
Game State and Action Abstracting Monte Carlo
Tree Search for General Strategy Game-Playing

Alexander Dockhorn, Jorge Hurtado-Grueso, Dominik Jeurissen, Linjie Xu, Diego Perez-Liebana
School of Electronic Engineering and Computer Science

Queen Mary University of London, London, UK
{a.dockhorn, diego.perez}@qmul.ac.uk

Abstract—When implementing intelligent agents for strategy
games, we observe that search-based methods struggle with the
complexity of such games. To tackle this problem, we propose a
new variant of Monte Carlo Tree Search which can incorporate
action and game state abstractions. Focusing on the latter, we
developed a game state encoding for turn-based strategy games
that allows for a flexible abstraction. Using an optimization
procedure, we optimize the agent’s action and game state ab-
straction to maximize its performance against a rule-based agent.
Furthermore, we compare different combinations of abstractions
and their impact on the agent’s performance based on the Kill the
King game of the STRATEGA framework. Our results show that
action abstractions have improved the performance of our agent
considerably. Contrary, game state abstractions have not shown
much impact. While these results may be limited to the tested
game, they are in line with previous research on abstractions
of simple Markov Decision Processes. The higher complexity
of strategy games may require more intricate methods, such as
hierarchical or time-based abstractions, to further improve the
agent’s performance.

Index Terms—Action Abstraction, Game State Abstraction,
General Strategy Game-playing, Stratega, Monte Carlo Tree
Search, N-Tuple Bandit Evolutionary Algorithm

I. INTRODUCTION

Developing artificial agents for strategy games comes with
unique challenges that need to be addressed to receive proficient
and engaging AI agents. The most prominent one is the
enormous game-tree complexity of strategy games, which hin-
ders the applicability of search-based algorithms. Additionally,
many strategy games require agents to control multiple units
at the same time, resulting in a large combinatorial action
space. Similarly, such games often require many moves until
completed, which in turn results in an enormous search depth.

Action and game state abstractions represent two strategies
for reducing the game tree’s complexity. While action abstrac-
tions reduce the set of available actions to a feasible subset,
game state abstractions map the states to a smaller subset.
Ultimately, those abstractions define what the agent is able
to perceive and which actions it will consider. Naturally, the
design of these abstractions has a great impact on an agent’s
performance by reducing the complexity of the search tree.
Both have previously been used in conjunction with search
algorithms such as Monte Carlo Tree Search (MCTS) [1]
and the Rolling Horizon Evolutionary Algorithm (RHEA) [2]
and have resulted in considerable performance improvements.

Nevertheless, the abstractions in these studies have been
provided by human experts. Creating or optimizing abstractions
while learning to play a game will be an interesting next step
to enhance the abilities of artificial intelligence agents.

In our recent work [2], we explored the use and optimization
of action abstractions for turn-based multi-unit strategy games.
Therefore, we proposed the Portfolio RHEA (PRHEA) and
compared its performance with other action abstracting search-
based methods. In its original form, the RHEA algorithm is
using evolutionary optimization to optimize action sequences.
To boost the agent’s performance, we replaced the action
assignment, with a unit-script assignment, whereas each script
returns an action according to the given game-state. In our
study, we optimized the agent’s portfolio (the set of scripts), to
match the agent’s preferences and further emphasize different
play-styles. The optimization increased the agents’ performance
and resulted in more diverse agent behavior.

In this study, we want to expand on our previous approach
by also taking game state abstraction into account. Our
contributions can be summarized as follows:

• Flexible state encoding for general strategy games:
We define a flexible state encoding for general strategy
games, that allows taking an arbitrary set of parameters
into account. Based on such a representation we propose a
state abstraction that ignores a set of elements to aggregate
similar states.

• State and action abstracting MCTS: Given the pro-
posed state-abstraction we propose an MCTS algorithm
that makes use of action and state abstractions to reduce
the complexity of the search task. To maximize the
performance, we propose an optimization scheme for both
types of abstractions.

• Exploring the impact of state and action abstractions:
Finally, we compare the agents’ performance and explore
the performance gains of both abstraction types.

In Section II we review the STRATEGA framework. Sections
III and IV provide an overview of abstractions in search-based
methods in the context of artificial intelligence agents. Based
on our action-abstracting MCTS algorithm [1], we propose a
new variant that can combine action and game state abstraction
(see Section V). Therefore, we first define how states of strategy
games can be encoded and abstracted, after which we explain
how abstracted states can be used to reduce the complexity of

978-1-6654-3886-5/21/$31.00 ©2021 IEEE

Fig. 1: Graphical User Interface of STRATEGA

the search tree. Our evaluation in Section VI is split in two
parts. First, we describe how the underlying abstractions can
be optimized Section VI-B, after which we test and compare
the performance of resulting agents Section VI-C. We conclude
the paper with an outlook of future work in Section VII.

II. STRATEGA

STRATEGA is a fast and flexible framework for researching
AI in complex strategy games. It allows the creation of a wide
variety of turn-based and real-time strategy games through
YAML configuration files. This permits testing new game and
agent configurations without recompiling the whole framework.
STRATEGA provides a common API for agent development,
which gives access to the game’s forward model. This makes
it an excellent tool for research on search-based agents.

Figure 2 shows the components of the STRATEGA framework.
The game runner is the main component, it contains a game
state and a forward model used to update the game whenever
it receives a new set of actions. To retrieve an agent’s actions,
it receives the game’s forward model and an observation of
the current game state, in which an optional fog of war hides
information out of the player’s vision range.

The engine can be executed in two different modes:

• GUI: Displays the game state and allows the user to
analyze or play the game (cf. Figure 1). If there is no
human player involved, the GUI will run in spectator mode
which allows rendering the battle from the perspective of
each player.

• Arena: Runs the game in headless mode and simulates a
round-robin tournament to test the performance between
combinations of agents in different environments. Results
of each game will automatically be logged.

In this work, we used the turn-based game-mode Kill the
King provided by the framework. Here, each player receives
a king and a set of additional units for fighting. The players’
main goal is to keep their king alive while trying to defeat the
opponent’s king. This game mode shares some aspects similar

Fig. 2: Overall structure of the framework.

to chess, where losing any additional unit does not end the
game but can reduce the choices of the player.

More information on our project can be found under:
https://gaigresearch.github.io/afm/

The current state of the framework can be accessed at:
https://github.com/GAIGResearch/Stratega

III. ACTION ABSTRACTIONS

Given a game state, an AI agent tries to find an optimal
action, whereas, in this work, optimal means the action that
increases the agent’s chance of winning the game the most. In
case the action space is very large, a full exploration of all
actions becomes infeasible. Instead, we can focus the search on
a set of promising actions. This concept is reflected in action
abstractions, which reduce the complexity of the search by
reducing the size of the action space to a smaller subset (cf.
Figure 3). Portfolio-based search methods are a popular type of
action abstraction, which have shown to considerably improve
the performance of strategy game-playing agents [3], [4]. A
portfolio consists of a set of scripts, whereas each script selects
an action from the given action space based on the agent’s
observation of the current game state. Instead of searching for
the optimal action, a portfolio-based agent will search for the
best action returned by any of the scripts, thereby reducing the
branching factor of the search to the size of the portfolio.

Portfolio-based search methods vary in the way they encode
and optimize the script selection. Portfolio Greedy Search
(PGS), Portfolio Online Evolution (POE), and Portfolio Rolling
Horizon Evolutionary Algorithm (PRHEA) have previously
been tested in the context of the STRATEGA framework and
have shown to yield better performance than search-based
agents operating on the original action-space [2]. PGS [3] uses
a hill-climbing procedure to search for the best script in the
current game state. In [4], Justesen et al. have proposed a script-
and cluster-based UCT algorithm for Starcraft, in which scripts
have been assigned to unit-groups. This approach significantly
improved the agent’s performance. POE [5] replaces hill-
climbing procedure of PGS with an evolutionary algorithm
to evolve a script assignment for each unit. Therefore, an

Game-State Game-StateGame-State

Fig. 3: Action abstractions of various degrees. (left) consider all actions and add their respective child-nodes to the search-tree;
(middle) action abstraction ignoring some of the nodes (marked in red); (right) greedy agent ignoring all but one child-nodes.

individual is encoded as a vector of unit-script assignments. An
individual’s fitness is estimated by simulating the game while
repeatedly retrieving the actions from the script assignments
and evaluating the resulting game state. PRHEA [2] extends on
this by optimizing a sequence of script assignments per unit.
In contrast to POE, which operates on a turn-by-turn basis,
PRHEA encodes the next n actions, whereas n is called the
”horizon”. Every time an action is returned, the first action of an
individual’s action sequence will be removed and a new random
action will be appended. Thereafter, evolutionary optimization
is used to further improve the individuals of the population.
This allows the agent to react to updated observations before
returning the next action.

Next to improving an agent’s performance, portfolio-based
methods allow generating agents of diverse play styles. Perez
et al. [1] have used a parameterized version of Portfolio MCTS
in combination with MAP-Elites to select and prioritize scripts
during the agent’s search. In the context of the turn-based
strategy game Tribes, the algorithm has shown to generate a
wide range of strategies while maintaining high performance.

Another way of reducing the search space is the application
of opponent modeling. Here, the agent builds a model of its
opponent to predict its future actions. Thereby, we can reduce
the number of considered child states during the opponent’s
turns to a likely subset. Therefore, we argue that opponent
modeling can be considered to be a special type of action
abstraction that only applies to the opponent’s turn. Goodman
and Lucas [6] have shown that opponent modeling can increase
the performance of MCTS in a real-time strategy game.

IV. GAME STATE ABSTRACTIONS

Another interesting approach to reduce the complexity of
decision-making in games with large state and action spaces is
state abstraction, which aims to decrease the amount of states
to be explored in the game (or its Markov Decision Process;
MDP). This concept may refer to any way of reducing the
amount of information needed to describe each state, or to
group or cluster different states into similar ones. One of the
first works on state abstraction applied to games is [7], [8],
where Bulitko et al. propose a method for abstractions in graphs
for complex problems such as pathfinding. In this early work,
the authors produce different levels of abstractions in a graph,
from a grounded level network to the most abstracted version
where real-time search algorithms can navigate the full space.
Each graph is an image of the next under a given abstraction
operator, which maps a subset of states in the lower level graph

to a single abstract state in the upper level one. This allows
generating a hierarchy of representations where the search is
conducted in the most abstracted space and solutions (paths)
are progressively refined to the ground level.

Later, Childs et al. [9] studied the effect of transpositions and
move groups in MCTS. First, transpositions are states that can
be reached through several trajectories during the search, which
can allow the tree to merge states that are equivalent or very
similar (i.e. game states with the same abstract representation,
cf. Figure 4). While this is simple, making moves from these
states is less obvious. Then, the authors introduce the concept
of move groups, which permit clustering actions that yield a
similar outcome, reducing the branching factor and showing
its efficacy in artificial game trees and the game Go.

Johanson et al. [10] define a state-space abstraction as a
many-to-one mapping between the real state in the game
and those from a smaller and artificially constructed abstract
game. The main idea behind state-space abstraction is that a
game-playing algorithm (such as SFP or Counterfactual Regret
Minimization - CFR) operates in the space of abstracted states
aiming to achieve an optimal strategy so that it approximates
to Nash Equilibrium in the non-abstracted space. The authors
evaluate several abstraction methodologies in Texas Hold’em
Poker and determined that the distribution-aware techniques are
able to provide a great advantage in large game abstractions.

This grouping of states is common through the literature.
McMahon et al. [11] by grouping states into equivalence
classes, each of which captures similar progress made towards
specific goals. The authors apply this work to motion planning,
where each equivalence class represents a feasible and safe
trajectory to be followed; then, the search method selects
the class with the lowest cost to be expanded next. In [12],
Hostetler et al. propose the concept of state aggregation in
MCTS to deal with MDPs with high branching factors. The
authors propose aggregating similar states in terms of decision-
making, by considering similar states that share the same
optimal action. Later on, in [13], the authors introduce the
concept of adaptive state abstractions, where these abstractions
are progressively refined and adapted through the game. The
authors compared these adaptive abstractions with several fixed
variants and the grounded (not abstracted) state space, on 12
different experimental problems. Their results show that, despite
an increase in the implementation complexity and memory
footprint, the adaptive abstractions were able to outperform
the other abstractions, including the grounded case.

State abstraction have previously been applied in the context

Game-StateGame-State Game-State

Fig. 4: Game state abstractions based on different properties of the game state. (left) visualization of the search tree showing
child nodes that differ in the two attributes shape and color; (middle) grouping nodes by color; (right) grouping nodes by shape.

of strategy games [14]–[16]. Especially in combination with
Deep (Reinforcement) Learning agents, various state encodings
have shown to significantly impact an agent’s performance.
While referenced works leave the internal representation of
the state to the learning capabilities of a neural network, we
want to study how changing the state encoding reflect on an
agent’s planning capabilities. To the best of our knowledge,
none of the related works have applied such analysis to complex
strategy games, which count on large state spaces with intricate
information.

V. METHOD

In the following, we present our ideas on incorporating game
state abstractions with MCTS. Therefore, we need to answer
three questions, i.e. (1) ”How can a game state be encoded?”,
(2) ”How can we create an abstract representation of a game
state?”, and (3) ”How can we make use of this abstraction
in MCTS?”. These three questions will be addressed in the
subsections below.

A. Flexible State Encoding and Evaluation Function

First of all, we need to define how we can flexibly represent
a complex game state of a turn-based strategy game. Our design
choices are heavily influenced by the inner workings of the
STRATEGA framework. Since this framework aims to be a
general strategy framework that is already capable of modeling
a diverse set of strategy games, we believe that this procedure
can easily be adapted for other games of this genre.

In the following, we assume that a game consists of three
components:

• Map: An m× n grid of tiles, whereas each tile type has
a unique identifier. Parts of the map may be hidden by
a fog of war, which replaces tiles that are not uncovered
by the agent with a default tile.

• Entities: A set of units, buildings, etc which each have
a unique identifier, a position on the map, and a set of
properties. Entities may be hidden by a fog of war, which
means that the agent cannot perceive the entity nor any
of its properties.

• Entity Properties: Anything that is used to encode the
properties of an entity, e.g. health points, attack points,
etc. Each property needs to define a range of valid values.

When we observe a game state, we want to represent it as
an ordered set of vectors. Therefore, we need to retrieve a list
of all observable entity properties. For each parameter, we will
fill a vector based on the property values of observed entities.

Therefore, we first sort all observed entities by their id and
then add their property values to the respective vectors. Those
vectors might differ in length in the case of entities that exhibit
different properties, e.g. buildings might be unable to attack,
therefore they will not need an attack value. Similarly, we can
add the units’ positions and the observed tile types to this
representation. This makes the comparison of two states very
simple. We just need to check if their resulting set of vectors are
the same. Furthermore, it allows us to ignore certain elements
of the game state to form an abstract state representation.

To evaluate a state, we first map observed parameters per
entity into the range of [0, 1] and use a weighted sum to
aggregate the resulting values into a single score value. Here,
we use a modified version of the Uniform Rational Quantization
(URQ) function [17] to map an observed parameter value x
from the range [xmin, xmax] to the range of [0, 1].

URQ(x, u) =
u · (x− xmin)

u · (x− xmin)− x+ xmax
(1)

The resulting value is multiplied by a weight, which allows
highlighting the importance of a parameter. Furthermore, we
multiply the resulting value with −1 in case the corresponding
entity is controlled by an opposing player. Finally, we calculate
the sum of all such values to rate the state.

The resulting state heuristic can easily be optimized for any
game of the STRATEGA framework. Nevertheless, we provide
a default heuristic, which can be used for the Kill the King
game, which has shown acceptable performance in preliminary
evaluations. In the upcoming experiments, we chose a weight
of 1 for all parameters except for a unit’s Health value, for
which we use 10. Similarly, we chose a u value of 1 for all
but a unit’s Health, which is using a u value of 5 to focus on
killing units that are low on health points. Additionally, we
added a reward of 1000 in case the game has been won or
deduct this value in case the game has been lost.

B. Game State Abstractions for Monte Carlo Tree Search

The MCTS algorithm consists of four phases, i.e. (1) Selec-
tion, (2) Expansion, (3) Simulation, and (4) Backpropagation.
Starting with the root node that represents the current state,
we simulate the outcome of available actions and add their
resulting states as child nodes. During selection, we traverse
the tree downwards to select a node that represents a promising
game state. In vanilla MCTS, all actions available in that node
are considered during the expansion phase. Once an action has
been chosen, it is applied to the current game state and added

as a child node of the previously selected node. To incorporate
game state and action abstractions we modify the expansion
phase, in which a selected node is expanded by a child node.

As proposed in our previous paper [1], we incorporate action
abstractions by reducing the action space to the actions returned
by a portfolio of scripts. A total of six scripts have been
implemented in the STRATEGA framework and define our
agent’s portfolio. The script implement the following logic:

• Attack Closest: The selected unit attacks the closest
opponent. If no unit is in attack range, the units walks
to the closest opponent unit to prepare an attack. In case
none of the opponent’s units is visible, act randomly.

• Attack Weakest: Attack the weakest visible opponent
unit or walk closer to it. In case none of the opponent’s
units is visible, act randomly.

• Run Away: Walk to the position that maximizes the
distance to all known opponent units. In case none of the
opponent’s units is visible, act randomly.

• Run To Friends: Walk to the tile that minimizes the
distance to all friendly units. In case the current unit is
the last friendly unit remaining, act randomly.

• Use Special Ability Each game’s configuration can define
special abilities such as healing or attack moves with
higher damage. The script uses a random special ability
of the selected unit. In case no special ability is available
it selects a random action .

• Random: Use a random action. Required to ensure a small
chance of selecting any action, and therefore, ensures that
the whole search space can be explored.

To further reduce the branching factor, we incorporate game
state abstractions to combine states with a similar abstract
state representation. Therefore, each node will store the game
state as well as its abstract representation. Every time, we
want to expand a node, we first simulate the outcome of the
action and then compare its abstract state representation with
existing child nodes of the selected node. In case no matching
abstract state can be found, we add the node as usual. If a
similar abstract state is already present, we add the action to
the existing child node and add another rollout to the respective
node.

This state aggregation procedure can be applied to vanilla
MCTS and Portfolio MCTS. It effectively groups game states
of similar abstract representation. This reduces the branching
factor and yields a better estimate of the existing nodes by
aggregating their rollouts. The impact of state aggregation
depends on a variety of parameters, e.g., the chosen abstract
state representation, the number of actions per game state as
well as the difference of their outcome. A typical example of
a good abstract representation is the reduction of redundancy,
e.g. grouping mirrored states in a board game. In terms of
general strategy games, it is hard to predict which components
of the game will result in a redundant encoding. Therefore,
we will devise the proposed flexible state encoding to explore
which elements can be left out without degrading the agent’s
performance.

Similarly, the impact of the action abstraction depends
on the quality and the diversity of actions returned by the
portfolio’s scripts. By adding or removing scripts, we can
drastically modify the set of behaviors an agent can express.
This can make the agent more efficient but also reduce its
performance considerably. Similar to the game state abstraction,
we will optimize the action abstraction by modifying the agent’s
portfolio as part of the upcoming evaluation.

VI. EVALUATION

To get an impression of the proposed agent’s performance
we want to compare the different abstraction variants of the
MCTS algorithm with each other and with a rule-based agent
as a common baseline. Throughout our experiments, we will
be using the Kill the King game of the STRATEGA framework
and aim to analyze the impact of various abstraction styles
on the agent’s search and its resulting performance. In total,
we will be considering four variants of MCTS, i.e. vanilla
MCTS, Portfolio MCTS (P-MCTS), state-abstracting MCTS
(S-MCTS), and a hybrid considering both abstractions (H-
MCTS). The rule-based agent, also called Combat Agent, is
focusing on grouping its units while quickly approaching the
opponent. During combat, it tries to target units that can be
killed using a single attack and prefers to attack units that
are already weakened. It has previously been used in an early
version of the framework and showed to outperform vanilla
MCTS, RHEA, and a greedy agent [18].

In the following, we will first discuss our preparations for a
diverse set of maps to be played, after which we introduce our
procedure for optimizing the agents’ parameters, and finally
present the results of a simulated round-robin tournament
among the optimized agents and the rule-based baseline.

A. Generating Diverse Map

For both evaluations, we have used maps from Nathan
Sturtevant’s set of path-finding benchmarks [19]. Specifically,
we parsed Baldur’s Gate 2 and Dragon Age Origin maps to
use them in the STRATEGA framework. In total, we selected
40 maps which vary in size and represent diverse fighting
landscapes for our agents. Smaller maps tend to represent
different room layouts, while larger maps tend to be more
open. We split the set of maps into 10 maps for optimization
and 30 maps for the performance evaluation. Figures 5a and
5b show the maps of the two resulting map sets.

To test the agents’ capability to adhere to different fighting
styles, we have considered 5 army compositions in our
evaluation. Figure 5c lists the army compositions created for
our experiments. During parameter optimization, only the first
army composition has been used, while our second evaluation
phase covers all 5 army compositions. To position the units
we have first selected two central positions among all movable
cells of a map. At those positions, the player’s king will be
placed. Furthermore, we split cells into two groups according
to their closer king. The remaining units per player will be
placed randomly in these cell sets, which ensures that they
will be closer to the player’s king than the opponent’s king

(a) 10 Training Maps

(b) 30 Test Maps

King Warrior Archer Healer

Army 1 1 3 3 3
Army 2 1 × × 3
Army 3 1 × 10 ×
Army 4 1 10 × ×
Army 5 1 5 5 ×

(c) Army compositions used during our evaluation.

Fig. 5: Overview of maps and unit compositions that have been
used during optimization (training) and evaluation (test). The
training set consists of 10 map layouts (a) and only includes 1
version per map in which army 1 has been randomly positioned.
The test set consists of the 30 map layouts (b), whereas each
map layout is included 5 times, once for each unit composition
in (c).

and therefore have a chance to defend him. For the test set, we
receive 5 different versions per map (each representing an army
composition) for a total of 500 maps used during performance
evaluation.

B. Optimization of the Agents’ Parameters

The four MCTS variants vary strongly in the way they
structure their search tree. Therefore, we want to carefully
optimize their respective parameters, so we can make a fair
comparison of their resulting performance. For this purpose,
we will be using the N-Tuple Bandit Evolutionary Algorithm
(NTBEA) [20], which balances the exploration of previously
unseen parameter combinations and the exploitation of promis-
ing combinations.

For the vanilla MCTS agent, we optimize three parameters,
i.e. the exploration constant of the UCB selection criterion
({0.1, 1, 10, 100}), the rollout length ({1, 5, 10, 15, 20, 25, 30}),
and the script used to simulate the opponent’s turn (attack
closest, attack weakest, random, skip). In the case of the action-
abstracting MCTS, we additionally optimize its portfolio set
consisting of the following script (attack closest, attack weakest,
run away, run to a friend, use an ability, random), whereas
each script can either be included in or left out of the portfolio.
This results in a total of 9 parameters. For the state-abstracting
variant, we use the three base parameters of MCTS and on top
of that, decide about 8 properties of the game state that can
be included or left out in the game state abstraction, i.e. the
map, the unit positions, the units’ properties including current
health, max health, attack damage, attack range, heal amount,
and movement points. Finally, the parameters of the hybrid
agent consist of the 3 base parameters, the 6 scripts of the
portfolio, and the 8 game state properties, resulting in a total
of 17 parameters.

Given a budget of 50 iterations, we search for the best
parameter combination per agent. During each iteration, the
algorithm selects the most promising one out of 10 neighboring
parameter combinations and evaluates its fitness by simulating
20 games against the rule-based Combat Agent. During these
20 games, the agents will play the 10 training maps, two times
each, with interchanged starting positions. The agent’s points
are increased by 3 for each win and remain unchanged after
a loss. After 100 turns the game is automatically terminated
and results in a draw. In the latter case, the agent’s points are
increased by 1.

Figure 6 shows the points scored during each iteration of
the optimization. The graphs clearly show the impact of action
abstractions, since both action-abstracting algorithms (P-MCTS
and H-MCTS) perform much better than their competitors.
The portfolio of P-MCTS consists of the two attack-based
scripts, while H-MCTS is additionally using the ”run to
friend” script. On top of that, the H-MCTS algorithm has
removed most properties from the game state encoding. Only
the attack damage, the unit’s healing range as well as its
movement points will be used to differentiate game states. Our
proposed hybrid algorithm was able to match the performance
of P-MCTS after a few iterations and from there on quickly

0 10 20 30 40 50
NTBEA Iterations

0

10

20

30

40
Po

in
ts

MCTS
S-MCTS

P-MCTS
H-MCTS

Fig. 6: Results of the parameter optimization using NTBEA.
Shown points are the results of 20 games, whereas the agent
receives 3 points per win, 1 point per draw and 0 points for
each lost game. A local regression (width = 10) has been added
for an easier comparison.

stabilized in performance. The game state abstracting S-MCTS
has performed slightly better than vanilla MCTS. There is
only a marginal difference in the performance of these two
agents, which is not surprising when analyzing the abstraction
used by the optimized S-MCTS agent. It basically selected
not to remove any properties from the game state encoding;
therefore, it produces similar search trees to vanilla MCTS.
All algorithms prefer to use shorter rollouts of length 1 or 5,
while the evaluation during optimization have rarely shown
much difference between these two options.

Regarding our evaluation, we want to note that the size of
the search space and its dimensionality considerably differs for
each optimization problem. While the search space of MCTS
consists of 112 parameter combinations (and 3 dimensions),
P-MCTS includes 7168 (9 dimensions), S-MCTS 28672 (11
dimensions), and H-MCTS a total of 1835008 possible pa-
rameter combinations (17 dimensions). Using a fixed number
of iterations results in a disadvantage for the more complex
optimization tasks. We have observed that NTBEA quickly
identified useful action abstractions but had a harder time
in finding beneficial game state abstractions. Based on our
observation, other optimization algorithms might perform better
than NTBEA for such high-dimensional optimization tasks.

C. Performance Comparisons

Given the optimized parameter sets per agent, we want to
compare their game-play performance given a larger variety of
unit compositions and test maps. Our test set includes 30 maps
for which we include 5 versions per map, one for each of the
unit compositions shown in Figure 5c. This results in a total
of 150 scenarios, which are played twice with interchanged
roles for a total of 300 games per match-up.

Combat-Agent
MCTS

P-MCTS
S-MCTS

H-MCTS

Combat-Agent

MCTS

P-MCTS

S-MCTS

H-MCTS

0.74 0.45 0.89 0.45

0.02 0.03 0.27 0.03

0.39 0.67 0.88 0.41

0.02 0.04 0.02 0.02

0.39 0.69 0.37 0.91

wins
draws

losses

ag
gr

eg
at

ed
 re

su
lts

761 194 245

102 456 642

705 235 260

27 288 885

711 215 274

0.0 0.2 0.4 0.6 0.8 1.0
win rate

0 200 400 600 800 1000 1200
number of games

Fig. 7: Performance comparison in a round-robin tournament
of 300 games per match-up throughout the three tested game-
modes. Each cell (i, j) shows the win rate of the agent in row
i against the agent in column j. The columns to the right show
the total number of wins, draws, and losses per agent.

Army 1 Army 2 Army 3 Army 4 Army 5
0.0

0.2

0.4

0.6

W
in

 R
at

e

Combat Agent P-MCTS
MCTS

H-MCTS
S-MCTS

Fig. 8: Results of the round-robin tournament. Average win
rate per combination of agents and unit compositions and its
standard deviation.

Figure 7 shows the win rates for each match-up in the
simulated round-robin tournament and the resulting average
win rates per agent as well as their total number of wins, draws,
and losses. Our results show that the Combat Agent performed
best again all its competitors, closely followed by P-MCTS and
H-MCTS. Agents that did not make use of action abstraction,
i.e. MCTS and S-MCTS, have performed much worse and lost
their respective match-ups against the three top-performers.

Furthermore, we tested if the performance of each agent
varies given the different unit compositions. Figure 8 shows
the average win rate of each agent per army. The graphs show
that the performance is mostly unaffected by the starting army
composition. Therefore, we expect that there is no significant
overfitting with respect to the single army composition used
during training.

VII. CONCLUSION

In this paper, we explored implementations of action and
game state abstractions for games of the STRATEGA framework.
We proposed a flexible state encoding capable of including or
excluding a varying set of game-relevant properties. This can
be used to aggregate states with similar encoding during the
agent’s search process. Adding this aggregation process to a
Portfolio MCTS agent resulted in a hybrid search algorithm
that is taking action and game state abstractions into account.

We explored the impact of those abstractions by first opti-
mizing agents against a rule-based baseline and then simulating
a round-robin tournament between all agents. The action
abstraction has shown to drastically improve the performance
of our MCTS agent, while game state abstractions have not
shown to significantly impact the agent’s performance. While
these results are limited to our observations on playing a single
game mode, they might hint that the devised abstraction type is
insufficient for addressing the complex state spaces of strategy
games. This would be in line with previous research on MDPs,
which has shown that some state abstractions are limited to
simple MDPs.

While game state abstractions have not performed well in
this setting, we still believe that there is much potential in
this overall application. Time-based and hierarchical [7], [8]
abstractions might prove useful in addressing the complex
state spaces found in the strategy game genre. Overall, those
abstractions may allow agents to create longer plans and
therefore further improve their performance.

In terms of action abstractions, we have seen that the 6 rule-
based scripts used in this study have shown to be a simple and
efficient way of improving a search-based agent’s performance.
However, the resulting agent has not been capable of defeating
the rule-based combat agent, therefore, raising the question
of how the portfolio set can be adapted to achieve similar or
even better performance. Therefore, we would like to explore
the optimization or creation of scripts using machine-learning
methods. Especially interesting would be an analysis of the
trade-off between the number of scripts used and the agent’s
resulting performance. Minimizing the number by choosing or
generating a set of scripts that complement each other will be
an interesting task for future work.

ACKNOWLEDGMENTS

This work was supported by UK EPSRC grant
EP/T008962/1.

REFERENCES

[1] D. Perez-Liebana, C. Guerrero-Romero, A. Dockhorn, and L. Xu,
“Generating Diverse and Competitive Play-Styles for Strategy Games,”
IEEE Conference on Games, COG, 2021.

[3] D. Churchill and M. Buro, “Portfolio Greedy Search and Simulation
for Large-scale Combat in StarCraft,” in 2013 IEEE Conference on
Computational Inteligence in Games (CIG). IEEE, Aug. 2013.

[2] A. Dockhorn, J. Hurtado-Grueso, D. Jeurissen, L. Xu, and D. Perez-
Liebana, “Portfolio Search and Optimization for General Strategy Game-
Playing,” in IEEE Congress on Evolutionary Computation (CEC), 2021.

[4] N. Justesen, B. Tillman, J. Togelius, and S. Risi, “Script- and
cluster-based UCT for StarCraft,” in 2014 IEEE Conference on
Computational Intelligence and Games. IEEE, Aug. 2014. [Online].
Available: https://doi.org/10.1109/cig.2014.6932900

[5] C. Wang, P. Chen, Y. Li, C. Holmgård, and J. Togelius, “Portfolio Online
Evolution in StarCraft,” Aiide, pp. 114–120, 2016.

[6] J. Goodman and S. Lucas, “Does it matter how well i know what you’re
thinking? opponent modelling in an rts game,” in 2020 IEEE Congress
on Evolutionary Computation (CEC). IEEE, 2020, pp. 1–8.

[7] V. Bulitko, N. Sturtevant, and M. Kazakevich, “Speeding up learning
in real-time search via automatic state abstraction,” in Proceedings of
the 20th National Conference on Artificial Intelligence - Volume 3, ser.
AAAI’05. AAAI Press, 2005, p. 1349–1354.

[8] V. Bulitko, N. Sturtevant, J. Lu, and T. Yau, “Graph abstraction in real-
time heuristic search,” Journal of Artificial Intelligence Research, vol. 30,
pp. 51–100, Sep. 2007.

[9] B. E. Childs, J. H. Brodeur, and L. Kocsis, “Transpositions and move
groups in monte carlo tree search,” in 2008 IEEE Symposium On
Computational Intelligence and Games, 2008, pp. 389–395.

[10] M. Johanson, N. Burch, R. Valenzano, and M. Bowling, “Evaluating
state-space abstractions in extensive-form games,” in Proceedings of the
2013 international conference on Autonomous agents and multi-agent
systems, 2013, pp. 271–278.

[11] J. McMahon and E. Plaku, “Sampling-based tree search with discrete
abstractions for motion planning with dynamics and temporal logic,”
in 2014 IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE, Sep. 2014.

[12] J. Hostetler, A. Fern, and T. Dietterich, “State aggregation in monte
carlo tree search,” Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 28, no. 1, Jun. 2014.

[13] ——, “Sample-based tree search with fixed and adaptive state abstrac-
tions,” Journal of Artificial Intelligence Research, vol. 60, pp. 717–777,
Dec. 2017.

[14] L. Han, J. Xiong, P. Sun, X. Sun, M. Fang, Q. Guo, Q. Chen,
T. Shi, H. Yu, and Z. Zhang, “Tstarbot-x: An open-sourced and
comprehensive study for efficient league training in starcraft II
full game,” CoRR, vol. abs/2011.13729, 2020. [Online]. Available:
https://arxiv.org/abs/2011.13729

[15] D. Lee, H. Tang, J. O. Zhang, H. Xu, T. Darrell, and P. Abbeel,
“Modular architecture for starcraft ii with deep reinforcement learning,”
in Fourteenth Artificial Intelligence and Interactive Digital Entertainment
Conference, 2018.

[16] N. Justesen and S. Risi, “Learning macromanagement in starcraft
from replays using deep learning,” in 2017 IEEE Conference on
Computational Intelligence and Games (CIG). IEEE, Aug. 2017.
[Online]. Available: https://doi.org/10.1109/cig.2017.8080430

[17] C. Schlick, “Quantization techniques for visualization of high dynamic
range pictures,” in Photorealistic rendering techniques. Springer, 1995,
pp. 7–20.

[18] A. Dockhorn, J. H. Grueso, D. Jeurissen, and D. Perez-Liebana,
“”Stratega”: A General Strategy Games Framework,” Artificial Intelligence
for Strategy Games Decision, AIIDE 2020 Workshop, 2020.

[19] N. Sturtevant, “Benchmarks for grid-based pathfinding,” Transactions on
Computational Intelligence and AI in Games, vol. 4, no. 2, pp. 144 –
148, 2012. [Online]. Available: http://web.cs.du.edu/∼sturtevant/papers/
benchmarks.pdf

[20] S. M. Lucas, J. Liu, and D. Perez-Liebana, “The N-Tuple Bandit
Evolutionary Algorithm for Game Agent Optimisation,” in 2018 IEEE
Congress on Evolutionary Computation (CEC). IEEE, 2018, pp. 1–9.

