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Abstract—Cochlear Implants (CIs) are surgically implanted
hearing devices that allow to restore a sense of hearing in people
suffering from moderate to profound hearing loss. Modern CIs
offer wireless streaming of audio to the signal processor of the
CI to improve speech understanding in complex acoustic environ-
ments. To conserve energy in this wireless streaming, proprietary
source coding of the stimulation patterns of CIs was proposed,
achieving state-of-the-art results with respect to bitrate, latency
and intelligibility of the coded stimulation patterns. This work
investigates vector-quantized feedback recurrent autoencoders
(VQ FRAE) to improve source coding of the stimulation patterns
of CIs. The VQ FRAE is optimized with respect to the non-
differentiable STOI using simultaneous perturbation stochastic
approximation. With this approach, a state-of-the-art bitrate of
4.69 kbit/s was achieved, while maintaining zero latency and little
to no degredation of intelligibility. The FRAE outperforms audio
codecs like Opus with respect to bitrate, intelligibility and latency.

I. INTRODUCTION

Cochlear implants (CIs) are surgically implanted hearing-
aids capable of restoring a sense of hearing in people suffering
from moderate to profound hearing loss. While good speech
understanding is achieved in high speech-to-background noise
environments, more challenging environments as encountered
in social situations still pose a problem [1]. Wireless streaming
of audio as required for, e.g., beamformers, remote micro-
phones [2] or binaural sound coding strategies [3] is among the
techniques applied to improve speech understanding in these
challenging environments. To save power or bandwidth in this
wireless transmission, signal compression is commonly applied
to reduce the bitrate of the audio signal before transmission.
This coding usually introduces an additional delay and should
be kept as small as possible, as speech perception of hearing
aid users can be affected by delays above the range of 5− 10
ms [4]. Due to this delay constraint, the selection of source
coding algorithms is severly limited. For this purpose, we
proposed [5], [6], [7], [8] to code and transmit the electrical
stimulation patterns generated by the sound coding strategy of
the CI. The signal flow of this approach is depicted in Fig. 1.
Initially, we proposed the Electrocodec [5], [6], a combination
of differential pulse-code modulation (DPCM) and arithmetic
coding to code the current magnitudes and the band-selection
of the electrical stimulation patterns generated by the advanced

combinational encoder sound coding strategy. To further re-
duce the required bitrate while maintaining zero latency, we
investigated vector-quantized autoencoders (VQ AEC), whose
hyperparameters were optimized using bayesian optimization
[8]. We were able to optimize the AEC with respect to the
short-time objective intelligibility measure (STOI) [9] used to
assess the intelligibility of stimulation patterns. That way, we
were able to reduce the bitrate by almost 50 % compared to the
Electrocodec. However, the proposed AEC optimization is sub-
optimal due to not making use of time-dependencies present
in the stimulation patterns, and the structure consisting of
AEC and VQ was not optimized together. Recently, feedback
recurrent autoencoders (FRAEs) have been proposed [10], [11]
for the compression of sequential data. FRAEs feed previous,
decoded frames back to the input layers of the encoder and
decoder, to allow to make use of redundancies between frames.
The number of frames fed back to the input layers is called
recurrent dimension. We use FRAEs alongside VQ of the latent
space to compress the stimulation patterns of CIs at zero delay,
and compare them to regular autoencoders without recurrency
(AEC). To optimize the overall structure including the VQ,
we use simultaneous perturbation stochastic approximation, a
numerical technique for the approximation of gradients [12],
that way achieving considerable compression gains. The result
is an automatic approach for the development of near-optimal
delay-free compressors for the stimulation patterns of CIs.
Finally, we introduce a regularization scheme of the vocoder
STOI scores used during training, to achieve a compression
performance less variant across signal-to-noise ratios (SNRs).

ACEAudio Autoencoder
(Encoder)

Autoencoder
(Decoder)

Wireless
Transmission

Audio Codec
(Encoder)

Investigated

Baseline

Audio Codec
(Decoder) ACEWireless

Transmission

Fig. 1: Two methods to wireless transmission of audio for CIs.
Conventionally, the input audio would be encoded by an audio
codec, transmitted to the signal processor of the CIs, where the
audio is subsequently decoded. In the investigated approach,
the audio signal is first processed by the sound coding strategy
of the CI, in our case the advanced combinational encoder
(ACE), then compressed and decompressed before and after
transmission by an autoencoder and a vector quantizer (VQ).
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Fig. 2: The hyperparameters ci are used to construct an
autoencoder (AE) which is subsequently trained using gradient
descent and simultaneous perturbation stochastic approxima-
tion (SPSA). Then, the stimulation pattern x(n) of a single
speech signal is compressed and decompressed, reconstructed
using a vocoder, yielding the waveform ŷ(n) and compared
to the reference, noise-free audio waveform ref(n) by STOI.
The resulting speech intelligibility score d is then returned to
SMAC to assess the quality of the hyperparameters ci.

II. FUNDAMENTALS

A. Advanced Combination Encoder

The advanced combinational encoder (ACE) sound coding
strategy is a common sound coding strategy for CIs [3]. The
input audio signal of the CI is split into M subbands by a dis-
crete fourier transform. For each subband i ∈ {1, 2, . . . ,M},
the envelope ai(n) ≥ 0 is extracted resulting in the set
ENV := {a1(n), . . . , aM (n)}, where n is discrete time or
the frame number. Then the band-selection is performed, and
N < M subbands ai(n) with the largest envelopes are se-
lected, resulting in the set A := {ai1(n), . . . , aiN (n)} ⊂ ENV.
For future reference we define the set of selected bands Sel :=
{i1, . . . , iN} and its complement Selc = {1, . . . ,M} \ Sel
whose dependency of n was left out for clarity. Then, the
loudness growth function (LGF), which maps from the acoustic
to the electric domain, is applied to each a ∈ A. This results
in the signal p

n
:= (LGF (a1(n)), . . . , LGF (aM (n)))T . The

input signal of all investigated models is p
n

. All CI parameters,
whose description can be found in [8], were set to default
values. The channel stimulation rate, which is the frequency at
which the p

n
are generated, was set to 900 pulses per second.

B. Datasets

To create realistic noisy speech signals, the TIMIT speech
corpus [13] was processed using behind-the-ear head related
transfer functions (HRTF) from [14]. These HRTFs allow to
simulate speech in noise scenarios, where the azimuth of
each source can be independently varied with respect to its
incident azimuth in the range of ±90◦ in steps of 5◦. An
azimuth of −90◦ corresponds to a source located to the left,
+90◦ correspond to a source located to the right, and 0◦

correspond to the front of the listener. Source distance was

TABLE I: Speech and noise azimuths, signal-to-noise ratios
(SNRs), noise types and acoustic scenarios considered in this
work. A:B:C denotes the set {A,A+B,A+2B, . . . , C}. BFR
is restaurant noise, CCITT is speech-shaped noise.

Label Speech Azi. [◦] Noise Azi. [◦] SNR [dB] Noise Scenario
Train -90:15:90 -90:15:90 -5:5:20 30 50 BFR, Bus, CCITT, Office Anechoic, Office
Test -90:5:90 -90:5:90 -2.5:2.5:10 20 40 BFR, Bus, CCITT, Office Anechoic, Office, Cafeteria

TABLE II: Mean VSTOI scores V STOI of the investigated
feedback recurrent autoencoders (FRAE) and non-recurrent
autoencoders (AEC) on the train set without quantization.
∆VSTOI as defined in Section II-G. The reference mean
VSTOI score was 0.6643.

FRAE V STOI ∆VSTOI AEC V STOI ∆VSTOI

FRAE-L5-H2-R1 0.67329 0.00895 AEC-L3-H2 0.66260 -0.00174
FRAE-L5-H2-R2 0.67762 0.01328 AEC-L3-H3 0.64235 -0.02199
FRAE-L5-H2-R3 0.66925 0.00491 AEC-L4-H2 0.67106 0.00672
FRAE-L5-H2-R4 0.68955 0.02522 AEC-L4-H3 0.66440 0.00006
FRAE-L5-H3-R1 0.68511 0.02077 AEC-L5-H2 0.67952 0.01518
FRAE-L5-H3-R2 0.68688 0.02254 AEC-L5-H3 0.68001 0.01567
FRAE-L5-H3-R3 0.67851 0.01417
FRAE-L5-H3-R4 0.68546 0.02112

80 cm. Each speech recording of the training and test data
of TIMIT was processed using random signal-to-noise ratios
(SNRs), speech and noise azimuths, acoustic environments
and noise type from a list of values given in Tab. I. As
noise, we used Comité Consultatif International Téléphonique
et Télégraphique (CCITT) [15] noise, bus noise, office noise
and restaurant noise. CCITT noise is speech-shaped noise often
used in clinical research. The HRTF-processed speech files
were then processed by ACE to generate the corresponding
stimulation patterns used by the autoencoders.

C. Loss Function and Pre- and Postprocessing

Due to the N of M band-selection performed by ACE, the
distortion of the stimulation patterns is split into two parts: the
distortion of the subband envelopes and the distortion of the
band-selection. This was taken into account through a weighted
mean-square loss Lα defined as

Lα :=
1

M
((1− α)

∑
i∈Sel

(pi − p̂i)
2

︸ ︷︷ ︸
Envelopes

+α
∑

i∈Selc

σ(p̂i))︸ ︷︷ ︸
Band−Selection

, (1)

where pi is the target value in subband i, p̂i is the reconstructed
value in subband i, M and Sel are as given in II-A. α ∈
(0, 1) is a weighting factor optimized with SMAC. σ(x) is the
rectified linear unit, whose usage was motivated by the pre-
and postprocessing applied. In the pre-processing, any subband
not selected at time n was set to a negative value to distinguish
it from the output range of the LGF, i.e. we have pi(n) < 0
if subband i is not selected. Therefore, a subband i at time
n after reconstruction is considered not selected in the post-
processing, if p̂i(n) < 0. If pi(n) < 0, no distortion occurs.

TABLE III: Mean VSTOI scores of the best performing models
on the test set before and after optimizing the autoencoders
including the quantizers using SPSA. VSTOI scores surpassing
the mean reference VSTOI scores are highlighted using bold
font. The mean reference VSTOI score was 0.6343.

Model\Codebook Size [bit] 6 7 8 10
Before After Before After Before After Before After

AEC-L5-H2 0.5776 0.6336 0.6051 0.6395
AEC-L5-H3 0.5627 0.6191 0.5941 0.6349
FRAE-L5-H3-R2 0.5770 0.6244 0.5914 0.6394 0.5988 0.6372 0.6190 0.6517
FRAE-L5-H2-R4 0.5363 0.6221 0.5797 0.6241 0.6126 0.6465
FRAE-L5-H3-R4 0.6087 0.6486 0.6227 0.6536 0.6255 0.6527 0.6394 0.6555
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Fig. 3: VSTOI scores across bitrate of the best performing
FRAE and AEC models using fixed length codes on the train
set before optimizing the models including the quantizers with
the SPSA.

However, for p̂i(n) ≥ 0 the subband is incorrectly selected
and a distortion value needs to be assigned.

D. Short-Time Objective Intelligibility Measure

We use the well known STOI [9] to objectively assess the
intelligibility of stimulation patterns generated by ACE. For its
application, the stimulation patterns are resynthesized using a
sine vocoder, and the resulting waveform is then compared to
the original, clean reference audio input signal. The resulting
intelligibility score d ∈ [0, 1] is called vocoder STOI (VSTOI)
score [6], with d = 1 denoting the best possible intelligibility,
i.e. no difference to the reference, and d = 0 denoting the worst
possible intelligibility. Even minor VSTOI score differences,
starting at about 0.01, can represent a measurable difference
in intelligibility [6].

E. Numerical Approximation of Gradients

For the optimization of the AEs including the quantizers
with respect to STOI, which, like the quantizers, is nondiffer-
entiable, simultaneous perturbation stochastic approximation
(SPSA) [12], [16] was used. The update equation of the SPSA
for all parameters ω of the AEs and the quantizers is

ωk+1 = ωk + ak
(y+k+1 − y−k+1)

ck
∆k, (2)

where y±k+1 = f(ωk ± ck∆k), ∆k ∈ {−1, 1}N a vector of
iid noise, ak, ck > 0 with ak, ck → 0. N is the total number

TABLE IV: Bitrates in kbit/s of the best performing models
on the test set after optimizing the autoencoders including the
quantizers using the SPSA and huffman coding.

Model \Bit 6 7 8 10

FRAE-L5-H3-R2 4.80 kbit/s 5.56 kbit/s 6.37 kbit/s 7.96 kbit/s

FRAE-L5-H2-R4 4.73 kbit/s 6.33 kbit/s 7.96 kbit/s

FRAE-L5-H3-R4 4.69 kbit/s 5.54 kbit/s 6.49 kbit/s 8.11 kbit/s

AEC-L5-H2 6.16 kbit/s 7.82 kbit/s

AEC-L5-H3 6.44 kbit/s 8.12 kbit/s
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Fig. 4: Comparison of the best performing autoencoders with
the Electrocodec, Opus and the G.722 audio codec on the test
set. Results after optimizing the entire model including the
quantizer with the SPSA are denoted by KWQ. For Opus, the
algorithmic latency is specified as an index in milliseconds.

of parameters. In our work, we used ak = a
(A+k+1)γ with

a = 1 and γ = 0.602 as well as ck = c
(k+1)β

with β = 0.101.
f(ω) returns the VSTOI score achieved using the AE with
the weights ω. The parameters A and c were obtained through
hyperparameter optimization.

F. Hyperparameter Optimization of the DAE

The hyperparameters of the autoencoders and SPSA were
optimized using Bayesian optimization, implemented through
sequential model-based algorithm configuration (SMAC) [17].
The steps involved in the hyperparameter optimization are
depicted in Fig. 2. The hyperparameters ci tested by SMAC
were used to construct the autoencoder, which was then trained
with the adam solver on a single stimulation pattern for 500
epochs using the loss function according to Eq. 1, yielding
approximately optimal weights. Then, 100 epochs of SPSA
training was performed. The VSTOI score achieved on the
stimulation pattern was then returned to SMAC.

G. Regularization

Both, FRAE and AEC, improved the VSTOI scores at low
SNRs, while showing lower performance at high SNRs. The
cause likely is denoising learned during training. To achieve
a more balanced compression performance across SNRs, we
propose a novel regularization scheme. Let V STOICoded be
the VSTOI score assigned to a given decoded signal of an
AE, and V STOIRef be the VSTOI score of the reference
stimulation patterns, i.e., the stimulation patterns without any
coding applied, then we define ∆V STOI := V STOICoded−
V STOIRef . To decrease the nominal benefit of improving
V STOICoded beyond V STOIRef , we introduce the modified
VSTOI score V STOILCoded,mod defined as

V STOILCoded,mod :=

{
V STOIRef + 1

L tanh(L ·∆V STOI), A

V STOICoded, otherwise
(3)

with L > 1 and the condition A := V STOICoded ≥
V STOIref . The tanh function allows to smoothly transition
from the linear to the nonlinear section, yielding a maximum
∆V STOI score of 1

L .



III. EXPERIMENTS AND RESULTS

First, the hyperparameters of several FRAE and AEC
configurations were optimized as described in II-F. Then,
all FRAE and AEC models were optimized, without vector
quantization, for 7000 iterations with respect to their average
VSTOI scores on the train set using the SPSA. Afterwards, the
codebooks of the VQ were trained using kmeans and the latent
vectors generated by the models on the train set. Codebook
sizes between 3 bit to 15 bit were investigated. Then, the best
performing models, now together with the quantizers, were
optimized for another 7000 iterations using the SPSA and the
model performance on the test set was evaluated for selected
bitrates, now using huffman coding to minimize the bitrate.
Table II shows the mean VSTOI scores across the train set
of all configurations investigated, where, e.g., FRAE-L5-H3-
R2 denotes the FRAE with a latent dimension of five, three
hidden layers of the encoder and a recurrent dimension of two.
More hidden layers and a higher recurrency dimension tended
to yield better results. Fig. 3 depicts the mean VSTOI scores
across bitrate for the best performing models on the train set,
before optimizing the models including the VQ by the SPSA.
The FRAE-L5-H3-R4 outperformed all other models, despite
performing less favorably before quantization, surpassing the
reference mean VSTOI scores at 9 kbit/s. Mean VSTOI scores
on the test set before and after optimizing the entire structure
including the quantizers using the SPSA are given in Table
III. Corresponding bitrates, achieved using huffman coding,
are summarized in Table IV. A considerable improvement of
up to about 0.09 in mean VSTOI score was achieved through
optimization of the AEs plus quantizers. The FRAE-L5-H3-
R4, achieving a mean VSTOI score of 0.6486 on the test set,
surpassed the mean reference VSTOI score of 0.6343 at 4.69
kbit/s. Fig. 4 shows box plots of the VSTOI scores achieved
on the test set for the best performing FRAE, using 6 bit VQ,
and AEC, using 8 bit VQ, before and after optimizing the
entire structure including the quantizers. Additionally, VSTOI
scores are depicted for the Electrocodec with 2 bit and 3 bit
per subband, labeled EC2 and EC3, respectively, Opus, and
the G.722. Opus was used with an algorithmic latency of
5 ms and 7.5 ms. The FRAE-L5-H3-R4, after optimization
including the VQ, considerably outperformed all tested audio
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Fig. 5: Comparison of the best performing autoencoders with
several audio codec on the subset of the test set with an SNR
of ≤ 5 dB. Results after optimizing the entire model including
the quantizer with the SPSA are denoted by KWQ.

codecs with respect to VSTOI scores and bitrate. Fig. 4 reveals
a minor decrease of performance for high VSTOI scores,
which correspond to higher SNRs. In contrast, Fig. 5, which
depicts the same evaluation for the subset of the test set
with an SNR of ≤ 5 dB, reveals a considerable improvement
of the VSTOI scores by the FRAE-L5-H3-R4 KWQ at low
SNRs. However, a minor bitrate increase of about 1 kbit/s
was observed for the AEs, caused by an increased information
content of the stimulation patterns. Fig. 6 shows the impact
of the regularization according to Eq. 3 on the ∆V STOI
scores of the FRAE-L5-H2-R4, here without quantization. Due
to regularization, extreme values occur less frequently and
performance increases at high SNRs at the cost of performance
at low SNRs. Regularizing for further epochs or from the
beginning can yield further improvements.

IV. DISCUSSION

The most important result of this work is a method to
automatically train near-optimal zero-delay compressors of the
stimulation patterns of cochlear implants. While we tested the
approach using ACE only, it should be applicable out of the
box for any sound coding strategy used in cochlear implants.
Larger recurrent dimensions can likely boost the performance
further. The achieved bitrates are in the ballpark of Meta’s
EnCodec [18], however, our approach of coding the stimulation
patterns using the FRAE achieves zero latency at lower com-
plexity, unlike 13+ ms for the EnCodec. The results [18], which
are based on regular audio signals, suggest possible further
gains based on stimulation patterns, which should contain less
information than regular audio signals. The SPSA proved to
be highly useful yet again, allowing to consistently improve
the coding performance of the nondifferentiable autoencoder
+ quantizer structure, and might be a viable alternative to
other common techniques [19], [20] to train nondifferentiable
algorithms.

V. CONCLUSION

This work investigates vector-quantized feedback recurrent
autoencoders (VQ FRAE) for the compression of the stim-
ulation patterns of cochlear implants. The nondifferentiable
VQ FRAE was optimized with respect to an objective intel-
ligibility measure using simultaneous perturbation stochastic
approximation. Considerable coding gains were achieved by
optimizing the entire structure, achieving undegraded intel-
ligibility of the stimulation patterns at 4.69 kbit/s and zero
latency, outperforming state-of-the-art codecs. A proposed
regularization schemes allows to achieve a more balanced
coding performance.
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Fig. 6: ∆V STOI scores, without quantization, of the FRAE-
L5-H2-R4 across SNRs (a) without and (b) with regulation.
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[11] A. Goliński, R. Pourreza, Y. Yang, G. Sautière, and T. Cohen, “Feedback
recurrent autoencoder for video compression,” in Asian Conference on
Computer Vision, 2020.

[12] J. Spall, “Implementation of the simultaneous perturbation algorithm
for stochastic optimization,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 34, no. 3, pp. 817–823, 1998.

[13] V. Zue, S. Seneff, and J. Glass, “Speech database
development at mit: Timit and beyond,” Speech Communication,
vol. 9, no. 4, pp. 351–356, 1990. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/0167639390900107

[14] H. Kayser, S. Ewert, J. Anemüller, T. Rohdenburg, V. Hohmann, and
B. Kollmeier, “Database of multichannel in-ear and behind-the-ear
head-related and binaural room impulse responses,” EURASIP Journal
on Advances in Signal Processing, vol. 2009, p. 6, 12 2009.

[15] International Telecommuncation Union, “ITU Recommendation
G.227,” 1993, last access 10.09.2019. [Online]. Available:
https://www.itu.int/rec/T-REC-G.227-198811-I/en

[16] H. Chen, T. Duncan, and B. Pasik-Duncan, “A kiefer-wolfowitz algo-
rithm with randomized differences,” IEEE Transactions on Automatic
Control, vol. 44, no. 3, pp. 442–453, 1999.

[17] M. Lindauer, K. Eggensperger, M. Feurer, A. Biedenkapp, D. Deng,
C. Benjamins, T. Ruhkopf, R. Sass, and F. Hutter, “Smac3: A versatile
bayesian optimization package for hyperparameter optimization,”
Journal of Machine Learning Research, vol. 23, no. 54, pp. 1–9, 2022.
[Online]. Available: http://jmlr.org/papers/v23/21-0888.html
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