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Abstract
Class imbalance poses a major challenge for machine learning as most supervised learning
models might exhibit bias towards the majority class and under-perform in theminority class.
Cost-sensitive learning tackles this problem by treating the classes differently, formulated
typically via a user-defined fixedmisclassification costmatrix provided as input to the learner.
Such parameter tuning is a challenging task that requires domain knowledge and moreover,
wrong adjustments might lead to overall predictive performance deterioration. In this work,
we propose a novel cost-sensitive boosting approach for imbalanced data that dynamically
adjusts the misclassification costs over the boosting rounds in response to model’s perfor-
mance instead of using a fixed misclassification cost matrix. Our method, called AdaCC,
is parameter-free as it relies on the cumulative behavior of the boosting model in order to
adjust the misclassification costs for the next boosting round and comes with theoretical
guarantees regarding the training error. Experiments on 27 real-world datasets from dif-
ferent domains with high class imbalance demonstrate the superiority of our method over
12 state-of-the-art cost-sensitive boosting approaches exhibiting consistent improvements in
different measures, for instance, in the range of [0.3–28.56%] for AUC, [3.4–21.4%] for
balanced accuracy, [4.8–45%] for gmean and [7.4–85.5%] for recall.
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1 Introduction

When supervised learning models are trained on data generated from skewed class distribu-
tions, i.e., suffer from the class imbalance problem, their performance on the minority class
can degrade significantly, even though they may have outstanding performance in terms of
overall error rate or accuracy1. In extreme cases, themodelmay ignore theminority class alto-
gether and predict always the majority class. Class imbalance is inherent in many real-world
applications, e.g., medical diagnosis [28, 39], fraud detection [2, 32, 36, 41] or sentiment
classification [19, 29] and could even lead to discrimination and unfairness [15–18, 20, 21,
40].

Over the years, a large body of work has been proposed for tackling the class imbalance
problem. Following [46], these works can be categorized into: (i) data-level approaches, (ii)
model-based approaches, and (iii) cost-sensitive approaches. Each category has its own limi-
tations (and strengths). For instance, data-level approaches may discard useful information to
restore balance across the different class distributions. Model-based approaches are typically
designed and implemented for specific models and are therefore applicable only in limited
settings. Finally, cost-sensitive methods require as input a misclassification cost matrix thus
inducing additional parameters.

Here, we focus on cost-sensitive classification methods with boosting. We have chosen
cost-sensitive boosting for three main reasons: (i) boosting is able to minimize the training
error and at the same time, to avoid overfitting [43], (ii) boosting is a popular learning method
employed in many classification systems [33], and (iii) by re-weighting the data distribution,
boosting preserves more information comparing to sampling methods [46], the prevalent
type of data-level methods. However, most cost-sensitive boosting methods require a fixed
misclassification cost matrix provided by the user [11, 35, 46, 47]. To define such a matrix,
often grid search is performed to find the best costs for the dataset at hand, a tedious and
costly process. In many cases, as we also show in our experiments, grid search does not lead
to optimal selection of misclassification costs. Additionally, having fixed costs during model
training may lead to suboptimal learning outcomes.

In this work, we propose a new parameter-free cost-sensitive boosting approach for classi-
fication problems with high class imbalance. The proposed method, named AdaCC, standing
for Cumulative Cost-Sensitive Boosting, alleviates the need for setting a fixed misclassifica-
tion cost-matrix as input parameter, by leveraging the cumulative costs of the model up to
the current boosting round. As we show in Sect. 4, the proposed method has proven upper
bounds for the training error. We propose two variants of the method, AdaCC1 and AdaCC2
that differ in terms of the employed data re-weighting scheme.

We carry out a comprehensive experimental study on 27 real-world datasets and compare
our method with 12 state-of-the-art cost-sensitive boosting methods as well as 5 non cost-
sensitive class-imbalance methods. Our results demonstrate the superior performance of
AdaCC over the state of the art in terms of AUC, balanced accuracy, geometric mean, and
recall. Notably, the performance improvements are more pronounced on the minority class.
This makes our method suitable for tasks where high false negative rates are critical, e.g.,
medical diagnosis, fraud detection, fairness-aware machine learning, etc.

Figure1 illustrates a binary imbalanced toy dataset where the blue points (#5) belong to
the minority class and the red points (#20) to the majority class. We compare the learning
behaviour of the proposed method with the one by AdaBoost by observing the decision

1 Note: In the binary classification case, the class with significantly more instances is the so-called majority
class, while the other is the minority class.
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Fig. 1 Decision boundaries of AdaBoost and the two variants of the proposed AdaCC on the same imbalanced
toy dataset of 5 blue and 20 red instances. The dot size is proportional to the weight allocated by each learner
to the particular instance (with the exception of the last column that depicts the final ensemble), making clear
that AdaCC assigns higher weight to minority class instances compared to the ones of the majority class

boundaries of the weak learners on the toy dataset as well as the ensemble boundary at the
end of the training process (rightmost figure). Due to the low dimensionality of the dataset
and for illustration purposes, we use a small number of T = 5 weak learners. Figure1
demonstrates how weighted data distribution is affected by each weak learner as well as
the decision boundary of the final ensembles. The first 5 columns correspond to the 5 weak
learners while the size of the dots corresponds to the weight that each instance receives per
round. The last column illustrates the decision boundary of the ensemble model. We note
that the final AdaCCmodel manages to fit better the data distribution compared to AdaBoost,
allocating a “proper” part of the feature space to the minority class.

The rest of the paper is organized as follows: Related work is summarized in Sect. 2. Basic
concepts are described in Sect. 3. Our approach is introduced in Sect. 4. Evaluation setup and
experimental results are presented in Sects. 5 and 6, respectively. Finally, Sect. 7 concludes
our work and identifies interesting directions for future research.

2 Related work

Methods for dealing with class imbalance can be organised in three broad categories [46]:
(i) data-level, (ii) model-based and (iii) cost-sensitive methods.

Data-level methods operate at the dataset level, i.e., they modify the data distribution
before model training, making these methods universally applicable. In [22], the authors
investigate the problem of class imbalance and the impact of re-sampling methods under
the inter-dependencies of class distribution skewness, data complexity, data volume and
employed models. In [30] the authors propose a combination of under- and over-sampling to
equalize class distributions and measure model’s performance using lift analysis. The impact
of over-sampling and under-sampling under the cost curves performance metrics has been
explored in [8]. The authors conclude that under-sampling is significantly more effective
than over-sampling for C4.5 classifiers. In [3], the authors propose SMOTE, a method that
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augments the minority class by interpolating new instances in local neighborhoods. In [19],
the authors propose text augmentation techniques, such as distortion and semantic similarity,
to increase the representation of the minority class.

Although re-sampling approaches are simple and easy to use, they come with disad-
vantages. For example, over-sampling may fail to “boost” existing rare cases, and adds no
additional information to the dataset [8, 46]. Under-sampling on the other hand, can deterio-
rate the performance by removing important information from the majority class [3]. Finally,
augmentation methods can amplify and propagate noise [19], leading to overall performance
deterioration.

Model-based methods tackle class imbalance during training either by employing a mech-
anism which aims to identify rare patterns or by optimizing for a balanced-performance
aware metric. SMOTEBoost [4] combines SMOTE [3] and AdaBoost [42] to deal with class
imbalance by augmenting the minority class in each boosting round. A similar line of work
is RUSBoost [44], which combines AdaBoost and random under-sampling of the majority
class on each boosting round. DataBoost-IM [12] locates the hard-to-learn instances from
both positive and negative classes during the training phase of AdaBoost and based on these
instances, it generates synthetic data for augmentation at the end of each boosting round.
Class imbalance-sensitive pruning of decision trees has been presented in [53]. The work in
[50] uses a kernel alignment to optimize the decision boundary of an SVM. In [24], a class
posterior re-balancing framework has been proposed to reduce imbalance while retaining
classification certainty. Over the recent years, hybrid methods have also been proposed. In
[49], they employ multi-set feature learning to learn discriminant features from the con-
structed multi-set and combine the sets with a generative adversarial network technique such
that each subset has similar distribution with the original dataset. In [51], authors propose
a combination of different techniques such as under/over-sampling, data transformations,
misclassification costs and ensemble learning to deal with class imbalance.

The main disadvantage of model-based methods is that the inductive bias of the selected
model can raise issues given an imbalanced dataset, e.g., decision tree’s data fragmentation
problem [14]. Additionally, they typically rely on assumptions regarding the underlying
data properties or are tailored to specific classification algorithms, which makes hard their
application to new domains and datasets.

Cost-sensitive methods do not optimize for overall accuracy. Instead, they try to minimize
the overallmisclassification costs. This class of algorithms is divided into three sub-categories
[46]: (i) weighting the data space, (ii)making a specific classifier cost-sensitive, and (iii) using
the Bayes risk theory to assign each instance to the class with the lowest risk. The first sub-
category aims to alter data distribution by employing a misclassification cost matrix such
that errors in minority class instances induce a higher loss. The very first method in this line
of work is AdaCost [11]. Over the years many variations of AdaCost have been introduced
such as: CSB1 [47], CSB2 [47], RareBoost [23], AdaC1 [46], AdaC2 [46], AdaC3 [46] and
CGAda [25–27],which differ in the followingmain aspects: training dataweight assignments,
weight update rules, and decision rules. Except RareBoost, all the aforementioned methods
in this category require user parameters for the misclassification costs. An overview of these
methods can be seen in Table 3. The second sub-category of cost-sensitive methods aims
to make a specific classifier cost-sensitive. In [34], authors propose AdaMEC, a boosting
classifier that uses the misclassification costs only to set thresholds to the decision boundary
of AdaBoost, in contrast to the previous methods which use the misclassification costs to
change the data distribution in each boosting round. CGAda and AdaMEC have also been
extended in [35], namely CGAda-Cal. and AdaMEC-Cal., by calibrating the models’ scores
using the Platt scaling technique [37]. In [38], a cost-sensitive k-NN classifier is introduced to
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Table 1 Notations
D Set of instances

x Sample

A Feature space

y Class attribute

C Misclassification cost vector

T Number of weak learners

ht Weak learner, at round t

αt Weight of the weak learner, at round t

Zt Normalization factor, at round t

H(·) Ensemble

sign(·) Sign function

exp(·) Exponential function

I {·} Indicator function

tackle class imbalance by using a modified distance function which takes into consideration
the misclassification cost matrix. In [31], a misclassification cost matrix is used to define a
cost-sensitive splitting criterion in decision trees, while in [1] the authors take into account
the misclassification costs to determine the pruning criterion of a decision tree. The third
sub-category uses the Bayes risk theory to assign each instance to a class with the lowest
risk. Few works have been proposed in this direction, e.g., in [7] the authors swap the class
labels of the leaves to minimize the misclassification cost.

For evaluation purposes, we select all the aforementioned cost-sensitive boosting methods
since they are related to our contribution. In contrast to our proposed approach, however, the
aforementioned cost-sensitive boosting methods assume that the misclassification costs for
each class are known in advance (except RareBoost). For many applications/datasets these
costs might not be available, and a costly grid search has to be performed to estimate them;
however, in many cases, even grid search does not lead to optimal misclassification costs.
Instead, the two variants of our approach are parameter-free and leverage the cumulative
behavior of AdaBoost to dynamically adjust the misclassification costs per boosting round.
Hence, our methods are applicable to any imbalanced dataset without any prior domain
knowledge.

3 Preliminaries

For the sake of clarity, in Table 1 we briefly describe the employed notations. We assume
a set of instances D = {(x1, y1), . . . , (xn, yn)} consisting of n independent and identically
distributed samples drawn from the joint distribution P(A, y), where A denotes the feature
space and y is the class attribute. For simplicity, we assume the class is binary with y ∈
{+1,−1}. We denote by D+ (D−) the set of instances belonging to the positive (negative,
respectively) class.We also assume that the positive class is theminority, i.e., |D+| << |D−|.
It holds that |D+| + |D−| = n.

Standard classification models treat instances of different classes equally and the perfor-
mance of the induced classifier (see confusion matrix in Table 2) is measured in terms of
the overall error rate (ER) as: ER = (FP + FN )/(T P + T N + FP + FN ). However,
when the class distribution is skewed, the overall error rate is not a good indicator of model’s
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Table 2 Confusion matrix

Predicted positives Predicted negatives

Positives (|D+|) True positives (TP) False negatives (FN)

Negatives (|D−|) False positives (FP) True negatives (TN)

performance in all classes, but rather of the performance on the majority class. In such a case,
more appropriate performance metrics should be employed (see an overview in Table 5).

Cost-sensitive models tackle the class imbalance problem by emphasizing more on the
minority class through appropriate costs [14, 35, 47]. Each sample x ∈ D is mapped to a
typically fixed misclassification cost vector C =< C+,C− >, where each sample in D+
is associated with a fixed cost value C+ from the misclassification cost vector C and each
sample in D− with a fixed cost valueC− fromC, whereC+ > C− andC+,C− ∈ [0,∞). The
costs denote the misclassification costs for each class and are employed by the cost-sensitive
learner during the training phase to “force” the learner to also learn minority instances. The
costs, however, need to be manually set by the user, thus requiring prior domain knowledge,
or to be selected via grid search [14, 46].

Boosting and AdaBoost: Boosting is an ensemble learning technique which trains a
sequence of T weak learners, in order to create a strong learner. The sequential genera-
tion promotes the dependency between the weak learners and each learner learns from the
mistakes of the previous learner.

AdaBoost [42], one of the most popular boosting algorithms (see Algorithm 1), adjusts in
each iteration t : 1− T (the so-called boosting round t) the data distribution Dt based on the
mistakes of the current learner ht in order to focus in the next round t+1 on the misclassified
instances. In particular, the weights of the instances for the next round are updated as follows:

Dt+1(i) = Dt (i) exp (−αt yi ht (xi ))

Zt
(1)

The parameter αt denotes the weight of the weak learner ht in the final classification decision
and is based on the error rate of the weak learner ht :

αt = 1

2
log

⎛
⎜⎝

∑
i,yi=ht (xi )

Dt (i)

∑
i,yi �=ht (xi )

Dt (i)

⎞
⎟⎠ (2)

The parameter Zt is a normalization factor which is used at the end of each boosting round
to make Dt+1 a probability distribution:

Zt =
n∑

i=1

Dt (i)exp (−αt yi ht (xi )) (3)

The final model is a weighted combination of the weak learners:

H(x) = sign

(
T∑
t=1

αt ht (x)

)
(4)

Cost-sensitive boosting approaches extend AdaBoost for class imbalance by changing the
following components: (i) weight initialization (recall that in Adaboost all instances receive
the same weight during initialization—line 1 of Algorithm 1), (ii) distribution reweighting
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Algorithm 1 AdaBoost Algorithm
Input: D = (xi , yi )

n
1 , where y ∈ {+1,−1}, T

Output: H(x) = ∑T
t=1 αt ht (x)

1: Initialisation : D1(i) = 1/n
2: for t = 1 to T do
3: Train weak learner ht → y using Dt

4: Update αt based on Eq. (2)
5: For i = 1, ..., n:
6: Update Dt+1(i) based on Eq. (1)

//where Zt is the normalization factor according to Eq. 3.
7: end for
8: return H(x) // Eq. (4)

(for AdaBoost the update is according to Eqs. (1) and (2)), and (iii) voting schema (for
Adaboost voting is according to Eq. (4)). A detailed overview of the cost-sensitive methods
and how they implement the aforementioned (i)–(iii) aspects is presented in Table 3. CGAda
[25–27] employs the misclassification cost matrix only for initializing the weight distribution
at the first boosting round and proceeds as standard AdaBoost thereafter. AdaCost (β2) [11],
AdaC1-C3 [46] and CSB1/2 [47] incorporate the misclassification cost matrix to change
the data distribution in each boosting round. AdaMEC [34] and RareBoost [23] differ from
the other cost-sensitive methods: In particular, AdaMEC does not use costs to change the
data distribution but it rather shifts the decision boundary of AdaBoost to minimize the total
expected loss. RareBoost does not rely on misclassification costs, rather it employs instead
of a single parameter α (see Eq. (2)), two different parameters, α+ and α− for positive
and negative predictions, respectively to update the weight distribution as well as the voting
schema. RareBoost requires that T P > FP; however, if this assumption does not hold the
algorithm’s performance deteriorates [46]. CGAda-Cal. [35] and AdaMEC-Cal. [35] are not
shown in Table 3 since calibration, through Platt scaling, is applied to the trained CGAda
and AdaMEC models, respectively.

4 AdaCC: cumulative cost-sensitive boosting

Instead of assuming a fixed misclassification cost matrix, AdaCC dynamically adjusts the
misclassification costs in each boosting round based on the performance of the model up to
that round, i.e., the performance of the partial ensemble (Sect. 4.1). This way, in each boosting
round AdaCC boosts the class with the highest misclassification rate. These costs are then
used to update the data distribution for the next round. There are two ways to incorporate the
costs in the update formula (for AdaBoost the update formula is shown in Eq. (1)): inside or
outside the exponent resulting in two variations AdaCC1 (Sect. 4.2) and AdaCC2 (Sect. 4.3),
respectively.

The toy example in Fig. 1 demonstrates how our approach “pays extra attention” to the
minority class errors: in particular, we observe that AdaBoost, AdaCC1 and AdaCC2 mis-
classify the minority class (blue points) during the first boosting round t = 1; however, our
methods assign higher weights to the minority examples on the next boosting rounds in con-
trast to AdaBoost, which lead to substantially different decision boundaries on the upcoming
boosting rounds and also the final ensemble.
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4.1 Cumulative misclassification costs

Let t ∈ [1, T ] be the current boosting round, where T is a user defined parameter indicating
the number of boosting rounds. Let H1:t (x) = sign(

∑t
j=1 α j h j (x)) be the partial ensemble

up to round t . We monitor the cumulative error of the partial ensemble and in particular, the
cumulative false positive rate (FPR) and the cumulative false negative rate (FNR) defined as
follows:

FNR1:t =

∑
i,xi∈D+

I

{
sign

(
t∑

j=1
α j h j (xi )

)
�= yi

}

|D+|

FPR1:t =

∑
i,xi∈D−

I

{
sign

(
t∑

j=1
α j h j (xi )

)
�= yi

}

|D−| (5)

where I{·} is the indicator function that returns 1 if the conditionwithin is true and0, otherwise.
The term FNR1:t corresponds to the error of the partial ensemble in the positive class (D+);
likewise, FPR1:t refers to the error in the negative class (D−).

Based on the cumulative error rates, we define the cumulative misclassifications costs
below in order to “bias” the weighting process for the next round towards the class with the
highest misclassification rate (on the current boosting round):

Ct (xi ) =

⎧⎪⎨
⎪⎩

1 + FNR1:t , if ht (xi ) �= yi , yi = +,FNR1:t > FPR1:t
1 + FPR1:t , if ht (xi ) �= yi , yi = −,FNR1:t < FPR1:t
1, otherwise

(6)

where ht is the weak learner at round t . In particular, for any misclassified instance xi , we
increase its weight using the cumulative FPR or FNR values based on its class-membership.

The costs are therefore dynamically adjusted based on the partial ensemble’s cumulative
behavior and the predictions of the current weak learner. In contrast to other methods that
assume fixed misclassification costs through the boosting rounds, our method is not only
parameter-free but it also dynamically detects which class might require extra weighting
at each round. We should highlight that the cumulative misclassification costs aim to boost
the class with the highest misclassification rate and not individual examples. Nonetheless,
the cumulative misclassification costs affect the weights of the instances since they are used
to update the data distribution. In what follows, and when it is clear from the context, we
simplify the notation of Ct (xi ) as Ct

i .
The two variants AdaCC1 (Sect. 4.2) and AdaCC2 (Sect. 4.3) are presented next.

4.2 AdaCC1

The first proposed algorithm, AdaCC1, modifies the weight update formula of AdaBoost
(Eq. (1)) using the cumulative costs Ct

i (Eq. (6)) as follows:

Dt+1(i) = Dt (i) exp
(−Ct

i αt yi ht (xi )
)

Zt
(7)

123



AdaCC: cumulative cost-sensitive boosting for imbalanced…

The normalization factor Zt (for Adaboost shown in Eq. (3)), in round t , is also updated to
take the extra weighting factor into account:

Zt =
n∑

i=1

Dt (i) exp (−Ct
i αt yi ht (xi )) (8)

Error analysis: By unravelling Eq. (7), the following holds:

Dt+1(i) = D1(i) × exp
(−C1

i α1yi h1(xi )
)

Z1
× · · · × exp

(−Ct
i αt yi ht (xi )

)

Zt
=

=
D1(i) exp

(
−

t∑
j=1

C j
i α j yi h j (xi )

)

t∏
j=1

Z j

(9)

The upper bound of the training error of the final ensemble H(x) can be expressed as:

Pri∼D1 [H(xi ) �= yi ] ≤
n∑

i=1

D1(i) exp

(
−

T∑
t=1

Ct
i αt yi ht (xi )

)
=

T∏
t=1

Zt (10)

Therefore, the objective in each boosting round is to find the αt that minimizes Zt . Since
Zt is the weight summation of correctly and non-correctly classified instances at round t ,
following the same argumentation as in [43, 46], Eq. (8) can be expressed as:

n∑
i=1

Dt (i) exp
(−Ct

i αt yi ht (xi )
) ≤

n∑
i=1

Dt (i)

(
1 − Ct

i yi ht (xi )

2
exp (αt )

+1 + Ct
i yi ht (xi )

2
exp (−αt )

)
(11)

By differentiating Eq. (11) w.r.t. αt and setting it to zero, we can estimate αt as follows:

∂

∂αt

( n∑
i=1

Dt (i)

(
1 − Ct

i yi ht (xi )

2
exp (αt )

)

+
n∑

i=1

Dt (i)

(
1 + Ct

i yi ht (xi )

2
exp (−αt )

))
= 0 ⇒

eα
t

N∑
i=1

Dt (i)

(
1 − Ct

i yi ht (xi )

2

)
= e−αt

N∑
i=1

Dt (i)

(
1 + Ct

i yi ht (xi )

2

)
⇒

αt = 1

2
log

⎛
⎜⎜⎝

n∑
i=1

Dt (i)(1 + Ct
i yi ht (xi ))

n∑
i=1

Dt (i)(1 − Ct
i yi ht (xi ))

⎞
⎟⎟⎠

= 1

2
log

⎛
⎜⎜⎜⎝

1 +
n∑

i,yi=ht (xi )
Ct
i D

t (i) −
n∑

i,yi �=ht (xi )
Ct
i D

t (i)

1 −
n∑

i,yi=ht (xi )
Ct
i D

t (i) +
n∑

i,yi �=ht (xi )
Ct
i D

t (i)

⎞
⎟⎟⎟⎠ (12)
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To ensure that αt is non-negative, the following condition should hold, otherwise the iteration
process terminates:

∑
i,yi=h(xi )

Ct
i D

t (i) >
∑

i,yi �=h(xi )

Ct
i D

t (i) (13)

Time complexity:Wederive the time complexity of our approachbuilding upon the complexity
of AdaBoost (c.f., Algorithm 1). AdaBoost complexity is O(T · ( f + n)), where T is the
number of boosting rounds, O( f ) is the complexity of aweak learner (for decision stumps it is
O(n ·m) for training and O(n) for testing, wherem is the number of features and n the number
of instances [45]), and O(n) is the complexity for the weight update of the instances. Our
only addition to the algorithm (computationally) is the calculation of the cumulative errors
(Eq. (5)). This computation can be reduced toO(n) bymaintaining a vector o of size n over the
boosting rounds which averages the decision outcomes of the weak learners in each boosting
round. Note that the vector o is updated on each round based on the current weak learner’s
predictions (on the training). By doing this, we avoid spending O(t · f ) on each boosting
round t i.e., we avoid the prediction time of the partial ensemble (on the training set) on each
boosting round. Therefore, the complexity of AdaCC1 is: O(T ·( f +2n)) ⇒ O(T ·( f +n)),
since 2 is a constant.

4.3 AdaCC2

The second proposed algorithm, AdaCC2, modifies the weight update formula of AdaBoost
(Eq. (1)) using the cumulative costs (Eq. (6)) as follows:

Dt+1(i) = Dt (i)Ct
i exp (−αt yi ht (xi ))

Zt
(14)

Similarly to AdaCC1, the normalization factor Zt is also updated to ensure Dt+1 is still a
probability distribution:

Zt =
n∑

i=1

Dt (i)Ct
i exp (−αt yi ht (xi )) (15)

Error analysis: Following the same logic as in Eq. (7) for AdaCC1, by unravelling Eq. (14),
we obtain the following:

Dt+1(i) =
D1(i)

t∏
j=1

C j
i exp (−α j yi h j (xi ))

t∏
j=1

Z j

(16)

Similarly to AdaCC1, the upper bound of the training error of the final ensemble H(x) is
given by:

Pri∼D1 [H(xi ) �= yi ] ≤
n∑

i=1

D1(i)
T∏
t=1

Ct
i exp (−αt yi ht (xi )) =

T∏
t=1

Zt (17)
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Following a similar to AdaCC1 rationale (Eqs. (11) and (12)), the αt that minimizes Zt is
given by:

αt = 1

2
log

⎛
⎜⎜⎜⎝

n∑
i,yi=ht (xi )

Ct
i D

t (i)

n∑
i,yi �=ht (xi )

Ct
i D

t (i)

⎞
⎟⎟⎟⎠ (18)

To ensure that αt is non-negative, the same condition as in Eq. (13) for AdaCC1 should hold,
otherwise the iteration process terminates.
Time complexity: AdaCC2 has the same time complexity as AdaCC1 since their only differ-
ence pertains to the weight estimation.

5 Evaluation setup

We compare our proposed AdaCC1 and AdaCC2 against 12 state-of-the-art cost-sensitive
boosting approaches (Sect. 5.2) as well as 3 data level methods (SMOTE, Random Over-
Sampling and Random Under-Sampling) and 2 model-based methods (SMOTEBoost and
RUSBoost) using suitable class imbalance performance evaluation metrics (Sect. 5.1). We
have experimented with a large number of real-world datasets (27), depicting various char-
acteristics in terms of class imbalance, dimensionality and cardinality. An overview of the
datasets is provided in Table 4. We have used the same pre-processing method on all datasets
whenever categorical data were present i.e., one-hot encoding. The employed structures
were numpy arrays for all datasets. In addition, all the classification methods which have
been employed in this paper were trained on the exact same pre-processed data. The goal
of our evaluation is twofold: to compare the different methods in terms of their predictive
performance for both classes (Sect. 6.1), and to analyze and compare the internal behavior of
our methods with the other approaches in order to understand/explain our methods’ superior
performance (Sect. 6.2).

For our experiments,2 we use decision stumps, i.e., decision trees of depth 1, asweak learn-
ers for all methods. Regarding the number of weak learners T , we experiment with different
numbers T ∈ [25, 50, 100, 200]. For the predictive performance experiments (Sect. 6.1), we
report on the average of 10×5-fold cross validation. These results are also used for the sig-
nificance test of Friedman using Bonferroni correction for validating significance onmultiple
datasets across various methods [5]. For the experiments on the internal behavior (Sect. 6.2),
we do not perform any split rather we train on the complete datasets. By using the entire
datasets for training, we avoid fluctuating values which can make the internal analysis of our
methods misleading.

5.1 Performancemetrics

Due to the imbalanced nature of the learning problem, we report on AUC, balanced accuracy,
f1-score, gmean, TNR, and TPR. By following similar logic as [6], we also use a combined
overall performance measure (OPM), which averages the aforementioned metrics, since no
algorithm outperforms others in all datasets and metrics. All metrics (except AUC which

2 Source code and data are available at: https://github.com/iosifidisvasileios/CumulativeCostBoosting.
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Table 4 Datasets

Dataset Features Minority Majority Ratio (Min:Maj) Source

Abalone 10 391 3786 1:9.68 [9]

Adult census 14 11,202 33,973 1:3.03 [9]

Bank 16 4667 35,337 1:7.57 [9]

Car eval 21 134 1594 1:11.90 [9]

Coil 2000 85 586 9236 1:15.76 [9]

Credit 23 6636 23,364 1:3.52 [9]

Eeg eye 14 6723 8257 1:1.23 [9]

Electricity 8 19,237 26,075 1:1.36 [13]

Isolet 617 600 7197 1:11.99 [9]

Letter img 16 734 19,266 1:26.25 [9]

Mammography 6 260 10,923 1:42.01 [9]

musk2 166 1017 5581 1:5.49 [9]

Optical digits 64 554 5066 1:9.14 [9]

Ozone level 72 73 2463 1:33.74 [9]

Pen digits 16 1055 9937 1:9.42 [9]

Phoneme 5 1586 3818 1:2.41 [10]

Protein hom 74 1296 144,455 1:111.46 [35]

Satimage 36 626 5809 1:9.28 [9]

Scene 294 177 2230 1:12.60 [35]

Sick euthyroid 42 293 2870 1:9.80 [35]

Skin 3 50,859 194,198 1:3.82 [9]

Spambase 53 1813 2788 1:1.54 [9]

Thyroid sick 52 231 3541 1:15.33 [35]

Us crime 100 150 1844 1:12.29 [35]

Webpage 300 981 33,799 1:34.45 [35]

Wilt 5 261 4578 1:17.54 [9]

Wine quality 11 183 4715 1:25.77 [9]

employs the confidence scores of the predictions) can be derived from the confusion matrix
of Table 2 as shown in Table 5.

Due to the high amount of datasets, we cannot report on each individual dataset and
therefore, similarly to [6, 35, 52], we omit individual dataset results, and report on the
average across all datasets.

5.2 Competitors and parameter selection

Our main competitors are 12 cost-sensitive boosting methods, namely, AdaCost (β2) [11],
AdaC1 [46], AdaC2 [46], AdaC3 [46], AdaMEC [34], AdaMEC-Cal. [35], CGAda [25–
27], CGAda-Cal. [35], CSB1 [47], CSB2 [47], and RareBoost [23]. We also employ the
vanilla AdaBoost [42] to show the differences between cost-sensitive and standard boosting
methods. The methods (including ours) are summarized in terms of their key characteristics
in Table 3 (as alreadymentioned, AdaMEC-Cal. and CGAda-Cal. are excluded since they are
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Table 5 Performance metrics

Metric Definition

TPR (also Recall) T P/(T P + FN )

TNR T N/(T N + FP)

Balanced accuracy 1/2 · (T PR + T N R)

f 1-score 2 · T P/(2 · T P + FP + FN )

gmean
√
T PR · T N R

OPM 1/6 · (AUC + bal.acc + gmean + f 1 + T PR + T N R)

the post-processed versions of AdaMEC andCGAda, respectively). Except for theAdaBoost,
RareBoost and our AdaCC1 and AdaCC2 methods, all other methods need to be initialized
with the misclassification cost matrix [C+,C−]. As already discussed, finding the right costs
is a tedious task requiring domain/dataset knowledge. To this end, we follow the suggestion
of [35, 46] to use grid search for selecting the best class ratio for misclassification costs.
In particular, for each dataset, we perform grid search on a variety of different class ratios,
namely withC+ = 1.0 and by varyingC− in the range [0.1−1.0]with step 0.1.We select the
class ratio which achieves the best f1-score as suggested by [35, 46]. Grid search is performed
on each fold (on the training set) and each value of T ∈ [25, 50, 100, 200]; therefore, for all
10 iterations and for each different fold, the competitors are fine-tuned.3

We have combined the three data-level methods with a decision tree classifier. We aug-
mented the minority class until the class-imbalance was eliminated, i.e., both classes had
the same amount of instances. For the under-sampling we also removed instances from the
majority class until both classes had the same amount of instances. For the model-level meth-
ods, we have used the default parameters, e.g., for SMOTEBoost we set k = 5 and varied
the number of weak learners same as before and same for RUSBoost.

In addition,we evaluate the impact of the cumulativemisclassification costs (Eq. (6))which
allows us to dynamically adjust the costs based on the performance of the partial ensemble
and is central to our approach. To this end, we compare AdaCC1 and AdaCC2 with their
non-cumulative counterparts, denoted by AdaN-CC1 and AdaN-CC2, respectively. The only
difference is that the non-cumulative versions do not take into consideration the cumulative
error of the partial ensemble, rather rely on each individual weak learner to estimate the
misclassification costs for the next round. More concretely, the partial ensemble up to round

t , i.e.,
t∑

j=1
α j h j (x) in Eq. (5), is replaced by the corresponding weak learner in round t , i.e.,

ht (x).

6 Experiments

We split the experiments into two categories: (i) predictive performance (Sect. 6.1) and (ii)
internal analysis (Sect. 6.2). In the first category, we compare the predictive performance
of our methods against other cost sensitive boosting competitors using the metrics from
Sect. 5.1.Although the aimof thiswork is to compare cost-sensitive boostingmethods,we also

3 Note:We have also used a validation set for tuning the competitors by splitting the training set into 80% train-
ing 20% validation (on each fold); however, the results were slightly worse, hence we have tuned competitors
on the training set.
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highlight in Table 10 the performance of data-level methods such as SMOTE [3] (where the
number of neighbors k = 5), Random Under-Sampling (RUS) and Random Over-Sampling
(ROS) combined with decision tree classifiers. Also, we employ boosting class-imbalance
methods such as SMOTEBoost [4] and RUSBoost [44]. In the second category, we compare
how our method differs from the others by showing the internal behavior of each method.

6.1 Predictive performance

In this section, we begin by comparing the performance of our method against the employed
competitors. We continue by comparing AdaCC with its non-cumulative counterpart AdaN-
CC. Note that the performance results, in terms of different evaluation metrics shown in
Tables 6 and 7, are averaged over all datasets. Afterwards, we report on the ranking of each
method based on the datasets. Finally, we report on the statistical significance of our results.
AdaCC versus competitors: We begin our analysis for the main competitors in Table 6.
AdaCC1 and AdaCC2 are the best in terms of balanced accuracy, gmean, recall (TPR)
and OPM (AdaCC1 is also best in AUC). AdaMEC-Cal. follows with a [1.27–1.77%] rela-
tive decrease in OPM (it has very close difference with AdaCC2), [3.44–3.57%] relative
decrease in balanced accuracy and [4.78–5.16%] relative decrease in gmean comparing
to our best performing method (AdaCC2). The fourth performing method is CGAda-Cal.
with a [1.54–2.39%] relative decrease in OPM, [4.13–4.49%] decrease in balanced accu-
racy and [5.82–6.48%] relative decrease in gmean comparing to our best performing method
(AdaCC2). In terms of balanced accuracy, gmean and recall, AdaCC1 and AdaCC2 have the
best performance. A closer look to the TPR, TNR scores shows that our approaches achieve
the best performance for the minority class (higher TPR), while maintaining a moderate
performance for the minority class (TNR close to average).

As expected, AdaBoost, which does not tackle imbalance, achieves the highest TNR
but lowest TPR. The cost-sensitive competitors are able to produce higher TPR scores than
AdaBoost, but still fail to learn theminority class effectively, e.g., AdaC1, AdaC2 andAdaC3
produce [73.3–78.25%] balanced accuracy, [65.44–75.4%] gmean and [61.04–68.21%] TPR
scores which are significantly lower in contrast to our methods.

The competitive performance of AdaMEC-Cal. and CGAda-Cal. is mainly due to their
high TNR and low recall. AdaMEC-Cal.’s relative difference in recall is [13.87–17.28%]
lower than our approaches, and for CGAda-Cal. the relative difference is [15.7–17.98%]
lower. RareBoost also calls for special mention as it performs poorly on the minority class
but achieves the second best TNR scores. Its outlying behavior is probably related to its
strong assumption that T P > FP , which cannot be always ensured.

The obtained results indicate that the cost-sensitive boosting competitors are producing
higher balanced accuracy in contrast to AdaBoost but they fail to outperform our methods as
indicated by balanced accuracy, gmean, recall, and AUCmetrics. In addition, some competi-
tors such asAdaCost, AdaC2, AdaC3, CSB1, andCSB2 do not improve their performance for
higher values of T in contrast to other competitors. One possible reason for the sub-optimal
performance of the competitors might be the non-optimal misclassification cost tuning as a
result of the grid search. Our methods avoid this by dynamically adjusting misclassification
costs on each boosting round based on the cumulative behavior of the model.
Cumulative versus non-cumulative: We continue by comparing our methods, AdaCC1 and
AdaCC2, with their non-cumulative counterparts, namely AdaN-CC1 and AdaN-CC2, in
Table 7. By comparingAdaCC1 toAdaN-CC1we observe a relative decrease of [16–17.47%]
in balanced accuracy, [42.29–56.36%] in gmean, [37.79–63.47%] and [10.01–19.94%] in
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Table 6 Results for various evaluation metrics
Method T Bal. Acc Gmean TPR (Recall) TNR F1Score AUC OPM

AdaBoost

25 70.24±2.69 56.86±5.9 43.49±5.81 97.0±0.74 49.62±5.23 89.86±1.24 67.85±3.25
50 73.06±2.35 63.03±4.62 49.19±4.93 96.93±0.52 55.46±4.32 90.49±1.21 71.36±2.72
100 75.05±1.79 66.24±3.05 53.17±3.69 96.93±0.43 58.69±3.09 90.87±1.19 73.49±1.98
200 76.09±1.75 67.75±3.1 55.2±3.54 96.98±0.39 60.34±2.98 91.09±1.2 74.57±1.93

AdaCC1

25 83.16±3.29 82.11±6.23 79.68±8.42 86.65±3.65 55.8±4.86 90.28±1.83 79.61±3.57
50 84.25±2.64 83.53±4.56 81.92±4.71 86.58±4.83 58.16±3.51 90.98±1.6 80.9±2.74
100 85.01±2.07 84.6±2.8 81.67±3.75 88.35±2.2 60.48±2.73 91.49±1.48 81.93±2.02
200 85.21±1.85 84.64±2.41 81.19±3.52 89.23±1.55 61.91±2.8 91.78±1.38 82.32±1.83

AdaCC2

25 82.97±2.06 82.47±2.38 80.69±5.79 85.25±3.53 56.24±3.04 89.76±1.91 79.55±1.93
50 84.17±1.98 83.66±2.33 80.69±5.25 87.65±2.85 58.9±3.0 89.72±2.2 80.79±1.96
100 84.46±1.95 83.71±2.42 80.54±5.04 88.38±2.82 60.08±3.16 89.16±2.58 81.05±1.99
200 84.41±1.85 83.31±2.37 79.22±4.76 89.6±2.36 62.4±3.01 87.67±3.56 81.1±2.0

AdaMEC

25 79.65±2.89 77.71±4.03 69.35±7.33 89.95±2.4 61.54±3.13 89.08±1.19 77.88±2.58
50 79.86±3.03 77.61±4.11 69.09±7.17 90.63±1.87 62.74±3.21 89.91±1.13 78.4±2.69
100 79.34±2.56 76.87±3.52 67.91±5.78 90.77±1.58 64.5±3.03 90.41±1.08 78.4±2.39
200 80.24±2.26 77.38±3.52 67.53±5.72 92.95±2.17 65.12±2.92 90.74±1.08 79.01±2.22

AdaMEC-Cal.

25 80.29±2.56 78.44±3.5 68.8±6.03 91.78±1.56 62.46±3.01 89.9±1.33 78.61±2.36
50 81.45±2.43 79.84±3.23 70.28±5.58 92.62±1.35 64.52±2.92 90.36±1.4 79.84±2.25
100 82.15±2.34 80.48±3.17 71.27±5.32 93.03±1.24 65.76±2.89 90.3±1.41 80.5±2.21
200 82.37±2.19 80.48±3.07 71.3±4.98 93.44±1.11 66.65±2.74 89.72±1.47 80.66±2.12

CGAda

25 79.57±2.78 77.45±3.9 67.93±6.48 91.21±1.77 62.39±3.07 89.83±1.29 78.06±2.56
50 80.53±2.41 78.58±3.35 68.96±5.7 92.09±1.61 64.39±2.93 90.42±1.22 79.16±2.26
100 81.26±2.36 79.36±3.26 69.99±5.41 92.53±1.31 65.89±2.9 90.79±1.19 79.97±2.23
200 81.44±2.37 79.27±3.38 69.81±5.4 93.08±1.21 66.95±2.8 90.99±1.24 80.26±2.24

CGAda-Cal.

25 79.86±2.61 77.93±3.66 68.58±6.11 91.14±1.68 62.97±2.94 89.9±1.33 78.4±2.41
50 80.82±2.46 79.0±3.42 69.43±5.74 92.21±1.54 64.94±2.94 90.36±1.4 79.46±2.32
100 81.35±2.36 79.45±3.31 70.02±5.44 92.69±1.37 66.27±2.93 90.3±1.41 80.01±2.28
200 81.65±2.18 79.54±3.14 70.17±5.03 93.14±1.22 67.27±2.76 89.72±1.47 80.25±2.14

AdaCost

25 75.72±2.75 71.97±4.2 69.5±6.24 81.93±4.13 50.43±3.53 83.75±2.64 72.22±2.81
50 76.43±2.74 73.87±4.42 69.62±6.87 83.23±5.19 50.7±3.52 84.3±2.5 73.03±2.83
100 74.72±2.71 70.69±4.34 71.99±7.01 77.45±4.75 46.25±3.35 83.11±2.77 70.7±2.69
200 75.15±2.72 70.63±4.28 74.91±6.63 75.4±5.06 45.11±3.26 81.97±2.4 70.53±2.74

CSB1

25 78.07±3.89 74.66±6.09 69.21±10.25 86.92±4.91 59.78±3.95 88.29±1.93 76.16±3.5
50 77.8±4.68 73.71±7.52 71.52±12.18 84.07±6.65 59.01±4.75 88.05±2.41 75.69±4.2
100 74.25±6.07 67.5±11.48 71.8±14.83 76.69±11.98 52.34±7.3 86.69±4.12 71.54±5.96
200 70.17±7.57 59.92±16.35 75.6±16.68 64.75±19.14 42.86±9.69 84.46±6.53 66.29±7.76

CSB2

25 78.21±3.62 75.2±5.55 67.4±9.16 89.02±3.93 57.69±3.34 89.47±1.59 76.17±3.24
50 73.97±2.52 66.2±4.99 59.17±7.38 88.77±4.14 57.11±3.83 90.35±1.43 72.6±2.74
100 75.07±1.86 66.27±3.28 60.57±3.69 89.56±0.6 59.74±3.1 90.07±1.77 73.55±2.11
200 76.09±1.73 67.65±2.89 62.6±3.52 89.57±0.38 61.37±2.94 90.27±1.77 74.59±1.99

AdaC1

25 73.99±2.46 69.39±4.43 61.09±6.49 86.9±3.58 52.34±3.8 85.44±2.77 71.52±2.64
50 76.03±2.35 72.43±3.74 61.75±6.18 90.31±3.1 57.73±3.46 86.96±2.33 74.2±2.37
100 76.57±2.42 73.01±3.79 62.56±6.42 90.59±3.22 58.97±3.42 87.31±2.34 74.84±2.42
200 76.82±2.4 72.94±3.92 61.74±6.07 91.9±2.94 60.13±3.31 88.07±2.19 75.26±2.41

AdaC2

25 78.06±3.79 75.4±5.53 67.53±10.34 88.6±4.74 58.43±3.35 88.16±2.38 76.03±3.39
50 76.65±3.29 72.9±5.46 61.04±9.1 92.26±4.1 59.75±3.75 88.48±2.57 75.18±3.22
100 77.69±2.82 74.05±4.91 61.79±7.86 93.59±3.15 61.95±3.37 89.18±2.1 76.37±2.82
200 78.25±2.46 74.22±4.21 62.03±6.75 94.48±2.3 63.04±3.15 89.92±1.88 76.99±2.4

AdaC3

25 75.71±3.84 70.31±6.81 68.21±10.45 83.21±6.31 52.32±3.68 86.51±2.49 72.71±3.48
50 73.3±3.46 65.44±7.09 63.87±9.58 82.74±7.2 52.44±3.72 86.88±2.67 70.78±3.5
100 74.06±3.35 66.77±7.15 61.88±8.62 86.23±6.14 55.79±3.74 87.53±2.56 72.04±3.5
200 75.2±3.09 68.26±6.37 61.59±8.18 88.82±4.89 58.79±3.61 88.35±2.23 73.5±3.19

RareBoost

25 75.83±1.99 68.44±3.57 54.94±4.07 96.72±0.48 60.03±3.39 81.96±2.79 72.99±2.31
50 77.51±1.83 70.96±3.14 58.17±3.69 96.84±0.39 62.82±3.09 78.64±2.78 74.16±2.09
100 78.55±1.78 72.47±3.08 60.19±3.6 96.91±0.39 64.44±3.01 75.02±2.59 74.6±2.05
200 79.04±1.69 73.29±2.94 61.16±3.4 96.93±0.4 65.18±2.96 71.39±2.46 74.5±1.96

Best and second best methods per different values of T are in bold and circled, respectively. Colors indicate
specific values of T

Table 7 Results for various evaluation metrics for the comparison of AdaCC1/2 versus AdaN-CC1/2

Method T Bal. Acc Gmean TPR (Recall) TNR F1Score AUC OPM

AdaCC1

25 83.16±3.29 82.11±6.23 79.68±8.42 86.65±3.65 55.8±4.86 90.28±1.83 79.61±3.57
50 84.25±2.64 83.53±4.56 81.92±4.71 86.58±4.83 58.16±3.51 90.98±1.6 80.9±2.74
100 85.01±2.07 84.6±2.8 81.67±3.75 88.35±2.2 60.48±2.73 91.49±1.48 81.93±2.02
200 85.21±1.85 84.64±2.41 81.19±3.52 89.23±1.55 61.91±2.8 91.78±1.38 82.32±1.83

AdaCC2

25 82.97±2.06 82.47±2.38 80.69±5.79 85.25±3.53 56.24±3.04 89.76±1.91 79.55±1.93
50 84.17±1.98 83.66±2.33 80.69±5.25 87.65±2.85 58.9±3.0 89.72±2.2 80.79±1.96
100 84.46±1.95 83.71±2.42 80.54±5.04 88.38±2.82 60.08±3.16 89.16±2.58 81.05±1.99
200 84.41±1.85 83.31±2.37 79.22±4.76 89.6±2.36 62.4±3.01 87.67±3.56 81.1±2.0

AdaN-CC1

25 70.79±4.59 52.52±10.63 48.74±11.07 92.83±3.14 41.26±8.5 82.06±5.19 64.7±5.92
50 72.57±4.47 58.7±9.7 59.45±14.94 85.68±11.41 43.97±8.48 79.56±6.36 66.66±5.58
100 72.6±4.51 58.73±9.73 58.75±13.64 86.45±9.63 43.93±8.44 77.23±7.16 66.28±5.49
200 72.6±4.51 58.73±9.73 58.46±13.5 86.75±8.87 43.89±8.46 76.52±7.27 66.16±5.43

AdaN-CC2

25 75.23±3.37 66.04±7.1 55.21±8.1 95.25±2.1 53.21±5.9 84.88±4.66 71.64±4.11
50 76.34±3.58 67.14±7.83 61.8±8.91 90.88±3.29 56.06±6.06 79.81±7.98 72.0±4.45
100 76.51±3.72 67.41±8.07 62.15±9.19 90.86±3.28 56.34±6.33 75.28±9.63 71.43±4.54
200 76.5±3.72 67.41±8.07 62.15±9.19 90.86±3.28 56.34±6.33 74.9±9.67 71.36±4.51

Best and second best methods per different values of T are in bold and circled, respectively. Colors indicate
specific values of T
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AUC. There are also high (relative) differences between AdaCC2 and AdaN-CC2. These
differences highlight the superiority of the cumulative costs in the reweighting procedure on
each boosting round versus the non-cumulative costs.
Ranking: We also report on the ranks based on balanced accuracy across the methods in
Table 8, for T = 200 (Tables for T ∈ [25, 50, 100] are included in the “Appendix”). Note
that Table 8 contains floats instead of integers due to the fact that in many datasets some
methods produced the same balanced accuracy score.

There are some interesting observations from this table. AdaCC1 andAdaCC2 are the best
and second-best in ranks with an average rank of 2.06 and 3.19 respectively, in contrast to the
competitors; however, methods such as AdaMEC-Cal. and CGAda-Cal. are also achieving
high ranks. Furthermore, the last row of Table 8 shows the number of datasets for which
each method achieved the best performance. Our approaches, AdaCC1 and AdaCC2, have
won on 10 and 8 datasets, while for the majority of datasets AdaCC1 or AdaCC2 were the
best or second best methods. Similar behavior can also be observed for other values of T ,
where AdaCC1 and AdaCC2 achieve the best ranking scores, e.g., AdaCC1 achieves the best
ranking for T ∈ [25, 50, 100] with values 2.30, 2.33 and 2.11, respectively and AdaCC2
achieves the second best ranking with scores 2.70, 2.41 and 2.52.

In Table 10, we also compare non-cost-sensitive methods with our approach. We have
used three well-known data-level methods such as SMOTE, Random Over-Sampling (ROS)
and Random Under-Sampling (RUS) combined with a decision tree classifier, and also two
model-based boostingmethods such as SMOTEBoost and RUSBoost. As we can see, AdaCC
performs better than the other methods in terms of balanced accuracy, gmean, auc and OPM.
It is also visible that RUSBoost is able to maintain extremely high TPR scores; however,
it under-performs in terms of TNR in contrast to AdaCC which maintains both TNR and
TPR at high levels. Interestingly, by comparing Tables 6 and 10, we can observe that the non
cost-sensitive methods are able to outperform several cost-sensitive methods.
Statistical significance: Finally, for the comparison of cost-sensitive methods we have per-
formed the Friedman test (p < 0.05) using the Bonferroni correction [5] for comparing
multiple methods across multiple datasets. The results can be seen in Table 9, in which non-
significant values have been highlighted in bold. As we see, AdaCC1 and AdaCC2 are not
significantly different across various values of T . AdaCC1 and AdaCC2 are significantly
different compared to the other competitors. One interesting observation is that for high T ,
AdaMEC-Cal. and CGAda-Cal. are able to produce similar results as our methods.

6.2 Internal analysis

We begin the internal analysis by comparing our methods, AdaCC1 and AdaCC2, with
their corresponding non-cumulative version, namely AdaN-CC1 and AdaN-CC2, which are
introduced in Sect. 5.2. Then, we continue our analysis in which we compare our methods
with competitors w.r.t. in-training instance re-weighting, α estimation, feature importance,
confidence scores and decision boundaries (similar to the toy example in Fig. 1).
Cumulative versus non-cumulative costs: In Fig. 2 we compare AdaCC1/2 and AdaN-CC1/2
on the TPR and TNR values per boosting round (averaged over the datasets, T = 200).
Figure2a shows the in-training TPR scores over the boosting rounds. It is clear that the
cumulative versions, i.e., AdaCC1 and AdaCC2, are by far better and more stable than
the non-cumulative ones, AdaN-CC1 and AdaN-CC2. Figure2b shows the in-training TNR
scores over the boosting rounds. The non-cumulative versions are better than the cumula-
tive ones. However, they exhibit high fluctuation as they rely on point-in-time estimates of
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Table 10 Results for various evaluation metrics for non-cost-sensitive class-imbalance methods

Method T Bal. Acc Gmean TPR (Recall) TNR F1Score AUC OPM

AdaCC1

25 83.16±3.29 82.11±6.23 79.68±8.42 86.65±3.65 55.8±4.86 90.28±1.83 79.61±3.57
50 84.25±2.64 83.53±4.56 81.92±4.71 86.58±4.83 58.16±3.51 90.98±1.6 80.9±2.74
100 85.01±2.07 84.6±2.8 81.67±3.75 88.35±2.2 60.48±2.73 91.49±1.48 81.93±2.02
200 85.21±1.85 84.64±2.41 81.19±3.52 89.23±1.55 61.91±2.8 91.78±1.38 82.32±1.83

AdaCC2

25 82.97±2.06 82.47±2.38 80.69±5.79 85.25±3.53 56.24±3.04 89.76±1.91 79.55±1.93
50 84.17±1.98 83.66±2.33 80.69±5.25 87.65±2.85 58.9±3.0 89.72±2.2 80.79±1.96
100 84.46±1.95 83.71±2.42 80.54±5.04 88.38±2.82 60.08±3.16 89.16±2.58 81.05±1.99
200 84.41±1.85 83.31±2.37 79.22±4.76 89.6±2.36 62.4±3.01 87.67±3.56 81.1±2.0

SMOTE + D.T. 1 79.41±2.11 76.53±2.93 65.24±4.17 93.58±0.7 61.31±2.91 79.35±2.14 75.9±2.34
ROS + D.T. 1 78.27±1.97 74.24±3.06 61.67±3.9 94.87±0.59 61.99±3.06 78.09±2.0 74.86±2.3
RUS + D.T. 1 82.35±1.99 82.29±2.0 82.8±3.73 81.9±2.12 50.44±2.82 82.34±2.01 77.02±2.05

RUSBoost

25 79.36±2.29 77.07±3.03 79.38±3.6 79.34±3.72 51.57±3.18 88.41±2.06 75.86±2.33
50 76.35±3.02 71.98±4.88 88.92±2.29 63.79±5.93 43.98±2.93 86.99±2.86 72.0±3.05
100 70.16±3.66 60.31±7.52 94.67±1.7 45.64±7.42 36.22±2.39 84.34±3.83 65.22±3.79
200 64.61±3.94 48.61±9.69 97.8±1.21 31.43±8.26 30.29±1.96 81.68±4.93 59.07±4.34

SMOTEBoost

25 80.46±2.1 77.93±2.8 68.51±4.37 92.42±0.89 63.15±2.85 89.3±1.42 78.62±2.07
50 81.69±2.0 79.49±2.61 71.93±4.07 91.45±0.85 64.71±2.63 89.71±1.39 79.83±1.96
100 82.06±1.89 79.89±2.47 73.72±3.82 90.4±0.82 65.14±2.48 89.63±1.54 80.14±1.88
200 81.91±1.82 79.58±2.43 74.46±3.72 89.37±0.81 65.14±2.33 89.63±1.43 80.01±1.79

Best and second best methods per different values of T are in bold and circled, respectively. Colors indicate
specific values of T

Fig. 2 Cumulative vs non-cumulative misclassification cost estimation (left:TPR, right:TNR)

misclassification costs (i.e., based on individual weak learners) comparing to the cumulative
methods which rely on cumulative estimates (i.e., based on the partial ensemble). These
experiments demonstrate the importance of the cumulative misclassification cost estima-
tion for the stability of the model. Also, in terms of predictive performance, we have seen
(c.f., Table 6) that the non-cumulative methods, AdaN-CC1 and AdaN-CC2, are producing
significantly worse results in contrast to AdaCC1 and AdaCC2.
Model performance analysis: The experiments thus far demonstrate the superior behavior
of AdaCC1 and AdaCC2, compared to state-of-the-art cost-sensitive boosting approaches.
Hereafter, we explain this behavior through additional experiments on the internal behavior
of the models, assessed by: (i) positive (minority) class weight assignments over the boosting
rounds (Fig. 3a), (ii) alpha values over the boosting rounds (Fig. 3b), (iii) in-training balanced
error over the boosting rounds (Fig. 3c), (iv) feature importance (Fig. 4) of a given dataset
(mammography), (iv) confidence scores (Fig. 5), and (v) decision boundaries (Fig. 6). More-
over, AdaMEC, AdaMEC-Cal., CGAda-Cal. are omitted from these experiments (except
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Fig. 3 In-training behavior over the boosting rounds (for T = 200)

the decision boundary analysis). The reason is that AdaMEC is built on top of a trained
AdaBoost model, by shifting its decision boundary towards the target class. AdaMEC-Cal.
and CGAda-Cal. are calibrated versions of AdaMEC and CGAda.
In-training analysis: For in-training analysis, we set T = 200 and show the behavior of each
method per boosting round. The weights of the minority class over the boosting rounds are
shown in Fig. 3a; as we can see, AdaCC1 and AdaCC2 behave differently from the com-
petitors by starting with very high weights during the first boosting rounds, which converge
afterwards to 0.5. The other methods increase the positive weights gradually over the rounds.
Our methods tackle the class imbalance problem during early boosting rounds by assigning
cumulative misclassifications costs to the minority class and then proceed to reduce these
costs (dynamically) as soon as the TPR scores are close to TNR scores.

In terms of α values, which control how much the weak learners contribute to the final
ensemble (Fig. 3b), themethods depict a similar behavior with α decreasing over the boosting
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Fig. 4 Feature importance of mammography dataset (the higher, the more important the feature)

rounds. A notable exception is RareBoost which utilizes positive and negative α to estimate
theweight distribution per round; thus, it is expected for itsα values to fluctuate. Ourmethods
do not differentiate from other competitors (excluding RareBoost); weak learners in the early
boosting rounds (e.g., T < 10) are more influential to the final outcomes (higher α values).

In Fig. 3c the in-training balanced error over the boosting rounds is shown. As we can see,
our methods achieve the lowest error. Moreover, AdaCC1 and AdaCC2 reduce the balanced
error faster than any other method, and converge after a sufficient number of boosting rounds.
The abrupt reduction of the error is directly related to the rapid increase of the positiveweights
in the initial boosting rounds.
Feature importance: In Fig. 4 we illustrate the feature importance for each method on the
mammography dataset. We have selected this dataset since it has low dimensionality (6
features) and high class imbalance ratio (1:42). Figure4 shows the importance of each feature
which is employed by each method to make a decision (weights are normalized to be a
distribution). Note that each weak learner is a decision stump which means that it selects
only one feature for splitting the dataset. The feature importance is measured as follows: each
ensemble consists of T weak learners and each weak learner is trained on a different data
distribution. Sincewe have employedDecision Stumps (Decision trees of depth 1), eachweak
learner will use only one split; therefore, it will use only one feature. The weak learners of
AdaCost, based on the data distributions which are provided (based on the model’s updating
strategy), do not use some features based on the splitting criterion. In addition, some models
(e.g.,AdaCost)may terminate their boosting rounds earlier than others based on their stopping
criterion which can lead to ignoring some features. Although the feature importance does
not indicate which method is the best, it shows clearly that each method utilizes differently
the features based on the weighting strategy, e.g., AdaCC1 is relying more on features 4 and
5 and less on features 1 and 3 compared to AdaCC2.
Confidence analysis: In Fig. 5, we compare the confidence scores of the different methods
for two ensemble sizes, T = 25 (Fig. 5a) and T = 200 (Fig. 5b), and separate them into three
categories: positive (left), negative (middle) and overall (right) confidence scores. Note that
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Fig. 5 Effect of boosting rounds on the confidence scores (left:positive class, middle:negative class, right
:overall)

misclassified instances have confidence scores less than 0 on x-axis (values closer to 0, on
x-axis, indicate lower confidence in the predictions, correct or wrong). Also, the area under
the line in the range [−1, 0] on the x-axis shows the proportion of misclassified instances.

At a first look at the overall confidence scores, we see that AdaCC1 and AdaCC2 are
producing low misclassification rates while the area under the line in the [−1, 0] range of
x-axis is low. However, other methods are achieving similar results. Therefore, we need to
analyze the confidence scores of each class separately since the minority (positive) class is
overshadowed by the majority (negative) class. As expected, AdaBoost has the highest mis-
classification confidence score in positive (minority) class since it learns effectively only the
negative (majority) class. AdaCC1 and AdaCC2 methods have the lowest misclassification
confidence scores for T = 25, and reduce them even more as the number of weak learners
increases, i.e., for T = 200. For the negative class, our approaches are able to reduce the
misclassified confidence scores as the number of weak learners increases. Other competitors
are able to reduce the positive misclassification confidence scores; however, their misclassi-
fication confidence scores (are under the line) for the negative (majority) class are increasing,
e.g., CSB1, AdaC3. This highlights once more that the ability to adjust the weights during
training is crucial to maintain good predictive performance across both classes. Note that for
intermediate values of T , Figures are included in the “Appendix” as they depict this gradual
behavior.

An interesting observation is that the cost-sensitive methods become less confident in the
confidence of the correctly classified instances (both classes) as the number of weak learners
increases. As it seems, the more they learn, their mistakes are reduced but they also become
less confident in their correct decisions.
Decision boundary analysis: Finally, we generate an imbalanced dataset similar to the toy
dataset in Fig. 1 of 40 instances (30 red class and 10 green class) with 2 features (for better
visualization).We train eachmethod on the same dataset and afterwardswe show the decision
boundaries which are learned from the training set. Since the dataset has only two features
x1 and x2, we use a small number of weak learners (T = 5). In Fig. 6 we show the decision
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Fig. 6 Decision boundaries of methods on the same imbalanced toy dataset of 10 blue and 30 red instances.
Dot size is proportional to the weight allocated by each weak learner to the particular instance, making clear
how each method assigns weights to minority class instances compared to the ones of the majority class

boundaries of all methods and how each method changes the weight distribution over the
boosting rounds.

As we can see, AdaBoost gives more emphasis to the majority (red) class, while it
tunes for overall classification accuracy. AdaCC1 and AdaCC2 on this particular dataset
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behave similarly by properly partitioning the space, giving emphasis to minority class with-
out deteriorating the performance on majority class (2 blue misclassified points versus 4 red
misclassified points). AdaMEC and AdaMEC-Cal. cannot find, through grid search, good
misclassifications costs; therefore, their behavior is similar to AdaBoost (by considering the
best CN = 1 which makes them behave equal to AdaBoost). The misclassification cost
selection of the competitors is based upon the performance of the final ensemble while our
methods dynamically adapt their misclassification costs on each boosting round. CGAda,
CSB1, CSB2 and AdaC2 partition the space to allow higher recall scores; however, they mis-
classify 12 red points. AdaCost, AdaC1 and AdaC3 perform even worse by misclassifying
19 red points. Interestingly, RareBoost partitions the space in a safe way, e.g., it correctly
classifies 5 blue points and the majority class.

7 Conclusions and future work

In thisworkwepresent a novel strategy for cost-sensitive boosting that exploits the cumulative
behavior of the model to dynamically balance the misclassification costs on each boosting
round.

Existing approaches require a user-defined fixed misclassification cost matrix as input.
In most cases this results in additional hyperparameters which need to be optimized jointly
with the basic parameters, e.g., using grid search. As grid-search does not ensure a good
initialization it might hurt the model’s overall predictive performance. Our methods’ ability
to produce consistent improvements in different measures, e.g., [0.3–28.56%] for the AUC,
[3.4–21.4%] for the balanced accuracy, [4.8–45%] for gmean and [7.4–85.5%] for the recall
indicate the general applicability of our method. The high recall scores demonstrate, that our
method is especially helpful for domains in which low recall scores have a disastrous impact.
Moreover, we have shown the superior performance of such cumulative models comparing
to their non-cumulative counterparts, in terms of both predictive performance and model
stability. Finally, our method comes with theoretical guarantees w.r.t. the training error and
it reduces the optimization of hyper-parameters.

In the future, we will consider multi-class extensions of our method. Furthermore, we plan
to investigate our method’s application to the supervised online learning task. Our method’s
ability to dynamically adjust the misclassification costs, makes our method suitable for such
a task in contrast to a recent online cost-sensitive boosting extension of AdaC2 [48].
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V. Iosifidis et al.

Fig. 7 Effect of boosting rounds on the confidence scores (left:positive class, middle:negative class,
right:overall)
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