture search on the Country Road
and Highway environment. On the Parking environment, we
use the same architecture and hyperparameters as on Country
Road. This is motivated by the same dynamic scene features
being used in both environments, thus an architecture that
generalizes well should also perform well on Parking.

Country Road and Parking

LFF-DS DS

ϕ : LFF(64),FC(32),FC(128) ϕ : FC(64),FC(32),FC(128)
ρ : FC(128),FC(128) ρ : FC(128),FC(128)

Flat CNN

FC(512) Conv2D(32, 8 × 8, 4 × 4)
FC(256) Conv2D(64, 4 × 4, 2 × 2)

Conv2D(64, 3 × 3, 1 × 1)
Flatten(),FC(256)

Highway

LFF-DS DS

ϕ : LFF(128),FC(64),FC(256) ϕ : FC(128),FC(64),FC(256)
ρ : FC(256),FC(256) ρ : FC(256),FC(256)

Flat CNN

FC(256) Conv2D(32, 1 × 7, 1 × 3)
FC(256) Conv2D(16, 1 × 7, 1 × 3)

Conv2D(16, 2 × 3, 1 × 2)
Flatten(),FC(256)

TABLE III: Overview of the network architectures. Learned
Fourier features (LFF) and fully connected layers (FC) with
respective output units. Conv2D with output units, kernel
size, and stride, all using zero padding. All layers but LFF
use ReLU activations.

B. Comparison with State-of-the-Art

We train all agents on the individual environments using
ten seeds. During training, we evaluate the performance at
time steps of 100 000. The results are shown in Table II.
In final performance, LFF-DS achieves a 5.64 points (6.8
%) higher reward on Country Road and 0.63 points (10.8%)
higher reward on Parking compared to the next best feature
extractor architecture, regular Deep Sets (DS). These results
are significant with p < 0.05. On Highway, LFF-DS and



DS achieve similarly good results with a reward of 46.62
and 46.91, respectively. We attribute similar performance
to the low number of objects in this scenario and the
lack of need for very accurate observations to solve this
problem. On Highway and Country Road, the performance
of the CNN and flat encoding is significantly lower than
both LFF-DS and DS confirming the advantage of Deep
Sets based feature encoders for dynamically sized scenes
found in previous work [7]. On Parking, our new LFF-DS
architecture is significantly better than all methods including
the flat encoding, which regular Deep Sets do not outperform
significantly. Interestingly, the CNN performs worse than flat
encoding on Parking, whereas it performs much better than
flat encoding on Highway and Country Road. We attribute
this to the sensitivity of CNNs on the grid size depending on
the problem, even if input representation remains unchanged,
and the sensitivity of the flat encoding to an advantageous
stable sorting order depending on the problem.

In the next experiment, we analyze the performance over
training time. The results are presented in Figure 4. Our
proposed LFF-DS architecture performs significantly better
than the compared architectures during most parts of the
training, with the exception of the Highway environment,
where performance is comparable to regular Deep Sets. On
the Country Road environment, our proposed architecture
outperforms the regular Deep Sets encoder and a flat en-
coding at all time steps and the CNN at all time steps after
200 000. These results are significant with p < 0.05. On
the Parking environment, our proposed architecture achieves
significantly higher reward than the compared methods at all
points in training but 900 000 steps. Our proposed method is
very sampling efficient, exceeding the best performance of
all other methods after only 200 000 steps on Parking.

On Country Road, the individual objectives of the reward
function, driving quickly and safe, are evaluated during train-
ing, see Figure 5. From 200 000 training steps onwards LFF-
DS exceeds all other tested architectures in both objectives.
LFF-DS has a significantly higher mean velocity than DS
during all steps of the training. Comparing failure rates - the
rate of leaving the road - shows that LFF-DS is much more
sampling efficient than DS for determining a safe policy,
failing less often at 200 000 and 400 000 steps than DS at
400 000 and 700 000 steps respectively. We present a video
of the final performance of all agents on Country Road1.

Furthermore, on Parking, we compare the accuracy of the
final vehicle pose between DS and our proposed feature
extractor, LFF-DS, in Table IV. As shown in previous
results (Table II), LFF-DS achieved a higher reward than
DS on this problem. The position error in both lateral and
longitudinal direction is significantly lower with 0.14m and
0.08m compared to 0.76m and 0.41m, in relative terms
82% better and 80% better. The improvement is significant
with p < 0.05. The heading error is insignificantly larger for
LFF-DS, while the reward, which combines the individual

1https://www.tnt.uni-hannover.de/en/staff/schier/
LFF-DS/CountryRoad.mp4
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Fig. 5: Interquartile mean of failure rate and mean vehicle
velocity over ten training runs on Country Road. Shaded
areas show 95% confidence interval. Our proposed agent
performs better by driving faster than the competitors, while
failing at less episodes through leaving the road.

Metric DS LFF-DS (ours)

∆x ↓ [m] 0.76 [0.56, 1.03] 0.14 [0.08, 0.20]
∆y ↓ [m] 0.41 [0.27, 0.71] 0.08 [0.06, 0.11]
∆ω ↓ [°] 3.81 [2.59, 4.97] 4.84 [3.34, 6.18]
rpose ↑ 0.875 [0.820,0.904] 0.972 [0.964,0.977]

TABLE IV: Quality of final vehicle pose on the Parking
problem using our proposed architecture and the baseline
Deep Sets feature extractor. 95% confidence interval reported
in brackets, significant improvements in bold. Our architec-
ture achieves a significantly lower longitudinal (∆x) and
lateral (∆y) position error as well as better final reward rpose.
Heading error ∆ω is not significantly larger.

objectives, is significantly better. Thus, using our new feature
extractor has improved the accuracy but also slightly shifted
the balancing of the individual terms of the multi-objective
optimization that is the compromise between longitudinal,
lateral, and heading error.

C. Analyses

Our proposed feature extractor introduces one additional
hyperparameter bcut compared to regular Deep Sets, which
governs the sensitivity to different parts of the spectrum of
each encoded item. In the first experiment, the influence and
robustness of the hyperparameter bcut are evaluated. We train
on the Country Road and Parking scenario using a wide
range of values in steps of roughly half powers of ten. The
results are shown in Figure 6. First, on both environments
values ranging from 1 to 30 all produce comparable results
to the best performing, which we consider a fairly broad

https://www.tnt.uni-hannover.de/en/staff/schier/LFF-DS/CountryRoad.mp4
https://www.tnt.uni-hannover.de/en/staff/schier/LFF-DS/CountryRoad.mp4


Highway Country Road Parking
Agent Reward ↑ CI95 Reward ↑ CI95 Reward ↑ CI95

DS 46.91 [45.23, 48.61] 83.08 [81.88, 83.79] 5.83 [5.62, 6.09]
Positional+DS 46.55 [46.20, 46.90] 88.03 [86.34, 89.65] 6.43 [6.14, 6.48]
SIREN+DS 10.49 [8.68, 11.53] 79.13 [77.42, 81.86] 6.19 [5.75, 6.30]
LFF-DS (ours) 46.62 [45.71, 48.50] 88.72 [85.62, 91.49] 6.46 [6.38, 6.53]

TABLE V: Analysis of different Fourier features integrated with Deep Sets extractors. Best results are highlighted in bold,
second best underlined. SIREN [23] item encoders combined with Deep Sets perform significantly worse than LFF-DS on
all tested problems. Static positional encodings [24] combined with Deep Sets perform mostly better than regular Deep Sets,
but worse than our proposed approach. We attribute this to the fixed axis alignment of positional encodings.
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Fig. 6: Influence of the bcut hyperparameter of the learned
Fourier features on the performance on Country Road and
Parking. The performance is stable regarding the choice of
bcut within a reasonable range. Furthermore, the performance
after 10% of steps is a good indicator for final performance,
which is useful for hyperparameter optimization.

range for stable training, especially considering that the grid
size for the CNN has a similar effect for spatial features
and its choice must be made carefully. In addition, the order
of performance achieved by choice of bcut after 10% of
steps is identical to the order at the end of training. This
is a useful observation, since it indicates that to carry out a
hyperparameter search on bcut it is sufficient to train for at
most 10% of the final desired steps.

Next, the choice of Fourier feature for the item encoder is
examined. Our proposed method is compared to two other
reasonable integrations of Fourier features into Deep Sets.
As alternatives, we implement a SIREN network [23] as the
item encoder and an architecture were the LFF layer of our
proposed method is replaced with a positional encoding [24].
For SIREN, the entire item encoder ϕ(·) is build from SIREN
layers matching the dimensions of LFF-DS, as the authors
suggest building entire networks out of SIREN layers. Re-
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Fig. 7: Activation of the item encoder ϕ(·) by object position
of left-side road boundary on the Country Road scenario.
Only first 20 features shown, color indicates index of feature
with largest activation, intensity magnitude. Vehicle refer-
ence frame shown by red arrow (forward) and green arrow
(left). Our proposed architecture learns a more local acti-
vation allowing more precise reasoning about the observed
input distribution after the feature-wise aggregation of all
objects in the Deep Sets architecture.

sults are given in Table V. LFF-DS performs significantly
better than SIREN+DS on all tested environments, with
SIREN+DS achieving especially low reward on Highway.
The positional encoding, which is not learnable, performs
slightly worse than LFF-DS on all environments. This could
be attributed to the positional encodings being strictly axis
aligned, whereas LFF-DS learns an affine combination of
input features. On Highway LFF-DS, DS and Positional+DS
perform nearly equally well.

Finally, our claim that the LFF-DS feature extractor allows
for a more fine-grained policy to be learned is examined. A
fine grid of objects in the vehicle reference frame is pro-
cessed using item encoders ϕ(·) from both LFF-DS and DS
trained on Country Road. At each encoded position, the index
and magnitude of the output feature with highest activation
are visualized, see Figure 7. Only the first 20 features are
shown for clarity and comprehensibility. Features on DS are
activated for much larger subspaces in the input space of
objects compared to LFF-DS. Thus, indeed the integration
of Fourier features makes activations more local on the
feature space and prevents undesired cross-talk between large
regions of the sensory range.



VI. CONCLUSIONS

In this work, we presented a novel model architecture for
reinforcement learning on dynamic scene representations in
the form of sets. By integrating Fourier features with Deep
Sets we proposed a feature extractor which can both process
a dynamically sized observation while maintaining locality of
observations, thus reducing feature cross-talk and improving
training convergence and performance. Our architecture sig-
nificantly improves the performance on common automotive
tasks. In the future, we want to apply our method to vehicles
with joints, such as trucks or cars with trailers. To further
improve performance, Fourier features could also be applied
to the static parts of the representations, which we omitted
here as it was previously suggested [27].
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