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Abstract
State Abstraction is a methodology that aims to simplify planning problems and enable planners to deal with more complex envi-
ronments. It is a useful tool that helps Artificial Intelligence (AI) to solve different problems, e.g., controlling, planning, and game
playing. Although state abstraction has been applied with much success in large-scale problems, most of these state abstractions are
specific to their use case and cannot be generalized to others. More general applications, e.g., planning and reinforcement learning
(RL) in general game-playing, have mainly been evaluated in small-scale environments. This paper gives an overview of related
studies and highlights three open problems of state abstraction: 1) How to scale state abstraction to large-scale problems? 2) How
to deal with the trade-off between abstraction accuracy and training time? 3) How to derive theoretical performance bounds of local
state abstraction? Finally, we propose strategy games to become a prior platform to address open problems and study the application
of domain-independent state abstraction.

1 Introduction

Sequential decision-making in complex environments, where state and action spaces are large, has been shown to be difficult for
artificial intelligence (AI) agents. Specifically, it is challenging for AI agents to explore large state and action spaces and efficiently
exploit collected samples. Abstraction is a technique that reduces the size of these spaces, for example eliminating unimportant states
or aggregating states into groups to create a smaller state space. As such, it is shown to be a useful tool for AI in many decision-
making domains, such as control, planning and game playing. In particular, abstraction helps AI gain superhuman performance in
heads-up poker [1]. Consequently, abstraction is discussed by Konidaris [2] as a valuable technique to reach more general AI.

Formally, abstraction is a methodology where a Markov Decision Process (MDP) is simplified by constructing another MDP, whose
optimal strategy is close to the optimal strategy of the original MDP. Abstractions can be categorized into two basic types: state
and action abstraction. They either eliminate unimportant elements or aggregate elements together from the corresponding space.
Figure 1 shows an example of state abstraction that aggregates states and an example of action abstraction that eliminates actions.
The presented state abstraction clusters the cells of a game state in MicroRTS [3] into regions. Thereby, similar cells are merged and
the granularity of the state representation is reduced. The action abstraction example reduces the granularity of camera movement
in the game Minecraft. In contrast to moving the camera freely left or right in the range of 0’ to 180’, it is found more efficient to
discretize the action space to move left 90’ pr move right 90’ [4].
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Figure 1: Examples of State Abstraction, in which multiple positions of the map are merged into hyperstates, and Action Abstraction,
which shows a discretization of a real-valued rotation.

Next, we aim to give a brief overview of current research on state and action abstraction. For state abstraction, aggregating similar
states is currently the most popular approach. Two approaches can reach this goal, recognizing similar states [5, 6] and reducing
irrelevant features [7] in the state representation. With the help of Neural Networks (NNs), the state representation could be encoded
in a lower-dimensional latent space [8]. Works found that such an NN-based state abstraction [9, 10, 11, 12, 13] yields additional



benefits such as better generalization. Besides explicitly aggregating states, there are methods modeling latent structure between
states [14] that enable sharing knowledge between states that have a common latent representation. Apart from filtering the action
space to construct an action abstraction (as it is commonly done in portfolio-based methods [15, 16]), temporal abstractions are the
most prominent type of action abstraction to be found in the literature. Temporal abstractions replace the primitive actions (elements
of the original action space) with action sequences. In addition, hybrid techniques which combine state and action abstraction have
shown to provide many benefits in Reinforcement Learning (RL) [17, 18] and planning [19].

While all kinds of abstraction are studied in the community, this paper will focus on state abstraction as its application in complex
scenarios is understudied. In recent years, state abstraction has been studied in different domains, including control systems [20],
planning [13], reinforcement learning [21, 22, 23, 24, 12, 25], multi-agent systems [26, 27] and game playing [28, 29, 30, 31]. One
of the most prominent works is by Libratus [1], which won against four human professionals in a heads-up no-limit Texas Hold’em
Poker competition. State abstraction is applied to the third and fourth betting rounds for aggregating hands (states) into groups. In
the third round, 55 million hands are aggregated into 2.5 million groups and 2.4 million states are aggregated into 1.25 million in
the following round. This state abstraction is used to approximate the expected reward of each state and has played a key role in
boosting the performance of Libratus. The success of state abstraction leads to the study of its broader application. However, the state
abstractions in Libratus are designed only for hold’em poker and can not be used in other environments. Similarly, state abstraction
methods in strategy game playing are designed for specific game types.

Alternatively, more general state abstractions are extensively studied in the domains of planning and RL. Some latest works are
starting to study state abstraction on environments that share characteristics with real-world environments: partial observability,
covering long horizons, requiring the coordination of multiple agents, etc. While studying these settings are a first step towards
real-world applications of state abstraction, their evaluation remains bounded to small-scale environments. Research in large-scale,
complex environments with the settings mentioned above is essential for scaling up the applications of state abstraction to real-world
problems. Strategy games are a clear example of a challenge for decision making that is able to provide such settings in large-scale
environments. Examples of these games are the popular Civilization (Firaxis) and Total War (Creative Assembly) series.

In the rest of this paper we review the recent studies of state abstraction in planning and RL in Section 2 where we also identify some
current open problems. Section 3 reviews state abstraction works in strategy games and Section 4 concludes this paper.

2 Literature Review

In state abstraction methods, two approaches are used to aggregate states into groups: hard state aggregation and soft state aggrega-
tion. In hard state aggregation, one state belongs to a single group. In contrast, soft aggregation [32, 33] defines a probability of one
state being aggregated into a group. Thus, one state could belong to multiple groups to a varying degree. In state aggregation, the
similarity metrics used to recognize similar states result in abstractions of difference loss bounds [34, 22, 17]. For more discussion
on similarity metrics, we refer readers to a survey by Visús et al. [35]. Both the hard state aggregation and the soft state aggregation
are measuring the similarity between nodes and aggregate them explicitly into groups. Other methods do not explicitly aggregate
states, but connect related states implicitly [14]. These connections do not reduce the state space size but enable knowledge sharing
between connected states for more efficient planning.

2.1 State Abstraction in Planning

Planning methods such as Monte Carlo Tree Search (MCTS) generate a tree to approximate the state-action value function for
decision-making. Nodes in the tree represent states. Therefore, Jiang et al. [5, 19, 36] proposed to merge tree nodes with small
approximate MDP homomorphism errors. In a different study, Hostetler et al. [37] proposed to start with a large node group and
progressively split groups into smaller groups. Sokota et al. [38] use state similarity to prevent progressive widening from sampling
states that are similar to existing states in the tree. Another approach [14] connects tree nodes by modeling their latent structure to
enable information sharing, which improves the planning efficiency.

Supervised learning has also been used recently to construct state abstractions. Shah and Srivastava [13] proposed a supervised
learning approach that trains a model to predict critical regions for robotic planning. An abstraction is generated by replacing the
original state space with predicted critical regions. They found that predicted abstraction improves multi-source planning but does
not help in a single-source planning process. Silver et al. [39] utilizes graph neural networks to predict the importance of objects,
which significantly speeds up the black-box symbolic planner in different planning problems.

State abstraction is also found beneficial in hierarchical planning. Konidaris [40] proposed a method that abstracts symbolic repre-
sentation of objects for hierarchical planning. James et al. [41] extend this method by learning reusable object-centric abstractions
that can transfer to new tasks that share similar objects.

2.2 State Abstraction in Reinforcement Learning

The study of state abstraction in RL has previously been well-discussed by Konidaris [2], and by Shanahan and Mitchell [42]. Here,
we discuss recent works to give a brief overview of how abstraction benefits RL in different manners.
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The study of state aggregation in RL [43, 32, 44, 45, 33, 46, 47, 48] brought both theoretical progress and progress in several
applications. State aggregation has been utilized to gain faster convergence in different RL methods [43, 48]. Russo [47] showed
that the regret for policy gradient with state aggregation is bounded by the maximum same-group state difference. On the application
side, Duan et al. [33] proposed an unsupervised soft state aggregation method that beats handcrafted state partition in finding optimal
taxi driving policies within simulated NYC traffic.

With neural networks, state aggregation could be done by constraining the state representation in the latent space. The representation
learned in this way is found to generalize well among different tasks. Zhang et al. [11] combined the bisimulation similarity metric
with an invariant causal prediction to learn a state abstraction that generalizes between environments that share the same latent state
space and dynamics. In a multitask setting where all the tasks share the same environment parameters, Zhang et al. [12] proposed to
learn a task embedding that captures the behavioral similarity across tasks in the sense of a universal dynamic model. The learned
dynamic model has been shown to generalize well in multi-task and meta RL settings. Besides generalization, state abstraction
contributes to the exploration of RL both theoretically and practically. Taı̈ga et al. [9] have used state abstraction to improve the
theoretical understanding of pseudo-count-based exploration bonuses. Misra et al. [10] proposed a supervised learning method to
learn kinematic state abstraction according to the dynamic similarity between states. Evaluated in challenging exploration tasks, their
algorithm is empirically exponentially more sample efficient than Proximal Policy Improvement (PPO).

State abstraction also enhances hierarchical RL in different ways. Abel et al. [18] introduced a variant of the option framework that
depends on a given state abstraction, resulting in a state-abstraction where the near-optimal behavior is preserved. In a work by Shah
et al. [25], a representation learning approach is used to learn a skill-centric state abstraction for hierarchical RL for long-horizon
planning problems. The learned representation has been shown to generalize well to novel tasks.

Besides the problem of how to generate the state abstraction, abstraction selection is another significant problem. Jiang et al. [44]
analyzed the abstraction comparison under finite sample limit and proposed an abstraction selection algorithm with a hypothesis test.
Tamassia et al. [45] proposed an algorithm that chooses a suitable abstraction from the given abstraction set at each time step. The
chosen abstraction is the most granular one that has the highest confidence in the action with the highest approximated Q-value.

2.3 Open Problems

While many of the reviewed works have shown the benefits of applying abstractions in the domains of planning and reinforcement
learning problems, we could not find promising examples of abstraction in complex real-world applications. In the following, we
have identified open problems of state abstraction methods that might restrain their applicability. Studying and solving these problems
would make abstraction an even more powerful tool for the simplification of many decision-making problems.

Abstraction of large-scale environments: The works reviewed above show that abstraction enables more efficient planning and
improves RL exploration and generalization. However, most of these works are evaluating their methods in small-scale environments
(Table 1). Scaling-up abstraction methods is non-trivial since current methods require a large number of observations to create an ad-
equate abstraction. Nevertheless, such methods would be required to ensure the feasibility of abstractions in real-world applications.

Trade-off between abstraction accuracy and training time: A study by Arumugam and Van Roy [49] raised the question of when
it is beneficial to learn a state abstraction alongside learning optimal behavior. They proposed a method where the agent maintains an
explicit belief over its state abstraction and have shown that this method can benefit the overall performance. Similarly, Xu et al. [50]
have studied the application of abstraction in planning problems with limited decision-time. Determining a more accurate abstraction
takes off decision-time, but may help in solving the planning problem faster. Studying the relation between an abstractions accuracy
and the planner’s performance will play an important role in improving the performance of abstraction-based agents.

Theoretical performance bounds of local state abstraction: Since not all MDPs have a global abstraction under some similarity
metrics [5], some attention has been given to local abstractions that only cover a part of the state space. Recent works have shown
that constructing a local abstraction has been computationally more feasible than the use of global abstractions [5, 1]. Furthermore,
the construction of global abstractions could be biased by the underlying samples of the state space [51]. Nevertheless, theoretical
performance bounds have only been derived for global abstraction methods so far, similar bounds are missing for local abstractions
but would be required for their robust and efficient application.

3 State Abstraction for Strategy Game Playing

To date, complex strategy games remain a challenge due to their large state and action spaces, partial observability, opponent model-
ing, real-time unit coordination, dynamic environments and long planning horizons. State abstraction has been utilized as a powerful
technique to solve some of the challenges mentioned above. Recognizing similar states using the structural analogy has been shown
to improve the performance of solving a sub-problem in the game Civilization [52]. State abstraction that separates maps into regions
are a popular method in strategy games such as Capture the Flag [53] and StarCraft [28, 29, 30]. Dockhorn et al. [31] proposed a
method to select entity features for state abstraction in strategy games, and [8] proposed a supervised learning method to abstract the
image state into grids where each position predicts the object type, enhancing their RL agent in the game Battle City.
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While these works designed the formation of state abstractions to fit specific game types, their methods cannot generalize to different
games. On one hand, the current studies of state abstraction in planning and RL evaluate their method in small-scale problems. On
the other, state abstraction that provide good results on large-scale strategy games are designed for specific games. Only recently,
Linjie et al. [50] show preliminary results of domain-independent state abstraction in multi-unit games. This comparison positions
strategy games as a promising large-scale challenge to study domain-independent state abstraction. Additionally, most of the real-
world decision-making problems take place in partial observable environments, cover long horizons and require the coordination of
multiple entities. These challenges are common in strategy games, which makes it a reasonable step to study state abstraction in
strategy games towards the real-world application.

3.1 Applying State Abstractions

Most of the work referenced in this paper tackles the problem of large state spaces with the aim of reducing the dimensionality
of the problem, in order to facilitate decision-making. In general, these approaches attempt to abstract the state space following a
determined technique (be this by hand, using domain knowledge, or by using different machine learning algorithms), employing the
reduced state representation to tackle the problem as a whole.

While this could be a valid approach for certain domains, especially those related to a single task or contextualized in non-highly dy-
namic environments, we believe that there is much to explore and gain by looking at different ways to use multiple state abstractions.
In the domain of strategy games (and, by extension, many real-world problems) we can observe decision-making applied at different
levels. For instance, decisions can be made to attend to short-term urgencies (lack of particular resources, enemy units at the player’s
base, etc.) or long-term planning (the composition of the army to be built, where to settle the next base, which branch in the research
tree should the player prioritize, etc.). Similarly, decision-making for a civilian unit (e.g. a worker, or a settler) is fundamentally
different from that of a combat unit (an archer, or a horseman). It is naive to think that the same state abstraction, understood as
a simplification and or clustering of the state space into a reduced representation, can serve equally well all these decision-making
problems. The same can be said about decisions that are made at the opening phase of a game, which must consider different aspects
of the world (terrain, resources, map layout), in contrast to those required in later stages, where players strive to achieve victory by
one of the game’s win conditions.

In light of this, we consider that different types of abstractions can be made available for different purposes. In strategy games, one
possible abstraction could consist of removing elements from the state that are of no interest to particular decision-making aspects,
such as ally or enemy units, workers, buildings, or even entire players. This can be done for all states of the game, or it could depend
on the particular state the game is, potentially learning a correspondence between states and the kind of state abstraction they require.
For example, strategy games go through phases where production or gathering of resources must be prioritized, or when a defensive
play is preferred. An attractive line of research could study how to select the appropriate state abstraction algorithm given a particular
state or set of game states. Similarly, different state abstractions can be devised considering for which units or players decisions need
to be made, or which game elements can be removed from the game state representation based on other factors (such as, for instance,
distance in the board to the acting player). In a way, this procedure can be seen as the player injecting partial observability (PO) to
the state space, but a kind of PO that, rather than being imposed by the game (fog of war), decides to omit the contents of the game
states that are not relevant to the decision-making problem.

Finally, it’s worth considering that these abstractions are not mutually exclusive. Given the original un-abstracted state space, several
abstraction mechanisms can simultaneously produce different abstracted spaces. These spaces can be used by distinct units owned
by the player, or even at different time horizons in a decision plan: for example, using finer abstractions for immediate next steps
(where decisions may require precision) and coarser ones for farther look-ahead (when decisions can lead to broader consequences).
Some initial work has already been done in this direction (by [45]), although in a simpler environment: the game Pac-Man. Overall,
we believe that there is much to learn not only on how abstractions are produced but also how are they used, especially in complex
and dynamic environments where different decisions are influenced by many distinct factors.

4 Conclusion

In this paper, we reviewed the current literature on state abstraction in different domains, as well as identified open problems and
possible lines of future research on this area. Concretely, we raise 3 open questions that are essential for the application of state
abstraction: abstractions in large-scale environments, accuracy vs. training time trade-off and performance bounds for local state
abstractions. Nowadays, most works on state abstractions are applied to small-scale problems, thus we position strategy game
playing as an ideal large-scale platform to study how to create and use state abstractions. Strategy games share many challenges with
real-world problems, such as partial observability, short vs long-term planning, coordination of multiple units/elements, and more.
The complexities of this type of games allow for the investigation of how different state abstractions can be used, either in parallel
or alternatively, to solve difficult decision-making problems that span across multiple dimensions. Our expectation is that addressing
these concerns in strategy games will pave the way for the application of state abstraction and decision making in real-world scenarios.
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with learned object importance in large problem instances using graph neural networks. In Thirty-Fifth AAAI Conference on
Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The
Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021, pages
11962–11971. AAAI Press, 2021.

[40] George Konidaris, Leslie Pack Kaelbling, and Tomas Lozano-Perez. From skills to symbols: Learning symbolic representations
for abstract high-level planning. Journal of Artificial Intelligence Research, 61:215–289, 2018.

[41] Steven James, Benjamin Rosman, and George Konidaris. Autonomous learning of object-centric abstractions for high-level
planning. In International Conference on Learning Representations, 2022.

[42] Murray Shanahan and Melanie Mitchell. Abstraction for deep reinforcement learning. arXiv preprint arXiv:2202.05839, 2022.

[43] D.P. Bertsekas and D.A. Castanon. Adaptive aggregation methods for infinite horizon dynamic programming. IEEE Transac-
tions on Automatic Control, 34(6):589–598, 1989.

[44] Nan Jiang, Alex Kulesza, and Satinder Singh. Abstraction selection in model-based reinforcement learning. In International
Conference on Machine Learning, pages 179–188. PMLR, 2015.

[45] Marco Tamassia, Fabio Zambetta, William L Raffe, Florian‘Floyd’ Mueller, and Xiaodong Li. Dynamic choice of state abstrac-
tion in q-learning. In ECAI 2016, pages 46–54. IOS Press, 2016.

[46] Alekh Agarwal, Mikael Henaff, Sham Kakade, and Wen Sun. Pc-pg: Policy cover directed exploration for provable policy
gradient learning. Advances in Neural Information Processing Systems, 33:13399–13412, 2020.

[47] Daniel Russo. Approximation benefits of policy gradient methods with aggregated states. arXiv preprint arXiv:2007.11684,
2020.

6



[48] Guanting Chen, Johann Demetrio Gaebler, Matt Peng, Chunlin Sun, and Yinyu Ye. An adaptive state aggregation algorithm for
markov decision processes. arXiv preprint arXiv:2107.11053, 2021.

[49] Dilip Arumugam and Benjamin Van Roy. Randomized value functions via posterior state-abstraction sampling. arXiv preprint
arXiv:2010.02383, 2020.

[50] Linjie Xu, Alexander Dockhorn, Jorge Hurtado-Grueso, Dominik Jeurissen, and Diego Perez-Liebana. Elastic monte carlo tree
searchwith state abstraction for strategy game playing. In To appear in 2022 IEEE Conference on Games (CoG), pages 1–8.
IEEE, 2022.

[51] Pablo Samuel Castro, Tyler Kastner, Prakash Panangaden, and Mark Rowland. Mico: Improved representations via sampling-
based state similarity for markov decision processes. Advances in Neural Information Processing Systems, 34, 2021.

[52] Thomas R Hinrichs and Kenneth D Forbus. Analogical learning in a turn-based strategy game. In IJCAI, pages 853–858, 2007.
[53] Michael Chung, Michael Buro, and Jonathan Schaeffer. Monte carlo planning in rts games. In CIG. Citeseer, 2005.
[54] Aijun Bai, Siddharth Srivastava, and Stuart J Russell. Markovian state and action abstractions for mdps via hierarchical mcts.

In IJCAI, pages 3029–3039, 2016.
[55] Diego Perez-Liebana, Alexander Dockhorn, Jorge Hurtado-Grueso, and Dominik Jeurissen. The Design Of Stratega: A General

Strategy Games Framework. arXiv preprint arXiv:2009.05643, 2020.
[56] Alexander Dockhorn, Jorge Hurtado Grueso, Dominik Jeurissen, and Diego Perez-Liebana. Stratega: A General Strategy

Games Framework. In Artificial Intelligence for Strategy Games Decision, AIIDE 2020 Workshop, 2020.

A Appendix

Method Name Condition Data collection Tree operation Abstraction Type Domains
2014 Approximate Homomorphism [5] T and Q Batch Node Aggregation State Abstraction Planning/Othelo

2014 State Aggregation [6] / / Node Aggregation Given Abstraction Blackjack

2015 Progressive Abstraction [37] The same a∗ or V ∗ Incremental Progressive Refinement State Abstraction Planning/Racetrack,
Spanish Blackjack, Academic Advicing

2015 State-Action Abstraction [19] T and Q Batch Aggregate state-action node State-Action Pair Planning/SailingWind,
GameOfLife, Navigation (RDDL)

2016 Hierarchical MCTS [54] / / / Given Abstraction POMDP Planning/Rooms

2016 OGA-UCT [36] T and Q Incremental split-combine State-Action Pair
Planning/Acadvicing, Navigation,

SailingWind, RaceTrack,
GameOfLife, Sysadmin

Table 1: State abstraction with MCTS in planning.

Figure 2: Experiments of MCTS with state abstraction playing a multi-unit combat game of the Stratega framework [55, 56]. In each
step, the available MCTS iterations are limited. In this Figure, we compare an agent’s performance using different proportions of
MCTS iterations running with state abstraction. We tested 3 army compositions including of 4 to 10 units. The results shows that
using state abstraction with different numbers of MCTS iterations influence the performance. Using state abstractions all the time
shows worse performance than using state abstraction for a lesser number of iterations.
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