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We present supplemental material for our paper Com-
pensation Learning in Semantic Segmentation to disclose
more details about the method and experiments. In the first
section, we present detail of the implementation of our and
the referenced methods. The second section shows mathe-
matical details of the metrics used in our experiments. The
third section elaborates the process of noise induction used
in the main paper. Then, more fine-grained results of the
bias induced inference experiments are presented in section
four. Finally, the fifth and sixth section provide the full com-
pensation and confusion matrices, mentioned in the main

paper.

A. Experimental Setup

To simplify the reproduction process, we integrate our
method as well as the referenced methods into the well-
known framework MMSegmentation [3], if no suitable code
was available. MMSegmentation provides code for multiple
state-of-the-art semantic segmentation frameworks. Also
our baseline methods DeepLabv3+ and SegFormer are im-
plemented in MMSegmentation with different hyperparam-
eter settings for different datasets. Reference links to the
exact configurations for our baseline experiments can be
found in Tab. 1. The next section elaborates on how the
referenced methods and datasets used in the main paper are
integrated and configured.

The code for our method and some mentioned competi-
tors are maintained in a local github fork'. We want to note
that we endeavour to merge the code into the widely-used
public repository” in the future to enlarge the visibility.

A.1. Model Architectures

To compare our method, reference methods are evaluated
in the main paper. Except Hyperbolic Image Segmentation,
the methods s-model, c-model, and a Bayesian Neural Net-
work methods are integrated on top of the baseline frame-
works DeepLabv3+ and SegFormer. The following sections
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elaborates the implementation of all reference methods.

s-model and c-model

The methods s-model and c-model are referenced in the ro-
bust learning experiments in Sec. 4.4 in the main paper.
Both methods are introduced in [5] and implement a train-
able transition matrix into a neural network. The transition
matrix 7" encodes the global noise distribution and can be
used to estimate the clean probability P(Y = i|z) for class
i from a noisy probability prediction P(Y = i|x) of a pixel
x. For the pixel x and a set of classes C, this estimation can
be formulated as

Veel: p,=Tp, Tel0,1°%C 1)
with the additional condition
VieC: Y Ty=1 )

to conserve a probability distribution. During training, the
matrix 7" is optimized alongside the model parameters to
fit on the noisy labels, and during inference of unseen data,
Eq. (1) is removed from the framework to obtain the clean
probabilities p;.

To implement the simple s-model from [5], we transfer
Eq. (1) into the two-dimensional case by modeling T as
a convolutional layer with kernel size 1 (a.k.a. pointwise
CNN), and input/output-channels of C. This convolution
is applied to the final two-dimensional probability map of
the underlying baseline framework. To satisfy Eq. (2), the
weights of the convolutional layer (= T') are normalized us-
ing the softmax function (see Eq. 1 in the main paper) on
each column before convolving the two-dimensional prob-
ability map containing p, for all pixels x.

To implement the complex c-model from [5], we extend
s-model. In s-model, a shared transition matrix 7" is used
for all pixels in all images globally. Compared to the global
approach, c-model estimates the transition matrix individ-
ually for every pixel based on the high-level image fea-
tures. To implement this into the segmentation framework,
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Table 1. Model configurations references to reproduce the training in MMSegmentation. Note that learning rate decay as in [2] is applied.

‘ Dataset ‘ Training Crop-Size ‘ Steps ‘ Learning Rate ‘ Optimizer ‘ Reference Configuration File
& Cityscapes 512 x 1024 80000 1-1072 SGD deeplabv3plus_r50-d8_512x1024_80k_cityscapes.py
~§ KITTI-STEP 368 x 368 80000 1-1072 SGD deeplabv3plus_r50-d8_368x368_80k kittistep.py
& COCO-stuff10k 512 x 512 80000 1-1072 SGD deeplabv3plus_r50-d8_512x512_80k_coco-stuff10k.py
Q ADE20k 512 x 512 80000 1-1072 SGD deeplabv3plus_r50-d8_512x512_80k_ade20k.py
5 Cityscapes 1024 x 1024 160 000 6-107° Adam segformer_mit-b5_8x1_1024x1024_160k_cityscapes.py
£ | KITTI-STEP 368 x 368 160 000 6-107° Adam segformer_mit-b5_368x368_160k kittistep.py
Eo COCO-stuff10k 512 x 512 160 000 6-107° Adam segformer_mit-b5_512x512_160k_coco-stuff10k.py
“ ADE20k 512 x 512 160 000 6-107° Adam segformer_mit-b5_512x512_160k_ade20k.py

we employed an additional branch parallel to the segmen-
tation head similar to the implementation of our local un-
certainty branch. The branch contains two pointwise two-
dimensional convolutional layers. The first layer has input
channels depending on the dimensions of the high-level im-
age features and 32 output channels. This layer is used
to reduce the complexity to a tractable size. The second
layer has an input size of 32 and an output size of |C|?.
The |C|?-dimensional output for pixel z is reshaped to a
C x C matrix, normalized with softmax, and used as in-
dividual weight for the final convolution described above
for s-model. We want to note that the computational effort
for large-scale datasets with a large amount of classes like
ADE20k or COCO-stuff10k is not computable with cur-
rent state-of-the-art graphic cards and segmentation frame-
works. Therefore the experiments for c-model and the large-
scale datasets cannot be evaluated.

The code integration of s-model and c-model into MM-
Segmentation can be found here?.

Bayesian Neural Network

Mukhoti et al. [9] present a Bayesian Neural Net-
work (BNN) that implements Monte-Carlo Dropout into
DeepLabv3+ with a comparable backbone as used in our
experiment. Monte-Carlo Dropout consists of basically two
modifications of the baseline framework: Dropout layers
with high dropout probability d are applied to high-level
feature maps during training and during test time, the infer-
ence is repeated multiple times with active dropout layers
to generate sample predictions from a Bernoulli-distributed
weight distribution. The mean of the generated samples is
the most likely correct prediction and the variance can be
interpreted as the prediction uncertainty.

The implementation of a BNN into DeepLabv3+ is de-
scribed in [9] for the backbone Xception. To be compa-
rable, we implemented their approach into the ResNet50
backbone [6] used in the main paper using the same design
choices. Following the design choice of only modifying the
Middle Flow of Xception, we add dropout layers to the third
stage of the ResNet50. We add the dropout layers after each
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residual block as described in the Appendix of [9]. Further-
more, Mukhoti ef al. remove the Atrous Spatial Pyramid
Pooling (ASPP) modules from DeepLabv3+ to reduce the
complexity. Because ASPP modules increase the accuracy,
we do not remove them.

We optimized the dropout rate and noticed, that d = 0.5
leads to significant drop in the accuracy, while d = 0.25
conserves the accuracy and also predicts satisfying uncer-
tainty. Thus, we set d to 0.25 for all dropout layers. The
mean and variance during test time is obtained with 20 sam-
ples.

The code integration of the Bayesian ResNet into MM-
Segmentation can be found here*.

Hyperbolic Image Segmentation

The hyperbolic image segmentation framework (HIS) of
Atigh et al. [1] is used in Sec. 4.3 in the main paper to
compare uncertainty estimation of our and other methods
with respect to the label prediction correction task. The ap-
proach HIS? provides code for training and inference for the
datasets ADE20k and COCO-stuff10k. We trained the mod-
els for the datasets with original hyperparameters and cre-
ated normalized uncertainty maps for every image of both
datasets. We noticed that there are high-valued fragments
at the border of the uncertainty prediction, which distort the
subsequent normalization process. Thus, we set the uncer-
tainty of the 10 pixels closest to the border to zero, to allow
reasonable evaluation w.r.t. the prediction error correction
task. We do not evaluate HIS for Cityscapes and KITTI-
STEP, because optimized hyperparameters and evaluations
are not given in [1] and we want to avoid unfair compar-
isons.

A.2. Datasets

MMSegmentation provides a standard setting including
augmentations and data pre-processing methods. In the fol-
lowing, the configuration for the non-preconfigured dataset
KITTI-STEP is explained.
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KITTI-STEP

The KITTI-STEP [11] dataset shares the same classes and
domain as the dataset Cityscapes [4]. Augmentation and
pre-processing for Cityscapes is defined in cityscapes.py.
We use similar configurations than in Cityscapes, but we
changed crop size in the pre-processing to 368 x 368.
Images in KITTI-STEP are significantly smaller than in
Cityscapes. The configuration file in MMSegmentation can
be found in kittistep.py.

B. Metrics

We evaluate with the widely-used mloU metric [10],
which is also referenced as Semantic Quality [8, 11]. With
the set of pixels X, that are assigned to class ¢ and ground
truth labels YC annotated as ¢, the mloU metric is defined as

1X.NY,|
mloU = 3
|C|Z\X BaR ©

The mloU metric evaluates the assignment of class labels
and balances underrepresented classes. We also use the
class accuracy (Acc.) and aggregated accuracy (Acc,)

X NY|

X.NnY,
Acc, = —5 and Acc, = ZCELA‘
|Ye| Ycec |Yel

to verify segmentation results on pixel level.
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C. Noise Induction

We superficially describe the process of inducing syn-
thetic label noise during training in the main paper, Sec. 4.4.
This section elaborates this process in detail. The work of
Liu et al. [7] corrupts ground truth annotations for medi-
cal images by dilating or eroding the masks of specific in-
stances. We adapt this process for the multi-class datasets
used in this paper.

With the help of the confusion matrices of Cityscapes
and KITTI-STEP, we select some ambiguous class pairs
that are not underrepresented and are often located in neigh-
boured regions in images. Overall, we selected the class
pairs road-sidewalk, building-wall, and vegetation-terrain.

Before we train a method with noise induction, we ran-
domly sample a superior and inferior class for each class
pair and each image. In an exemplary configuration, road
could be superior in image A and sidewalk could be supe-
rior in image B. During the training process, the sampled
class selection is fixed.

Then, we introduce a hyperparameter n, which reflects
the noise level in the next step. We dilate regions of the su-
perior classes, by adding pixels of the inferior class that are
at most n pixels far away to a pixel of the superior class.
This pattern mimes the uncertainty during human annota-
tion.
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Figure 1. Mean difference of e, with dynamic k against k = |C].

Some examples with the RGB image, the original ground
truth, and the ground truth after noise induction are shown
in Fig. 2. The resulting label noise is close to human-like
noise patterns.

D. Top-% uncertain classes

We introduced the hyperparameter & in Sec. 3.3 and set it
to 5 to reduce the computational effort. Because additional
experiments showed that & has neglectable impact on Acc,,
we measure the absolute difference of e, with varying k
against a fixed kK = |C'|. Fig. 1 presents the mean absolute
difference |Ae, | over all pixels on Cityscapes. It shows that
small k£ has most impact on the variance of e, and additional
computation with large & leads to marginal benefits.

E. Noise Detection

In the main paper, we analyzed the ability of noise detec-
tion in Sec. 4.3. Therefore, the accuracy with respect to the
pixel area was reported in Fig. 4. The full plots are shown
in larger resolution in Fig. 3 to 6.

F. Bias Induced Inference

This section provides more fine-grained results for the
bias induced inference experiments presented in Sec. 4.5.
In the main paper, we present how the accuracy for spe-
cific classes can be boosted without loosing significant ac-
curacy over all classes. The Fig. 8a shows the accuracy of
all classes in the experiment for the dataset KITTI-STEP.
Most classes are not affected by the induction. The only ex-
ceptions are the classes motorcycle and bicycle, which are
closely related to the induced classes. Moreover, we re-
port the same experiment without induction for class rider.
Since person and rider are ambiguous, the accuracy of class
rider diminishes without induction.

We repeat the experiment for the similar dataset
Cityscapes and observe the same behaviour. The results are
presented in Fig. 8b.

G. Compensation Matrix

To complete the qualitative results presented in the
main paper (see Sec. 4.2, main paper) and to give more
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Figure 2. Synthetic ground truth degradation. Left image shows a training sample after random cropping. The center image contains
ground truth annotations. The degraded ground truth annotations after applying our synthetic noise reduction with n = 20 are shown in
the right image.

dataset specific insights with the learned compensation val-
ues in the compensation matrix B, this section presents
the complete learned compensation matrices for the seg-
mentation frameworks DeepLabv3+ and SegFormer trained
with the datasets Cityscapes, KITTI-STEP, ADE20K, and
COCOI10k-stuff. The compensation weights for the small-
scale datasets are presented in Tab. 2 and 3 (DeepLabv3+)
as well as in Tab. 4 and 5 (SegFormer). The compensation
weights for the large-scale datasets are reported in Fig. 9.
We recommend to inspect the figure details in the pdf ver-
sion instead of a printed version.

Additional interesting insights are that the matrices for
DeepLabv3+ approximately form symmetrical, which is
not happening for SegFormer. Moreover, the compensa-
tion weights for SegFormer have higher values, compared to
DeepLabv3+. This is an indicator for the higher impact of
compensation learning on transformer-based architectures.

H. Confusion Matrix

The compensation matrices of Sec. G can be compared
to the confusion matrices. The confusion matrices for
Cityscapes and KITTI-STEP generated on the validation
and training dataset are presented in Tab. 6 to 9. It is no-
table that the confusion matrices on the training data does
not behave like the confusion matrices on the unseen val-
idation data. For example, in the Cityscapes and KITTI-
STEP validation dataset, the class building interferes much
with the classes wall and fence. These correlations are not
equally represented in the training dataset. In practice, this
behaviour leads to the need of an additional labeled dataset
to obtain a suitable confusion matrix for unseen data during
inference. Compared to this, our compensation weights are
obtained during training without the need of additional data.



Table 2. Full compensation weight matrix B for DeepLabv3 trained on KITTI-STEP.

stuff thing
< 5 3
Bij ~ § g m :§c §0 g '§ § N =~ = ; %
I I N T - U~ e A - 2 I < - < - T - - - I I
N > 8 = & 1Y & & = X = , g S & 3 & s <
0 0 -0.1 -0.2 0 -0.1 -0.3 -1.1 0 -0.2 0 -0.6 -0.1 -0.1 0 -0.1
-0.4 -0.1 -0.1 -0.2 0 0 -0.4 -0.8 0 -0.2 0 -0.3 0 0 0 0 -0.2
building 0 0.4 0 01 | 03 | 08 | -01 | -02 - 0.1 | 05 | 06 0 04 | -0.1 0 -0.1 0 -0.2
wall 0 0 -0.1 0 -0.2 0 0 0 -0.1 0 0 0 0 0 0 0 0 0 0
fenc e -0.1 -0.1 -0.2 -0.2 0 -0.1 0 0 -0.7 -0.3 0 0 0 0 0 0 -0.1 0 0
[70[6 -0.1 -0.2 -0.8 0 -0.1 0 -0.1 -0.2 -1.1 -0.2 -0.3 0 0 -0.1 0 0 0 0 -0.1
1r aﬁ‘ic llghl 0 0 0 0 0 -0.1 0 0 -0.1 0 0 0 0 0 0 0 0 0 0
traﬁ‘ic szgn 0 0 -0.2 0 0 -0.2 0 0 -0.4 0 0 0 0 0 0 0 0 0 0
vegetation -0.3 -0.5 -0.2 -0.8 -1.2 -0.2 -0.5 0 - -1.2 -0.2 -0.1 -0.5 -0.1 -0.1 0 0 -0.1
terrain -1.1 -0.7 0 0 -0.3 -0.2 0 0 -1.2 0 0 0 0 -0.1 0 0 0 0 0
sky 0 0 -0.4 0 0 -0.3 0 -0.1 -1.1 0 0 0 0 0 0 -0.1 0 0 0
person -0.1 -0.2 -0.5 0 0 0 0 0 -0.1 0 0 0 -0.2 -0.1 0 0 0 0 -0.2
rider 0 0 0 0 0 0 0 0 0 0 0 -0.1 0 0 0 0 0 0 -0.1
car -0.6 -0.3 -0.4 0 0 -0.1 0 0 -0.4 -0.1 0 -0.1 0 0 -0.2 -0.4 0 0 0
truck 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.1 0 -0.7 0 0 0
bus 0 0 0 0 0 0 0 0 0 0 -0.1 0 0 -0.3 -0.7 0 0 0 -0.1
train 0 0 0 0 -0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
motorcycle 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
bicycle 0 -0.2 -0.1 0 0 0 0 0 0 0 0 -0.2 -0.1 0 0 -0.1 0 0 0
Error Detection Rate Cityscapes Error Detection Rate KITTI-STEP
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Figure 3. Noise detection experiment on Cityscapes extending Figure 4. Noise detection experiment on KITTI-STEP extending
Fig. 4 in the main paper. Fig. 4 in the main paper.



Table 3. Full compensation weight matrix B for DeepLabv3 trained on Cityscapes.

stuff thing
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-0.1 -0.1 -0.1 -0.1 0 0 -0.2 -0.6 0 -0.3 0 -1.0 -0.1 -0.1 0 -0.1
-0.8 -0.3 -0.3 -0.5 0 0 -0.4 -1.1 0 -0.4 0 -0.4 0 0 0 0 -0.2
building 0.1 | -08 0 09 | -09 - 04 | 08 - 02 | 08 | 09 [ 01 | -09 | -03 | -02 | -02 | -0.1 | -03
wall 0 03 | 08 0 0.6 | -0.1 0 0 05 | 01 0 0.1 0 0.1 0 0 0 0 0
fence 0 02 | 07 | -0.6 0 0.3 0 0 06 | -02 0 0.1 0 0.1 0 0 0 0 -0.1
[70[6 0 -0.4 - -0.1 -0.3 0 -0.2 -0.3 - -0.2 -0.2 -0.2 0 -0.3 0 0 0 0 -0.2

1re aﬁ‘ic li gl’ll 0 0 -0.3 0 0 -0.2 0 0 -0.2 0 0 0 0 0 0 0 0 0 0
traﬁ‘ic szgn 0 0 -0.7 0 0 -0.3 -0.1 0 -0.3 0 0 0 0 0 0 0 0 0 0
vegetation -0.1 -0.5 -0.6 -0.7 - -0.3 -0.4 0 -1.1 -0.8 -0.4 -0.1 -0.7 -0.1 -0.1 0 0 -0.1
terrain -0.4 -1.0 -0.1 -0.1 -0.2 -0.2 0 0 -1.0 0 0 0 0 -0.1 0 0 0 0 -0.1
sky 0 0 -0.7 0 0 -0.2 0 0 -0.8 0 0 0 0 0 0 0 0 0 0
person -0.2 -0.4 -0.8 -0.1 -0.1 -0.2 0 0 -0.3 0 0 0 -0.4 -0.3 0 0 0 -0.1 -0.2
rider 0 0 0 0 0 0 0 0 0 0 0 -0.3 0 0 0 0 0 -0.1 -0.3
car -0.9 -0.4 -0.8 -0.1 -0.1 -0.3 0 -0.1 -0.6 -0.1 0 -0.4 -0.1 0 -0.3 -0.2 -0.1 -0.1 -0.2
truck 0 [ -0.2 0 0 0 0 0 0 0 0 0 0 -0.3 0 -0.1 0 0 0
bus 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.1 -0.1 0 -0.1 0 0
train 0 0 -0.1 0 0 0 0 0 0 0 0 0 0 0 0 -0.1 0 0 0
motorcycle 0 0 0 0 0 0 0 0 0 0 0 0 -0.1 -0.1 0 0 0 0 -0.1
bicycle 0 02 | -02 0 0.1 | -02 0 0 0.1 0 0 02 | 03 | -02 0 0 0 -0.1 0
Error Detection Rate ADE20k Error Detection Rate COCO
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Figure 5. Noise detection experiment on ADE20k extending Fig. 4 Figure 6. Noise detection experiment on COCO extending Fig. 4

in the main paper. in the main paper.



Figure 7. Samples of our uncertainty estimation with DeepLabv3+.
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Figure 8. Induction experiments on Cityscapes and KITTI-STEP providing information about all class accuracy metrics to complete Fig. 6
in the main paper. Additionally, the figure presents the metrics, if only one class is induced during inference.



Table 4. Full compensation weight matrix B for SegFormer trained on KITTI-STEP.

stuff thing
g 3
Bi; § g £l s| 8| s g o S
g | = | 8 2|8 | & | 5| & 2 s|E |2 ] %8 E| 3| 8| & | =8
road 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
sidewalk 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
bulldll’lg 0 0 0 -1.1 0 =33 0 0 0 0 0 0 0 0 0 - 22 0
wall 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
fe nce 0 0 0 -0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
pole 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1r aﬁ‘ic llght 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
tr aﬁ‘ic szgn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
vegetation 0 0 0 ----- 0 - 0 0 0 0 0 0 0 -0.6 0
terrain 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sky 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
person 0 0 0 0 0 0 0 0 0 0 0 0 -2.0 0 0 0 0 0 0
rider 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
car 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
truck 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1.6 0 0 0
bus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -3.4 0 0 0 0
train 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
motorcycle 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
biCyC le 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0
Table 5. Full compensation weight matrix B for SegFormer trained on Cityscapes.
stuff thing
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Bij § £ 25| §8|s S g
g | 3| 8 2|8 | & | 8| & 2 ST T N A E| 8| 8| & | =&
road 0 - 0 0 0 0 0 0 0 -1.0 0 0 0 0 0 0 0 0 0
sidewalk 0 0 0 0 0 0 0 0 0 -0.2 0 0 0 0 0 0 0 0 0
butldmg 0 0 0 -33 ---- 0 0 0 - 0 0 -2.0 2.2 -2.9 =33 0
wall 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
fence 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
pole 0 0 0 0 0 0 -2.6 0 0 0 0 0 0 0 0 0 0 0 0
traffic light 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
traﬁ‘ic sign 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
vegetation 0 0 0 ---- -2.5 0 -- 0 0 0 0 0 0 0 0
terrain 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sky 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
person 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
rider 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
car 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.5 0 0 -0.4 0
truck 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
bus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
train 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
motorcyc le 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
bicycle 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 -1.7 0
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(a) COCO-stuff10k with DeepLabv3+. (b) ADE20k with DeepLabv3+.
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(c) COCO-stuff10k with SegFormer. (d) ADE20k with SegFormer.

Figure 9. Complete compensation weight matrices B for the large-scale datasets ADE20k and COCO-stuftf10k for our baseline methods
SegFormer and DeepLabv3+. We recommend to view the plots digital in the PDF version and zooming in to discover details such as class
names and value ranges.



Table 6. Confusion Matrix on the training set of Cityscapes after training with DeepLabv3+.

stuff thing
N 2
% |2 sls| 8] s S K
N > 8 = & 1Y iy & = X P Q.. g S & 3 & s <
road 0.0 00 | 00 | 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 00 | 00 | 00 0.0
sidewalk 0.1 0.2 0.0 0.0 03 0.6 0.0 02 0.0 02 0.0 0.0 0.0 0.0 0.1
building 0.0 0.0 0.3 0.0 0.0 12 0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
wall 0.1 20 | 04 0.0 0.0 23 03 0.0 02 0.0 02 0.0 00 | 00 | 00 0.0
fence 02 - 0.7 0.0 0.0 2.7 04 0.0 03 0.0 03 0.0 00 | 00 | 00 03
pole 02 1.0 8.6 02 0.4 0.6 05 5.0 03 038 03 0.0 05 0.0 00 | 00 | 00 03
traffic light | 0.0 0.0 7.0 0.0 0.0 33 03 42 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
traffic sign | 0.1 0.0 53 00 | 02 12 0.2 23 0.0 0.4 0.0 0.0 02 0.0 00 | 00 | 00 0.0
vegetation | 0.0 0.0 14 00 | 01 03 0.0 0.0 02 03 0.0 0.0 0.0 0.0 00 | 00 | 00 0.0
terrain 12 33 03 02 03 03 0.0 0.0 3.8 0.0 0.0 0.1
sky 0.0 0.0 05 00 | 00 | o1 0.0 0.0 13 0.0 0.0 0.0
person 0.7 0.7 24 00 | 02 03 0.0 0.0 0.6 0.0 0.0 0.0 03
rider 05 03 1.6 00 | 01 0.2 0.0 0.0 0.8 0.0 0.0 15 45
car 05 0.0 05 00 | 00 | 00 0.0 0.0 03 0.0 0.0 0.0 0.0
truck 02 0.0 1.1 00 | 00 | o1 0.0 0.0 0.4 0.0 0.0 0.0 0.0
bus 02 0.0 0.7 00 | 00 | 02 0.0 0.0 05 0.0 0.0 0.0 0.0
train 0.1 0.0 1.1 00 | 00 | 02 0.0 0.0 03 0.0 0.0 0.0 0.0
motorcycle | 04 0.6 17 00 | o1 0.4 0.0 0.0 0.6 0.1 0.0 15
bicycle 05 11 2.1 00 | 05 1.0 0.0 0.0 038 02 0.0 1.0 1.6 1.0 0.0 00 | 00 | 06
Table 7. Confusion Matrix on the validation set of Cityscapes after training with DeepLabv3+.
stuff thing
- g 2
% 3|8 £ ls |8 s < | 2
g | 3| 8 2|8 | & | 8| & 2 ST T N A E| 8| 8| & | =&
road 0.0 00 | 00 | 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 02 0.0 00 | 00 | 00 0.0
sidewalk 0.2 0.4 0.0 0.0 0.4 0.5 0.0 03 0.0 03 0.0 0.0 0.0 0.0 0.2
building 0.0 0.0 0.5 0.0 0.1 1.7 0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
wall 02 45 0.7 0.0 0.0 5.1 1.1 0.0 0.6 0.0 05 0.0 00 | 00 | 00 03
fence 05 - 13 0.0 0.4 34 0.4 0.0 05 0.0 05 03 00 | 00 | o1 038
pole 02 12 8.9 0.1 0.7 0.6 05 52 03 05 0.4 0.0 0.6 0.0 00 | 00 | 00 0.4
traffic light | 0.0 0.0 6.2 0.0 0.0 33 0.2 55 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
traffic sign | 03 0.1 54 | 00 | 09 1.6 02 2.7 0.0 0.1 02 0.0 02 0.1 00 | 00 | 00 0.2
vegetation | 0.0 0.1 15 00 | 01 0.4 0.0 0.0 0.4 03 0.0 0.0 0.0 0.0 00 | 00 | 00 0.0
terrain 11 80 | 05 05 0.6 05 0.0 00 | 134 0.0 0.0 0.0 03 0.0 00 | 00 | 00 02
sky 0.0 0.0 0.6 00 | 00 | 00 0.0 0.0 1.0 0.0 0.0 0.0
person 05 0.6 2.8 00 | 01 0.6 0.0 0.0 0.7 0.0 0.0 0.0 0.7
rider 03 03 1.6 00 | 00 | 02 0.0 0.0 1.2 0.0 0.0 0.8 5.6
car 0.4 0.0 05 00 | 00 | 01 0.0 0.0 03 0.0 0.0 0.0 0.1
truck 03 0.1 2.7 00 | 00 | 02 0.0 0.0 0.9 0.0 03 0.0 0.0
bus 03 0.0 13 00 | 04 | 02 0.0 0.0 13 0.0 0.0 0.0 0.0
train 03 0.0 43 00 | 02 0.7 0.1 02 23 0.0 0.1 0.0 0.0
motorcycle | 03 1.0 2.1 0.0 12 0.9 0.0 0.0 0.6 0.0 0.0 35 2.8 17 0.0 00 | 04 53
bicycle 0.4 0.8 22 00 | 05 0.8 0.0 0.0 1.0 02 0.0 15 23 09 0.0 00 | 00 | 05




Table 8. Confusion Matrix on the training set of KITTI-STEP after training with DeepLabv3+.

stuff thing
N 2
% S £ = = "§ = 2 § <
N > 8 = & 1Y iy & = X P Q.. BN S & 3 & s <
road 0.0 0.0 0.0 0.1 0.0 0.0 0.0 05 0.0 0.0 0.0 02 0.0 0.0 0.0 0.0 0.0
sidewalk 0.0 0.7 0.0 0.0 0.4 05 0.0 02 0.0 02 0.0 0.0 0.0 0.0 0.2
building 0.0 0.0 0.6 0.0 0.0 1.0 0.0 0.2 0.2 0.0 0.1 0.0 0.0 0.0 0.0 0.0
wall 0.1 0.6 1.0 0.0 0.0 1.8 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 02
fence 03 - 0.6 0.0 0.0 1.9 0.6 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0
pole 1.8 24 8.0 0.1 0.7 038 09 | 123 | 12 23 02 0.0 09 02 0.0 0.1 0.0 02
traffic light | 0.0 0.0 1.0 0.0 0.0 42 03 77 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
traffic sign | 09 0.1 1.8 0.0 0.0 15 0.0 49 0.1 0.4 0.0 0.0 02 0.1 0.0 0.0 0.0 0.0
vegetation 0.0 0.1 0.6 0.0 0.1 0.6 0.0 03 03 03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
terrain 14 0.7 0.0 0.0 0.4 0.6 0.0 0.0 2.4 0.0 0.0 0.0
sky 0.0 0.0 02 0.0 0.0 03 0.0 0.0 13 0.0 0.0 0.0
person 1.7 2.0 32 02 0.0 03 0.0 0.0 0.7 0.0 0.0 0.0 0.7
rider 12 09 12 0.0 0.0 L5 0.0 0.0 1.7 0.0 0.0 0.0 62
car 09 03 03 0.0 0.0 0.2 0.0 0.0 0.4 0.1 0.0 0.0 0.0
truck 0.4 03 03 0.0 0.0 03 0.0 0.0 0.7 0.0 0.1 0.0 02
bus 0.4 0.0 02 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.6 0.0 05
train 0.0 0.0 13 0.0 12 0.8 0.1 0.1 0.1 0.0 0.0 0.0 0.0
motorcycle | 05 15 19 0.0 0.0 0.8 0.0 0.0 1.9 0.0 0.0 0.7
bicycle 0.7 3.1 13 0.1 0.0 0.6 0.0 0.0 0.7 0.1 0.0 0.6 0.8 0.0 0.0 0.1 0.0 0.0
Table 9. Confusion Matrix on the validation set of KITTI-STEP after training with DeepLabv3+.
stuff thing
< g 3
% 3|8 £ ls |8 s < | 2
g | 3| 8 2|8 | & | 8| & 2 ST T N A E| 8| 8| & | =&
road 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.8 0.0 0.0 0.0 02 0.0 0.0 0.0 0.0 0.0
sidewalk 0.0 0.2 0.8 0.0 0.0 1.0 5.1 0.0 0.2 0.0 03 0.0 0.0 0.0 0.0 0.0
building 0.0 0.6 2.1 0.7 0.0 0.0 34 0.0 13 0.2 0.0 0.2 0.2 0.0 0.0 0.0 0.1
wall 02 51 | 237 | 357 | 173 | 19 0.0 00 | 145 | 06 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0
fence 17 9.5 79 06 | 365 | 23 0.0 0.1 | 266 | 128 | 00 02 0.0 13 0.1 0.0 0.0 0.0 02
pole 2.1 26 6.0 0.0 03 | 580 | 07 07 | 204 | 28 52 03 0.0 0.4 0.0 0.0 0.0 0.0 03
traffic light | 0.0 0.0 2.9 0.0 0.0 54 - 32 146 | 00 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
traffic sign | 24 02 7.0 0.0 0.0 62 1.6 125 | 12 32 038 0.0 0.7 0.1 0.0 0.0 0.0 0.0
vegetation 0.0 0.0 0.6 0.0 0.1 0.7 0.0 0.0 1.0 05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
terrain 2.1 1.7 0.0 0.0 0.4 1.1 0.0 0.0 5.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0
sky 0.0 0.0 0.7 0.0 0.0 0.7 0.0 0.0 22 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
person 23 3.8 72 0.0 0.0 0.8 0.0 0.0 23 0.4 0.0 1.1 0.8 0.0 0.0 0.0 0.0 22
rider 09 2.0 4.8 0.0 0.0 0.9 0.0 0.0 34 0.0 00 | 277 | 472 | 14 0.0 0.0 0.0 00 | 116
car 1.1 04 1.0 0.0 0.0 0.2 0.0 0.0 0.7 0.1 0.0 0.0 0.0 1.0 03 0.0 0.0 0.0
truck 1.0 06 | 123 | 00 0.0 0.7 0.0 2.7 9.6 03 02 0.0 00 | 378 | 333 | 12 0.0 0.0 0.0
bus 14 01 | 202 | 00 0.0 15 02 03 55 0.0 0.0 03 00 | 200 | 81 | 298 | 124 | 00 0.0
train 02 1.9 - 0.0 0.4 0.8 0.0 15 0.4 0.0 0.0 0.0 0.0 05 | 242 | 7.1 11 0.0 0.0
motorcycle | 0.0 6.1 32 0.0 0.0 1.9 0.0 0.0 0.0 0.0 0.0 59 24 02 0.0 0.0 0.0 7.8
bicycle 13 46 46 0.0 0.0 0.7 0.0 0.0 2.8 03 0.0 23 11 13 02 0.0 0.0 0.1
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