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Abstract 

Background: Shotgun metagenome analysis provides a robust and verifiable method for comprehensive microbi‑
ome analysis of fungal, viral, archaeal and bacterial taxonomy, particularly with regard to visualization of read mapping 
location, normalization options, growth dynamics and functional gene repertoires. Current read classification tools 
use non‑standard output formats, or do not fully show information on mapping location. As reference datasets are 
not perfect, portrayal of mapping information is critical for judging results effectively.

Results: Our alignment‑based pipeline, Wochenende, incorporates flexible quality control, trimming, mapping, vari‑
ous filters and normalization. Results are completely transparent and filters can be adjusted by the user. We observe 
stringent filtering of mismatches and use of mapping quality sharply reduces the number of false positives. Further 
modules allow genomic visualization and the calculation of growth rates, as well as integration and subsequent plot‑
ting of pipeline results as heatmaps or heat trees. Our novel normalization approach additionally allows calculation of 
absolute abundance profiles by comparison with reads assigned to the human host genome.

Conclusion: Wochenende has the ability to find and filter alignments to all kingdoms of life using both short and 
long reads, and requires only good quality reference genomes. Wochenende automatically combines multiple avail‑
able modules ranging from quality control and normalization to taxonomic visualization. Wochenende is available at 
https:// github. com/ MHH‑ RCUG/ nf_ woche nende.
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Background
In whole genome shotgun sequencing (WGS) experi-
ments, the entire DNA of a microbiome is sequenced 
with either no or few amplification steps. WGS 

microbial metagenomics is taxonomically agnostic, 
being potentially able to identify fungi, archaea, eubac-
teria and DNA viruses [1]. In contrast to bacterial 
16S rRNA amplicon sequencing, untargeted shotgun 
sequencing has the principal advantage of avoiding 
many PCR-generated amplification biases and skews 
in microbial abundance estimations introduced by 
divergent gene copy numbers [2, 3].

Taxonomic or gene profiling of a metagenome can 
be accomplished by either assembling the reads into 
longer contiguous sequences, or by mapping the primary 
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sequence reads onto reference sequences deposited in 
the databases. While the assembly approach can poten-
tially identify as yet undescribed genes or taxa, this 
comes at the expense of the loss of the quantitative aspect 
of read data [4]. The alternative approach, alignment of 
raw sequence reads onto an internal reference sequence, 
retains quantitative information about the composi-
tion of a microbiome and requires far less coverage, but 
will only identify known taxa which are part of the ref-
erence database [1]. Consequently, de novo assemblies 
are more appropriate for less studied environments with 
unknown microbes, whereas raw read alignment strate-
gies are more suitable for well-studied habitats. Thanks 
to the current interest of the scientific community in the 
human holobiome, virtually all relevant bacterial spe-
cies and many DNA viruses residing in human habitats 
are meanwhile represented by reference genomes, there-
fore raw read alignment strategies for medical microbial 
metagenomics have become feasible. The availability of 
quality genomes from unicellular eukaryotes, however, is 
still sparse.

Most current analyses rely on generation of relative 
abundance profiles after read assignment. These pro-
files are common, intuitive and useful, yet share many 
well documented statistical disadvantages which render 
many downstream analyses impossible [5]. Furthermore, 
relative abundance profiles are not comparable between 
timepoints given large changes in bacterial biomass. 
Also, the proportion of unmapped reads is an important 
but frequently ignored variable, leading to higher rela-
tive abundance estimates of well-characterized taxa [6]. 
Given these problems, we set out to develop an approach 
towards calculating absolute abundance profiles by intro-
ducing the human host variable into the normalization, 
which is essential in clinical habitats.

Leveraging the presence of many complete micro-
bial genomes of medical interest deposited in sequence 
databases, we implemented a user-friendly automated 
metagenome pipeline for the needs of the clinical micro-
biology or public health laboratory. This pipeline is based 
on the alignment of short or long reads onto multiple 
in-house databases of quality-checked and masked pub-
licly available genomes. These efforts reduce the effects 
of contaminants, especially in reference genomes, which 
remain a problem for many metagenome experiments. 
Our pipeline, Wochenende, identifies human commen-
sals and pathogens from all kingdoms with long and 
short reads with high sensitivity and specificity, needs 
only minutes to a few hours from initial read processing 
to the final report and provides the user with multiple 
normalization techniques and configurable and trans-
parent filtering steps. As a key advantage, the pipeline 
retains results from all steps and provides a high degree 

of transparency. Further modules allow genomic and 
metagenomic visualization to assess the presence of a 
given taxon. Wochenende is available at https:// github. 
com/ MHH- RCUG/ nf_ woche nende.

Methods
Program code
The Wochenende pipeline was mainly written in Python3, 
with helper scripts using the Bash scripting language and 
configuration in a yaml file. Once set up correctly, the full 
pipeline can be run with one command, with all subse-
quent post-processing (counts and normalization, visual-
ization, accessory tools and growth rate analysis) via one 
more command. The code is highly modular so new tools 
can easily be added by users. Full source code is available 
on GitHub (https:// github. com/ MHH- RCUG/ nf_ woche 
nende) where support and feature requests can be made 
and bug reports submitted. Code linting was performed 
using the tool black (https:// github. com/ psf/ black). The 
pipeline has been extensively tested in production on 
Ubuntu Linux 16.04 and 20.04 over multiple years. Auto-
mated tests of the main Python3 program are available 
using Pytest.

We implemented a portable Nextflow version of 
Wochenende. A guide for installation, running and inter-
preting the pipeline and its results is available from GitHub 
(https:// github. com/ MHH- RCUG/ nf_ woche nende).

Tools
The following excellent tools are used extensively by the 
Wochenende pipeline (Table 1).

Table 1 Bioinformatics tools in the Wochenende pipeline

Function Tool Reference

Tool packaging Bioconda [7]

Quality control FastQC [8]

MultiQC [9]

Prinseq [10]

Trimming Fastp [9, 11]

Trimmomatic [12]

Alignment BWA‑mem [13]

ngmlr [14]

minimap2 [15]

Format conversion/filtering Samtools [16]

Sambamba [17]

Bamtools [18]

Realignment Abra2 [19]

Plotting Python Matplotlib 3.2.1 [20]

Data munging Python pandas 1.1.1 [21]

Taxonomic visualization Metacoder [22]

https://github.com/MHH-RCUG/nf_wochenende
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Reference sequence databases
Building, testing and rebuilding databases from tens 
of thousands of genomic sequences is a non-trivial 
procedure. All of the following steps were guided by 
practicing microbiologists and physicians and imple-
mented by bioinformaticians following testing. Refer-
ence databases are critical for the scope and accuracy of 
metagenomic programs and are therefore being contin-
uously improved. We provide a step-by-step guide for 
building reference sequences at the GitHub repository 
(https:// github. com/ MHH- RCUG/ nf_ woche nende/ 
wiki/ Build ing-a- refer ence- seque nce).

Bacterial reference genomes were obtained from 
the NCBI RefSeq [23] and Nucleotide databases. Only 
genomes annotated as “complete” and “finished” were 
considered to avoid draft or contaminant contigs which 
hindered earlier efforts. Furthermore, species with 
uncertain taxonomy (denoted “sp” or only restricted to 
Family level, or labeled as “Candidatus”) were removed. 
Incorrectly named taxa were also removed after nucle-
otide comparisons (see FastANI below).

Selected clinically relevant fungal reference genomes 
were included from the NCBI Genome and Ref-
Seq databases after stringent quality checks, because 
these eukaryotes are frequently overlooked by some 
metagenomic tools which focus on bacteria only. A 
restricted number of clinically relevant and commonly 
occurring viruses were chosen by hand following advice 
from practicing microbiologists and physicians. Lastly, 
as we have mainly assessed clinical or human associ-
ated samples to date, the main autosomes, mitochon-
dria and sex chromosomes from the human genome 
build GRCh38 were included to screen out human host 
read “contamination”.

Contaminating sequences, such as Illumina or Nanop-
ore adapters in sequenced genomes, were found to occur 
across all tested kingdoms. We therefore devised a sim-
ple exhaustive mapping and masking procedure, called 
Blacklister (https:// github. com/ colin daven/ black lister), 
to align known contaminant sequences to all selected 
reference genomes and blacklist those bases as Ns using 
Bowtie2 [24] and Bedtools [25]. Bowtie2 was used 
because of its ability to sensitively align to multiple refer-
ence sequences using the –all mode.

Recall of reads from all reference genomes were then 
assessed (to assess masking due to falsely named or very 
highly related species) using simulated reads generated 
from the genomes themselves by the program InsilicoSeq 
[26], using a profile for Illumina Novaseq 2 × 150  bp 
reads. These reads were then cut down to 75 bp single-
end reads mimicking our most widely used read length 
configuration. 75  bp is generally sufficient for a unique 
alignment to a bacterial genome (which is why kmer 

based tools such as kraken function), even when allowing 
for the standard 2 bp mismatches.

Another approach currently being explored is to use 
the tool fastANI [27] to find duplicate or near duplicate 
falsely-labeled genomes, since these would then mask 
reads from one another (exclude reads) if using the rec-
ommended mapping quality 30 (MQ30) filter. In other 
words, these reads would be considered to be non-
uniquely aligned by the MQ30 filter and removed from 
further analysis, so not counted. However, a key advan-
tage of the Wochenende pipeline (Fig. 1) is that all results 
from each step are retained, so the user can precisely 
inspect which stage affected the read counts reported. 
This transparency allows insight into the workings of the 
various parameters. As a result, this tool and the trans-
parent workings of the pipeline allowed us to exclude two 
newly sequenced E. coli genomes, which were mislabeled 
as Pseudomonas aeruginosa in 2020. These genomes 
completely masked the P. aeruginosa genomes and there-
fore caused no reads to be attributed in our mock com-
munities. We reported this to NCBI and names were 
subsequently corrected.

Normalization
During the reporting step, sequencing reads are normal-
ized to the microbial genome length and million reads in 
the experiment. In more detail, reads are normalized to 
the idealized length of a bacterial chromosome (normali-
zation to 1 million base pairs). Then they are normalized 
by the total reads in the sequencing library (normaliza-
tion to 1 million reads). The above two normalizations 
are then combined (RPMM, so Reads Per Million reads 
per Million base pairs). These normalizations are relative, 
that is, they are appropriate for comparison within the 
experiment, but not as appropriate for between experi-
ment comparisons.

A further calibrated and thus absolute abundance nor-
malization exists, which we call bacterial cells per human 
cell (Bphc). This is currently only applicable for metage-
nomes from human hosts as bacterial reads are normal-
ized to human reads, but could be extended for other 
diploid mammalian hosts [28]. An estimate of absolute 
abundance is given by

Bphc = (i * j) / h = RPMM(bacterium) / RPMM(human 
host).

i = Diploid human genome in Megabases (6139).
j = Reads per million reference bases of the bacterium.
h = Sum of reads assigned to all human chromosomes 

bar mitochondria.
Calculating Bphc estimates the microbial load in a 

given metagenomic sample by comparing microbial 
abundances of all microbes detected to the amount of 
human host cells. In other words, by calculating the 

https://github.com/MHH-RCUG/nf_wochenende/wiki/Building-a-reference-sequence
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Fig. 1 Schematic of the flow of information through the Wochenende pipeline. Multiple optional and configurable filter steps are implemented. 
Long and short reads can be handled using different alignment tools. Normalization, data integration and visualization are key components of the 
workflow. Plotting of genome coverage is conducted for all genomes. Rare genomes can be detected mathematically using the additional tool 
raspir. Lastly, an implementation of an existing algorithm allows bacterial growth rates to be predicted
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quotient of RPMM values of the respective microorgan-
isms and the RPMM value of the human host one obtains 
a manageable and descriptive parameter to describe 
the composition of a given metagenome sample. It is 
an alternative approach in metagenomics compared to 
measuring CFU/ml of various clinical specimens in rou-
tine microbiology. Although the content of host DNA is 
dependent on the mode of sampling and library prepa-
ration as well as any enzymatic removal of (human) host 
DNA, the calculation of Bphc can provide information on 
progression of disease or therapy of a patient in a repro-
ducible setting [28].

Mock communities
We made extensive use of the Zymo mock community 
sequenced with short read data by Sui et  al. [29]. The 
Zymo mock community is composed of eight bacteria 
with a theoretical composition of each 12% based on 
genomic DNA (Pseudomonas aeruginosa, Salmonella 
enterica, Escherichia coli, Lactobacillus fermentum, Ente-
rococcus faecalis, Staphylococcus aureus, Listeria mono-
cytogenes and Bacillus subtilis) and two yeasts, which 
each contribute 2% (Saccharomyces cerevisiae and Cryp-
tococcus neoformans). We also downloaded and analyzed 
a long-read dataset of the same Zymo mock community 
sequenced by Nick Lomans’ lab using Oxford nanop-
ore technology (ENA ERR3152364,GridION, Zymo CS 
Even lot ZRC190633, https:// loman lab. github. io/ mockc 
ommun ity/). Other tools in the comparison were, to 
our knowledge, not able to analyze long reads, so were 
excluded.

Comparison with other tools
Microbial community comparisons were performed to 
provide evidence for Wochenende’s performance versus 
several other commonly used metagenome analysis tools. 
We have found KrakenUniq to be the most accurate 
metagenomics binning tool available from the Kraken 
family, far surpassing Kraken and Kraken2 [30]. We thus 
compared Wochenende with the established tools Krak-
enUniq, Kaiju [31], MetaPhlAn3 [32] and Centrifuge [33]. 
Only single-ended reads were used so as to not disadvan-
tage some tools which cannot use the more highly spe-
cific paired-end reads. Kaiju only generated genus level 
taxonomic attributions so could not be further compared 
to the other tools with species-level resolution. Scripts 
and the corresponding parameters used to run these 
tools are available from the GitHub repository (https:// 
github. com/ colin daven/ woche nende_ manus cript). 
Default parameters were used where possible to maintain 
a fair comparison.

Data integration and visualization
Microbial community comparisons were performed after 
compilation of results with our integration tool Haybaler 
(https:// github. com/ MHH- RCUG/ hayba ler). The Python 
library Pandas v1.1.1 was used to collate results into one 
file, so as to easily compare each result type across all 
samples. Subsequently data were prepared and heatmaps 
created using an automated R script, also part of the 
Haybaler code. This script uses both the base R heatmap 
function or the heatmaply [34] R library. Heat trees were 
created using the R package metacoder [22], which was 
also implemented in our tool Haybaler.

Results
The Wochenende pipeline
Our alignment based pipeline includes flexible quality 
control, trimming, mapping, read filtering and normali-
zation. Figure  1 outlines the overall flow of information 
through the Wochenende pipeline including all modu-
lar steps and tools. Further modules allow visualization 
of read distributions across the genome, as well as data 
integration and plotting of pipeline results. The pipeline 
is simple to run, robust and highly automated as a step-
by-step for installation and running is provided. A global 
JSON config file contains all relevant setup, options and 
paths to reference genomes. Optional stages can be trig-
gered using a command line parameter, and the Python 
and Bash programming languages used make customi-
zation relatively tractable. Our normalization approach 
allows calculation of absolute abundance profiles by lev-
eraging reads assigned to the host genome. Sequencing 
reads are normalized to the microbial genome length and 
million reads in the experiment. Wochenende has the 
ability to find and filter alignments to all kingdoms of life, 
using both short and long reads, and requires only good 
quality reference genomes. Our integration module Hay-
baler then compiles the various samples into comprehen-
sive tables per normalization statistic. Lastly, heatmaps 
and heat trees are produced from the calculated abun-
dance information. These analyses enable a rapid quality 
control and first pass summary of the data.

Removing alignment artifacts
All alignment tools suffer from false positive assignments, 
even after applying mapping quality and maximum read 
to genome mismatch filters [35]. Wochenende inte-
grates two approaches to judge the presence or absence 
of potentially detected taxa. The first is the automated 
generation of genomic coverage plots for each taxa, so 
users can manually verify the distribution of read evi-
dence used for taxon detection. An even and high aver-
age read coverage across the genome indicates the taxon 

https://lomanlab.github.io/mockcommunity/
https://lomanlab.github.io/mockcommunity/
https://github.com/colindaven/wochenende_manuscript
https://github.com/colindaven/wochenende_manuscript
https://github.com/MHH-RCUG/haybaler
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is likely to be present. Scattered peaks indicate false posi-
tive assignments due to close phylogenetic relationship to 
a highly abundant species, poor genome quality (see our 
tool blacklister below), genomic masking issues, sequenc-
ing data leakage due to taxa in the samples not being 
present in the reference metagenome, or sequencing and 
alignment artifacts. The second approach is the integra-
tion of the rare species identifier raspir, detailed below.

Detection of rare species and inferral of bacterial growth
Wochenende has been in continual development for 
a long period and multiple pipeline modules have been 
implemented. For example, short reads contain relatively 
little taxonomic information and can be mismapped eas-
ily even when using a mapping quality filter, especially 
among highly related species where one is present at very 
high abundance in the metagenome. This leads to the 
detection of closely related species groups. The program 
raspir [36] is a mathematical approach to discern rare but 
present species from false positives using Fourier trans-
forms and spectral comparisons. In essence, the observed 
read distributions across the genomes are compared to 
ideal theoretical distributions, with resultant correlation 
and p-values used to assess the presence of a genome. 
Raspir has now been integrated into Wochenende.

A number of the authors are also microbiologists who 
are interested not only in the presence and absence of 
microbes, but in their growth rates. A seminal work 
estimating growth rates was previously published by the 
Segal lab [37], yet their work is not easily available to 
clinicians in widely used metagenomics pipelines. This 
method uses the pattern of mapped read distributions 
of metagenomic reads to bacterial genomes. The peak to 
trough ratio of reads is then calculated. A large difference 
between the normalized number of reads at a peak (near 
the ori) and trough (near the terminus) is interpreted as 
rapid bacterial growth, as a large number of DNA strands 
are present due to rapid replication. No growth inferred 
where peak and trough are similar in read coverage, 
as only one genome is present in the microbial cell. We 
implemented this method in Python3 and integrated it 
into the Wochenende pipeline.

Genome quality control with Blacklister
During analysis of many datasets, we noticed strange 
peaks of reads accumulating in restricted genomic loci of 
some bacteria. On closer investigation, these peaks were 
Illumina reads mapped to contaminant Illumina adapt-
ers present in the corresponding genomes. We found an 
unverified version of Achromobacter xylosoxidans (Gen-
bank CP006958.1, containing Illumina adapters, which 
has since been corrected) and several mislabeled Pseu-
domonas genomes had been previously affected when 

analyzing other datasets prior to writing this manuscript. 
Importantly, this is a recurring problem that is com-
pletely ignored by most metagenomic analysis tools. We 
continually find new errors in all new metagenomic ref-
erences, indicating that this problem is also growing [38].

After testing several popular alignment tools and 
parameter sets, Bowtie2 was selected and implemented 
as an alignment tool. We ran Blacklister to mask the 
questionable genomic sections with Ns and then recon-
structed all genomic indices. This quality control pro-
cedure was found to markedly improve the quality of 
results generated by the Wochenende pipeline (data not 
shown), since reads could not be assigned in error to 
the respective adapter-containing regions by the align-
ment tools. Full source code and documentation of our 
approach, Blacklister, is available at https:// github. com/ 
colin daven/ black lister.

Comparative analysis of the Zymo mock community
Results from our comparative analysis of leading 
metagenomic classifiers on a Mock community dataset 
[29] are presented in Fig. 2. Processing times of all tools 
were short (less than one hour, Table  2). KrakenUniq 
required the most RAM for its large index (Table 2). Kaiju 
could only assign reads at genus level, whereas all other 
classifiers could align reads at the species level. Kaiju was 
therefore excluded from the comparative analysis but 
included as Table  S1 (Additional File 1, Supplementary 
Table S1).

None of the four tools could exactly restate the 
mock community’s theoretical composition (Fig.  2). 
Wochenende, Centrifuge, MetaPhlAn and KrakenUniq 
successfully detected seven out of eight (87%) bacterial 
species. Wochenende estimated the bacterial relative 
abundance correctly within the boundaries given by the 
manufacturer (12% ± 1.8%) in 4/8 species, MetaPhlAn 
in 2/8, Centrifuge in 1/8 and KrakenUniq in 0/8. Krak-
enUniq demonstrates a tendency to under-represent 
the relative abundance of species compared to the other 
tools, whereas Centrifuge overpredicts for most species. 
However, all tools had difficulties in detecting B. sub-
tilis (Centrifuge is best with < 1%). Instead of B. subtilis, 
Wochenende reported a highly covered B. intestinalis 
(Additional File 1, Supplementary Figure S1). Regard-
ing the frequently overlooked fungi, C. neoformans was 
hardly detected by Wochenende, MetaPhlAn and Centri-
fuge, and completely missed by KrakenUniq. Centrifuge 
reported S. cerevisiae perfectly, with KrakenUniq attrib-
uting about half of the reads correctly. Wochenende and 
MetaPhlAn detected considerably less fungal reads. It 
appears there is a still unmet need for both finished fun-
gal genomes and design of metagenomic analysis tools 
appropriate to find them.

https://github.com/colindaven/blacklister
https://github.com/colindaven/blacklister
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An analysis of a long read mock community dataset 
was also performed (Additional File 1, Supplementary 
Figure S2). This dataset was notably distinct to the short 
read metagenome used above, and none of the species 
fall into their expected distributions, although Enterococ-
cus faecalis, Staphylococcus aureus and Listeria mono-
cytogenes come close, and Lactobacillus fermentum is 
present at higher abundance than the expected range. 
We have also seen considerable divergence of internal 
mock communities from expected distributions (data 
not shown), which are mainly associated with number of 

freeze–thaw cycles, time since purchase, and extraction 
methods. Unfortunately, we do not know of any other 
long read mock communities upon which we can test 
our tools. Furthermore, it appears B. subtilis is inherently 
problematic to discover at all in both the short and long 
read mock communities. This is somewhat puzzling as 
the mock communities used are derived from DNA, not 
from cells, where the extraction error used could lead to 
errors. We have seen some discrepancies with the acces-
sion numbers used in the mocks and, given its replicabil-
ity over many tools and datasets, presume it could be an 
error from the manufacturers.

Performance on real world datasets
We trialed the pipeline on a variety of different real data-
sets (Additional File 1, Supplementary Figure S3). In 
addition, we have used the pipeline successfully on thou-
sands of other datasets produced in our Core Unit in 
the past three years (data not shown). Figure  3 displays 
a metagenomic evaluation of three children with cystic 
fibrosis and three age-matched healthy children with 
markedly different metagenomes [39]. The heatmap dis-
plays precise clustering between the two groups, which is 
discussed at length in the figure legend.
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Fig. 2 Comparison of the performance of four metagenome analysis tools on a single mock community dataset. The mock community of known 
composition was taken from a published study (SRR11207337) [29]. The red line indicates the expected percentage of each bacterial (12%) and 
fungal (2%) species in the community. Dashed lines indicate the expected actual deviation from this percentage as indicated by the manufacturer 
(± 1.8%). All tools perform differently on the various species. Wochenende performs very well, with estimated abundances very close to the 
expectation for four of the eight bacteria present. MetaPhlAn3 also performs very well, while Centrifuge and KrakenUniq display a degree of over 
and underprediction, respectively. The bacterium B. subtilis and fungus C. neoformans appear to be present in trace amounts or missing. This is 
congruent with observations from other mock communities we have seen (Additional File 1, Supplementary Figure S2, other data not shown). 
Wochenende and MetaPhlAn perform badly at recovering S. cerevisiae reads. In this case Wochenende reference sequences for fungi are in their 
infancy, and contain too many closely related genomes, which can mask each other

Table 2 Processing times of the four metagenomic classifiers. 
The tools were run on a SLURM cluster with 16 CPUs per job and 
200 GB requested memory size per node

Metagenome classifier Processing time Average 
memory 
usage

Centrifuge 20 min 139.5 GB

KrakenUniq 30 min 276.5 GB

MetaPhlAn 6 min 2.9 GB

Wochenende (core) + reporting 15 min + 4 min 23.4 GB
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Next, we collected samples from the intensive care 
department to test turnaround time of lab and bioin-
formatics capabilities (Fig.  4). Our aim was to assist 
our medical teams in potentially supporting a rapid 
alternative diagnosis in critically ill patients, and fur-
thermore see if the data provided are suitable for and 
understandable to clinicians. Following on from the 
initial run of this experiment, we were able to improve 
the viral detection (as judged by resident experts) 

by providing improved total metagenomic reference 
sequences containing clinically relevant viruses. Addi-
tionally, we tuned our visualizations to also work on 
the far smaller viral genomes. Details on the taxa found 
are present in the figure legend. The turn-around time 
from sample collection to wet lab processing, sequenc-
ing on the Illumina NextSeq platform, data processing 
by Wochenende and delivery of the clinical report was 
26 h.

1_CP020566_1_Veillonella_atypica_strain_OK5
1_CP020438_2_Streptococcus equinus_strain_FDAARGOS_251
1_CP023863_1_Prevotella_jejuni_strain_CD3_33
1_CP002843_1_Streptococcus_parasanguinis_ATCC_15912
1_CP024698_1_Fusobacterium_periodonticum_strain_KCOM_1283
1_FQ312002_1_Haemophilus_parainfluenzae_T3T1
1_CP007726_1_Neisseria_elongata_subsp__glycolytica_ATCC_29315
1_AE002098_2_Neisseria_meningitidis_MC58
1_FN995097_1_Neisseria_lactamica_020_06
1_CP003502_1_Prevotella_intermedia_17_chromosome_I
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1_CP022386_1_Capnocytophaga_gingivalis_strain_H1496
1_CP012072_1_Actinomyces_meyeri_strain_W712
1_CP020452_2_Neisseria_mucosa_strain_FDAARGOS_260
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1_CP002925_1_Streptococcus_pseudopneumoniae_IS7493
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1_FN568063_1_Streptococcus_mitis_B6__strain_B6
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Fig. 3 Heatmap of cough swab metagenomes retrieved from healthy infants and infants with cystic fibrosis (CF). Samples from healthy (H1‑H3) 
and CF infants (CF1‑CF3) were taken from a published dataset [39]. The bacterial taxa found by Wochenende are listed on the y‑axis. Color intensity 
indicates Bphc. The upper dendrogram visualizes the relatedness of the metagenomes. CF is a life‑limiting monogenic autosomal‑recessive trait. 
Mutations in the CFTR gene lead to impaired chloride and bicarbonate secretion across the apical epithelial membrane in exocrine glands. The lung 
is the most affected organ characterized by recurrent cycles of infection, inflammation and tissue remodeling. By adolescence, CF patients suffer 
from a high airway bacterial load with opportunistic pathogens, namely Staphylococcus aureus and Pseudomonas aeruginosa [40]. Our example 
compares the airway metagenome of healthy and CF infants during the first year of life [39]. As the basic defect is already operating since birth in 
the CF airways, mucociliary and cough clearance are impaired, leading to mucus plugging and ventilation inhomogeneity. During sleep microbes 
immigrate into the lungs by mucosal dispersion and microaspiration in all humans [41]. Thanks to mucociliary and coughing clearance, these 
microbes are continuously removed from healthy airways. Since these mechanisms are not properly functioning in CF, the cellular host defense is 
activated and alveolar macrophages and neutrophils immigrate into the lungs [42]. Hence during infancy one envisages the seemingly paradoxical 
phenotype shown in the heatmap that the bacterial load in the lower airways is higher in healthy infants than in CF infants. Children with CF are 
less trained by microaspirated commensals because their host defense by microbial killing compensates for the insufficient clearance mechanisms. 
This low abundance of commensals during infancy makes the microbial network in CF airways vulnerable to attacks by viruses, opportunistic 
bacteria and fungi [40]
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Detecting Fungi
The fungal microbiome (mycobiome) is mostly analyzed 
by sequencing of the PCR-amplified internal transcribed 
spacer (ITS) regions of rRNA operons. Meanwhile, 
the detection of fungi remains a difficult challenge in 

metagenome analysis. This is to some extent due to the 
lack of high-quality reference genomes of fungi, espe-
cially in comparison to bacteria [46]. We would wel-
come a greater focus on fungal pathogens from genome 
sequencing initiatives. In the laboratory, fungal cells also 
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Fig. 4 Heat tree and coverage diagrams produced by Wochenende/Haybaler for urgent clinical metagenome diagnostics. Microbial metagenome 
of respiratory secretions taken from an individual with inherited immune deficiency who during neutrophil depletion because of bone marrow 
cell transplantation developed within days a severe pneumonia that was refractory to standard therapeutic measures at the stem cell intensive 
care unit. Analysis of sequence data sets by the Wochenende pipeline revealed commensals of the oral microbiome as the major members of 
the microbial communities in the patient’s lungs. These include Lautropia mirabilis as the most dominant bacterium, a species that is known to 
preferentially replicate in immune deficient individuals [43]. Mycoplasma orale is also considered to be a normal inhabitant of the oral cavity [44]. 
However, there are cases reported where M. orale causes infections in immunocompromised individuals [45]. Turn‑around time from bedside 
sampling to wet lab processing, sequencing on the Illumina NextSeq platform, data processing by Wochenende and delivery of the report to the 
clinician was 26 h
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remain resistant to many standard techniques used to 
access DNA due to their sturdy cell walls mainly com-
posed of chitin and glucans [47, 48]. These problems not-
withstanding, we did include fungi in some Wochenende 
reference sequences, and, after carefully masking con-
taminants in these genomes with the Blacklister tool, we 
were able to reliably find fungi in some samples. In par-
ticular, one skin swab was found in one German Center 
for Lung Research asthma cohort study (unpublished 
data) to contain large numbers of fungal reads (Addi-
tional File 1, Supplementary Figure S4). We noted one 
problem with fungi, namely that their mitochondria fre-
quently display similarities to other eukaryotic mitochon-
dria and therefore appear as common false positives in 
result sets. Therefore, all annotated fungal mitochondria 
have now been excluded from our reference sequences.

Discussion
Many groups have demonstrated the potential of 
metagenomics in the clinic, with frequent examples 
of diagnosing infections or superinfections in both 
healthy and immunocompromised children and adults, 
investigation of nosocomial outbreaks, discovery of 
emerging pathogens, and assessments of antibiotic 
resistance [49, 50]. We show that the present pipeline, 
Wochenende, can be utilized to identify bacterial taxa 
and infections in clinical datasets, where we primarily 
looked at airway metagenomes.

Metagenomics is an area of considerable bioinformat-
ics research over the last several decades, yet room for 
improvement is still present, and various elements of 
the workflow are not yet mature [51]. There is a growing 
appreciation for the critical role of contaminants [52] in 
both sequence reads and genomes, appropriate controls, 
curated databases and versioned tools [49]. Furthermore, 
multiple tools should be applied to gain robust insights 
into metagenomic experiments due to the key role of the 
utilized reference database [51]. As both developers and 
users of metagenomic programs, we strongly recommend 
tools should provide both statistical and visual confi-
dence estimates that a taxon is actually present.

Wochenende is not purely a metagenomic tool, but has 
been used successfully for projects ranging from ampli-
con and ChIP-seq to whole genome sequencing. Indeed, 
the read realignment stage is of more use for genome 
resequencing than for metagenomics in our experience. 
Various outputs can be used or ignored as needed, pro-
viding multiple views of the data. For example, mapping 
quality and read duplicate filters are optional for some 
analyses so can be removed as needed. A key advantage 
of the Wochenende pipeline is its transparency in that 
all results from each step are retained, so the user can 
precisely inspect which stage affected the read counts 

reported. All intermediate stages are in standard for-
mats, so any part of the pipeline can be used for alterna-
tive visualization and analyses, if desired. This modular 
concept is aptly demonstrated by our integration of heat-
maps, heat trees, genomic coverage plots, detection 
of false positive species and attempts to estimate the 
growth rate of bacterial taxa in vivo.

Both read alignment-based and kmer-based analysis 
tools can suffer from a lack of specificity when making 
alignments with short reads. For example, we recently 
unexpectedly found several loci of Blautia and Collinsella 
species in some of our datasets, even after using our Black-
lister tool to mask the reference. However, closer inspec-
tion did not reveal technical remnants such as adapters in 
limited loci of these sequences, but an unexpectedly close 
relationship to Streptococcus and Rothia respectively, 
which are two very common bacteria in the lung microbi-
ome. To be clear, even when filtering out unspecific short 
read alignments using mapping quality, some loci of highly 
abundant species may “bleed” onto related species. One 
promising approach is a recently published tool, raspir 
[36], which uses discrete Fourier transforms to predict the 
presence of microbes, using the distribution of short reads 
mapped on a circular reference genome. This approach has 
already been integrated into our pipeline.

Limitations remain for short read analyses in metagen-
omics, despite the undoubted progress over the last dec-
ade or more. We have already alluded to the difficulties 
of reliably detecting bacterial taxa, especially at species 
or strain level, which are even more exacerbated in 16S 
rRNA amplicon sequencing [53], but detecting DNA 
reads from a pathogen is not necessarily associated with 
infection [50]. An attempt has been made to alleviate this 
issue by integrating growth rates into the pipeline, with 
the idea that quickly growing rather than non-growing 
pathogenic bacteria are more likely to play a role in dis-
ease [54]. In addition, multiple tools and pipelines based 
on robust reference databases should be run for each 
dataset, and considerable bioinformatic and compute 
infrastructure must be established, before metagenomics 
analyses can be broadly applied in the clinic [49].

In future, we anticipate falling costs will allow most 
metagenomes to be assayed by more specific long reads 
to reduce false positives caused by misaligned short 
reads, especially when comparing highly related spe-
cies or strains. At present cost per read is still too high 
with nanopore, considering over 90% of DNA is from the 
host in our typical lung environments, though this could 
be optimized with either chemical host depletion [55], 
an optimized “adaptive sampling” approach or shorter 
2-5  kbp reads from the nanopore device family. Of 
course, other environments suffer less from uninforma-
tive host read contamination, so are more amenable to 
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nanopore analysis. Metagenomic assembly becomes 
more feasible and results far more contiguous and less 
fragmented when long reads are employed [56].

Conclusions
In conclusion, our whole genome sequencing alignment 
pipeline Wochenende is applicable for the microbial 
metagenome analysis of clinical and environmental sam-
ples. Wochenende identifies species from all kingdoms 
of life with both long and short reads, and automatically 
combines multiple available modules ranging from qual-
ity control, transparent filtering and normalization to 
calculation of growth rates and taxonomic visualization. 
Novel built-in visualizations of read mapping locations 
allow the user to judge taxonomic results. The tool raspir 
was implemented to identify truly present microbes and 
decrease false discovery rates. Our multidisciplinary 
team also provides the user with critically improved ref-
erence databases and tutorials on creating and quality-
control their own reference sequences.
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Additional file 1: Supplementary Figure S1. Genome coverage plot of 
B.intestinalis reported by Wochenende. Wochenende did not misclassify 
B. subtilis in the mock community by Sui et al (SRSRR11207337) [29], but 
rather detected B. intestinalis with a high and evenly distributed coverage. 
Indeed all the other tools also reported B. intestinalis instead of B. subtilis. 
Supplementary Figure S2. Wochenende analysis of an alternative 
long‑read Zymo Even DNA mock community. The mock community was 
sequenced on an Oxford Nanopore GridION sequencer by the laboratory 
of Nick Loman (https://github.com/LomanLab/mockcommunity). To our 
knowledge, the other tested tools are not able to analyze these long reads 
appropriately. The dataset and analysis is plausible yet suboptimal, 
as none of the species was found within their expected range, though 
Enterococcus faecalis, Staphylococcus aureus and Listeria monocytogenes 
come close. Lactobacillus fermentum is present at higher abundance 
than the expected range. B.subtilis is again underrepresented, similarly to 
the results from short read data presented in Figure 2 [29]. Supplemen-
tary Figure S3. A heat tree automatically produced by our tool Haybaler 
using the R package metacoder. The taxonomy of this fairly typical airway 
metagenome is illustrated succinctly and is useful for rapid initial com‑
parative analyses across samples. Rothia mucilaginosa and Haemophilus 
influenzae dominate, though diverse Streptococcus and several Veillonella 
and Prevotella species are also present. Supplementary Figure S4. Reads 
from a skin swab were mapped to a fungus from the Wochenende refer‑
ence genome. These reads were mapped with high mapping quality to 
all Candida tropicalis supercontigs, providing a rare example of a fungus 
in this metagenome. Fungi are generally difficult to reliably locate in 
metagenomes because of low abundance, poor reference genomes and 
wet lab sampling bias due to their highly resistant physical structures. 
Fungi remain rare in our experience of hundreds of particularly airway 
metagenomes, despite frequent reanalysis. It is not unexpected to find 
C. tropicalis at higher biomass in a skin sample, as opposed to our usual 
lung samples, but demonstrates our pipeline’s utility in locating eukary‑
otes. Supplementary Table S1. Results from Kaiju on the same mock 
community dataset SRR11207337 analyzed in Figure 2. Eight bacteria 
should be present at 12%, with two fungi at 2% each. Results were only at 
genus level and are therefore reported here.
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