
International Journal of Computational Intelligence Systems
Vol. 13(1), 2020, pp. 1207–1217

DOI: https://doi.org/10.2991/ijcis.d.200805.001; ISSN: 1875-6891; eISSN: 1875-6883
https://www.atlantis-press.com/journals/ijcis/

Research Article

Predicting Cards Using a Fuzzy Multiset Clustering of Decks

Alexander Dockhorn1,*, , Rudolf Kruse2,

1School of Electronic Engineering and Computer Science, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom
2Faculty of Computer Science, Otto von Guericke University Magdeburg Universitätsplatz 2, Magdeburg, 39106, Germany

ART I C L E I N FO
Article History

Received 29 Apr 2020
Accepted 31 Jul 2020

Keywords

Fuzzy multisets
Clustering
Deck analysis
Hearthstone

ABSTRACT
Search-based agents have shown to perform well in many game-based applications. In the context of partially-observable sce-
narios agent’s require the state to be fully determinized. Especially in case of collectible cards games, the sheer number of decks
constructed by players hinder an agent to reliably estimate the game’s current state, and therefore, renders the search ineffective.
In this paper, we propose the use of a (fuzzy) multiset representation to describe frequently played decks. Extracted deck proto-
types have shown to match human expert labels well and seem to serve as an efficient abstraction of the deck space. We further
show that such deck prototypes allow the agent to predict upcoming cards with high accuracy, therefore, allowing more accurate
sampling procedures for search-based agents.

© 2020 The Authors. Published by Atlantis Press B.V.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

Automated game playing poses many interesting challenges to the
development of artificial intelligence (AI) agents. While many stud-
ies presented good results on full information games, the agent’s
performance is often restricted by partial information on the cur-
rent game state. The online game Hearthstone: Heroes of Warcraft
(in short Hearthstone) [1] is such a partial information game, which
is currently very popular among players [2]. Hearthstone is a deck-
building card game in which players create their own decks to play
against each other. At the time of writing this paper, Hearthstone
includes roughly 2500 cards of which players choose a deck of 30
cards to face their opponent. While this paper will only discuss rules
and characteristics of Hearthstone that influence the deck build-
ing, the interested reader is referred to some excellent resources
on the web [1,3], which offer comprehensive reviews of the game’s
mechanics.

During a game, players do not know their opponent’s deck nor hand
cards, but observe newly played cards every turn. Since the game
state is partially unknown, missing information needs to be com-
pleted by the agent before it can apply any search-based algorithm
to determine its actions. Similar to other games, expert players of
Hearthstone are able to predict opponent moves to a certain degree.
This ability can be attributed to their knowledge of the current
meta-game, which can be understood as the likelihood of decks and
strategies an opponent may play. When building a deck, users often
combine cards and their effects with a certain strategy in mind.
Players of the game often refer to the concept of deck archetypes,
when they discuss decks with a common theme and similar card
sets. Such a deck archetype may develop due to the popularity of a

*Corresponding author. Email: a.dockhorn@qmul.ac.uk

certain strategy and its accompanied deck. However, many players
do not own all the necessary cards of a specific deck they are trying
to build, therefore, variants of these deck archetypes can exist.

In the context of research, the annual Hearthstone AI competition
compares agents based on their ability to play the game in various
game modes [4]. It has motivated many interesting works, which
often focus on the agent’s ability to optimize its own turn. Never-
theless, winning approaches also attempt to model the opponent’s
general strategy [5,6].

In regard of the creation of an autonomous agent, estimating the
opponent’s upcoming actions is crucial in choosing their own
actions. However, due to the opponent’s cards being hidden, agents
are limited in their capability of predicting these moves. Algorithms
like Information Set Monte Carlo Tree Search (MCTS) [7,8] try to
handle this problem by randomly sampling the opponent’s hand
cards to create a determinization of the game state. Based on the
generated determinization the search process simulates its own and
its opponent’s actions and chooses the most promising action. Nev-
ertheless, due to the large number of available cards, the accuracy
of this sampling strategy is fairly low and can therefore limit the
agent’s success. To reduce the sampling size, it has been suggested
to use a data base of frequently played decks. Agents using this sam-
pling strategy have resulted in agents with very high performance
[9,10] when being compared to other game-playing agents. Never-
theless, they require frequent updates of their deck data base in case
the decks’ popularity changes over time.

Sievers and Helmert [11] developed an extended version of Infor-
mation Set MCTS, which does not sample a single determinization,
but multiple determinizations of the game state. For each of these
determinizations, the algorithm performs a separate run of MCTS.

https://doi.org/10.2991/ijcis.d.200805.001
https://www.atlantis-press.com/journals/ijcis/
https://orcid.org/0000-0001-8711-7428
https://orcid.org/0000-0003-4981-2758
http://creativecommons.org/licenses/by-nc/4.0/

1208 A. Dockhorn and R. Kruse / International Journal of Computational Intelligence Systems 13(1) 1207–1217

The results of each run are later aggregated to determine the agent’s
next action. Sievers and Helmert evaluated their approach on the
game Doppelkopf, in which player’s need to guess their teammates
during the first turns of every game. This critical guess can have a
high impact on the following actions. Their approach showed to be
valuable in estimating the risk of the next action and improved the
agent’s overall performance. A study by Dockhorn et al. [12] further
extended this approach by using neural networks for guiding the
simulation, therefore, improving the quality of simulations during
the search process and its result.

In a recent paper, we introduced an autonomous agent for Hearth-
stone [6], which implements a similar approach to the one pre-
sented in Reference [12]. We observed that the prediction accuracy
and the agent’s game-playing performance is still limited, which
seems to be due to the enormous number of possible game state
determinizations. We reduced the game state’s sample space by
using information of previously played cards to predict likely cards
on the opponent’s hand [13]. Using card co-occurrences of previ-
ously seen cards and the opponent’s hand cards we were able to
sample game state determinizations with a higher likelihood. We
observed an improvement of the agent’s game-playing performance
in comparison to a uniform sampling. However, agents that were
given complete information still outperformed the proposed agent.
From this, we infer that further increasing the accuracy of the game
state sampling may in turn further improve the agent’s performance.

In the pursuit of creating a better agent for Hearthstone, we want
to enhance the agent’s prediction capabilities by modeling deck
archetypes. In Section 2 we review restrictions of the deck-building
process and provide a short overview of the theory of (fuzzy) multi-
sets and various clustering approaches. In the subsequent Section 3,
these methods will be used to develop a theoretical model of deck
archetypes and how to mine them from a database of recent games.
Especially the advantages of using fuzzy multisets instead of crisp
multisets are highlighted based on some explanatory examples. We
further present a case study, which is based on extracting deck
archetypes and their centroid representation from actual playing
data of the game Hearthstone (Section 4). We compare our result
with a hand-labeled data set and show that the developed approach
is able to identify deck archetypes of similar quality.

In this extended version of our conference paper [14] we added
a method for predicting upcoming cards based on identified deck
archetypes. The proposed sampling approach will be described in
Section 5. Finally, we will evaluate the agent’s ability to predict
upcoming cards in the opponent’s deck (Section 6). The paper con-
cludes with a short analysis of the proposed approach and its possi-
ble application to the development of game-playing agents.

2. PRELIMINARIES

We begin this section with a short overview of deck archetypes and
how they are defined in Hearthstone. A complete description of the
game Hearthstone will be beyond the scope of this paper. For this
reason, we would like to refer the interested reader to some excel-
lent web sources maintained by developer [1] and the community
[3]. We further provide detailed explanations on (fuzzy) multisets
and selected clustering algorithms, which will be used to model and
mine deck archetypes in Section 3.

2.1. Deck Building and Deck Archetypes

In Hearthstone a deck is a set of 30 cards, which can be chosen out
of the roughly 2500 cards currently available in the game. Each card
offers certain effects, which can be used to affect the current game
state. Some of these effects create useful synergies that players try to
exploit during the game, e.g., attack with a minion card, which will
get damaged during the fight, and follow up by healing this min-
ion using a spell card. The choice of cards to be put in the deck is
restricted by a small set of rules:

• players can only include cards they currently own (which are
unlocked on their player’s account)

• a deck belongs to one out of 9 hero classes who are limited to a
subset of about 400 cards each

• a deck can only include cards that are either neutral or specific
to the chosen hero class

• depending on its rarity, a card can be included either once or
twice

• a deck can be made for a specific game mode that adds
additional restrictions, e.g., standard or arena.

While players can create a large number of different decks not all of
them are equally successful. The most successful decks define the
meta and get known as meta-decks. Often these meta-decks will
spawn multiple variants in which players replace just a few cards
without changing the main theme of the deck.

A deck archetype describes the resulting cluster of decks with com-
mon card subsets. In this work, we will distinguish included cards
into two groups, namely core and variant cards. While the core of
a deck archetype contains cards that are included in all instances of
this archetype, the inclusion of variant cards depends on the given
instance. Core cards often define the main building blocks of the
archetype and its accompanying strategy. In contrast, variant cards
are often included to compensate for cards that the player does not
own or to reflect the player’s personal preferences. The following
subsection will introduce (fuzzy) multisets, which will later be used
to model deck archetypes.

2.2. (Fuzzy) Multisets/Bags

Multisets (also called bags) are collections of objects in which an
object can be represented multiple times. In this paper, we will
closely follow the notation introduced by Miyamoto [15] and Yager
[16]. We denote a multiset by

M = {CM(x)/x ∶ x ∈ X} (1)

in which X is the set of elements that can be included and CM a
function that maps each object xi to its number of copies ni in M:

CM ∶ X → ℕ CM(xi) = ni (2)

The collection of all possible multisets of a universal set X is denoted
by (X).

For comparing two multisets L and M inclusion is defined by

L ⊆ M iff CL(x) ⩽ CM(x) holds ∀x ∈ X (3)

A. Dockhorn and R. Kruse / International Journal of Computational Intelligence Systems 13(1) 1207–1217 1209

and (as a consequence) equality is given by

L = M iff CL(x) = CM(x) holds ∀x ∈ X (4)

Union, intersection, and addition are defined pointwise for all x ∈
X by

CL∪M(x) = CL(x) ∨ CM(x) (5)

CL∩M(x) = CL(x) ∧ CM(x) (6)

CL⊕M(x) = CL(x) + CM(x) (7)

where ∨ and ∧ imply the max and min operators.

A fuzzy extension of multisets was first introduced by Yager (using
the term fuzzy bags) [16]. Here, the sample fuzzy multiset

A = {(x, 0.5), (x, 0.3), (y, 1), (y, 0.5), (y, 0.2)}

denotes the occurrence of each object and its membership degree.

For simplicity we group objects of the same kind and their mem-
bership degrees, such as in

A = {(0.5, 0.3)/x, (1, 0.5, 0.2)/y}

in which the memberships {0.5, 0.3} and {1, 0.5, 0.2} correspond to
the objects x and y, respectively. Therefore, in fuzzy multisets CA(x)
is a finite multiset of the unit interval [16].

For each object x we further define the membership sequence to
be the decreasingly-ordered sequence of elements in CA(x). We will
make use of the standard form introduced by Miyamoto [15]:

(𝜇1A(x), … , 𝜇
p
A(x)), 𝜇1A(x) ⩾ … ⩾ 𝜇p

A(x) (8)

Let L(x;A) be the length of the membership sequence
(𝜇1A(x), … , 𝜇

p
A(x)) of multiset A be denoted by

L(x;A) = {max{j ∶ 𝜇 j
A(x) ≠ 0}, if x ∈ A

0, otherwise
(9)

Any operation between two multisets A and B requires the mem-
bership sequences of each object to be of equal length. We define
the length L(x;A,B) of the resulting membership sequence to be

L(x;A,B) = max{L(x;A), L(x;B)} (10)

For the sake of simplicity we assume a membership degree of

𝜇i
A(x) = 0; ∀i with L(x;A) < i ⩽ L(x;A,B) (11)

in case the object x is included less than L(x;A,B) times in the mul-
tiset A (likewise for B).

Similar to crisp multisets we can define inclusion, equality, union,
and intersection based on the membership sequences of each ele-
ment. Let A and B be two fuzzy multisets.

A ⊆ B iff 𝜇 j
A(x) ⩽ 𝜇 j

B(x) holds for
j = 1, 2, … , L(x;A,B), ∀x ∈ X

(12)

A = B iff 𝜇 j
A(x) = 𝜇 j

B(x) holds for
j = 1, 2, … , L(x;A,B), ∀x ∈ X

(13)

Similarly, union and intersection are defined pointwise for all x ∈ X
by

𝜇 j
A∪B = 𝜇 j

A(x) ∨ 𝜇
j
B(x)

j = 1, 2, … , L(x;A,B)
(14)

𝜇 j
A∩B = 𝜇 j

A(x) ∧ 𝜇
j
B(x)

j = 1, 2, … , L(x;A,B)
(15)

To clarify the notation we provide the following short example.
Consider the two fuzzy multisets A and B over the set of objects
{x, y, z}:

A = {(0.5, 0.2)/x, (1.0, 0.5, 0.2)/y}
B = {(1.0)/x, (0.7, 0.6)/y, (0.9, 0.5)/z}

The length per object is

L(x;A,B) = 2; L(y;A,B) = 3; L(z;A,B) = 2

For simplicity we extend the membership sequences for both mul-
tisets according to the maximal observed length:

A = {(0.5, 0.2)/x, (1.0, 0.5, 0.2)/y, (0.0, 0.0)/z}
B = {(1.0, 0.0)/x, (0.7, 0.6, 0.0)/y, (0.9, 0.5)/z}

Based on the extended membership sequences we can determine
union and intersection of both multisets:

A ∪ B = {(1.0, 0.2)/x, (1.0, 0.6, 0.2)/y, (0.9, 0.5)/z}

A ∩ B = {(0.5)/x, (0.7, 0.5)/y}

2.3. Clustering Algorithms

In this work, we are going to present the results of our deck
archetype clustering process. The interested reader is referred to
specialized literature on the topics of data mining and (fuzzy) clus-
ter analysis, which provide a more comprehensive review of alter-
native approaches than this paper could offer [17–21].

2.3.1. Partitional clustering

The clustering algorithm k-means [22] is the most common rep-
resentative of partitional clustering algorithms. During initializa-
tion, k cluster prototypes are randomly generated or selected from
the set of available data points. The cluster prototypes are itera-
tively updated to better represent and partition the points in the
data set. For this purpose, each data point is assigned to its closest
prototype. In a second step, the prototypes are moved to the cen-
ter of all assigned points to minimize the sum of squared errors
between a prototype and all its assigned data points. Given a clus-
tering 𝒞 = {ℂ1, … , ℂK}, let the sum of squared error be calculated
by

SSE(𝒞) =
K

∑
k=1

∑
xi∈ℂk

|xi − ⟨ℂk⟩|2, (16)

such that ⟨ℂk⟩ represents the centroid of clusterℂk. Due to its scor-
ing function, k-means favors clusters that are compact and well
separated.

1210 A. Dockhorn and R. Kruse / International Journal of Computational Intelligence Systems 13(1) 1207–1217

2.3.2. Hierarchical agglomerative clustering

Hierarchical agglomerative clustering is a class of bottom-up clus-
tering algorithms, in which each data point is assigned to a unique
cluster during initialization. These clusters are iteratively merged
according to a linkage criterion. The merge process is repeated until
a minimum number of clusters is reached or all data points belong
to a common cluster.

In this work we will make use of the following linkage criteria, which
both determine the distance of two clusters based on the distances
of points contained in differing clusters:

• single linkage [23] reports the minimal distance between two
points of different clusters

dsingle(ℂi, ℂj) = min
a∈ℂi, b∈ℂj

d(a, b) (17)

• complete linkage [24] reports the maximal distance between
two points of different clusters

dcomplete(ℂi, ℂj) = max
a∈ℂi, b∈ℂj

d(a, b) (18)

Similar to k-means, the complete linkage favors compact and well-
separated clusters. In contrast, the single linkage criterion may
exhibit a phenomenoncalled chaining in which existing clusters are
merged due to having two points, which are close to each other,
even though other points are far apart.

2.3.3. Density-based clustering

The Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) algorithm proposed by Ester et al. [25], forms clusters
by searching for dense regions of points. The 𝜀-neighborhood of a
point consists of all points with a maximal distance of 𝜀:

N𝜀(p) = {q ∈ X | d(p, q) ⩽ 𝜀} (19)

The region around a point is considered to be dense in case the
number of points in its 𝜀−neighborhood exceeds the thresholdmPts.
Points that satisfy this condition are called core points. A point q is
directly density-reachable from point p, if q ∈ N𝜀(p) and p is a core-
point. The transitive closure of directly density-reachable points is
called density-reachable. Finally, two points are density-connected
when a point exists from which both are density-reachable. A clus-
ter is described by the maximal set of points that are density-
connected to each other.

3. (FUZZY) MULTISET ANALYSIS OF DECK
ARCHETYPES

In the previous section, we discussed various building components
for the deck archetype mining algorithm we are proposing in this
section. We will first define how a deck archetype can be repre-
sented in terms of fuzzy multisets and further describe a mining
routine based on the clustering algorithms presented above.

A natural representation of a deck is a multiset of cards.

D = {CD(x)/x | x ∈ X} (20)

where CD(x) ∈ ℕ is the number of inclusions of card x in deck D.
Due to the restrictions of Hearthstone’s deck-building process, any
card can be included twice or less CD(x) ⩽ 2. It is also known that
each deck has exactly 30 cards, which is equal to the sum of object
counts or membership degrees in the deck.

3.1. Modelling Deck Archetypes

The Hearthstone community defines a deck archetype to be a col-
lection of decks with a common set of cards. In the following, we are
going to model a deck archetype to be the representative of a cluster
of decks.

Let’s consider two crisp decks D1 and D2 over the set of elements
X = {a, b, c, d, e, f} of the form

D1 = {1/a, 1/b, 2/c, 1/d, 0/e, 2/f}
D2 = {1/a, 1/b, 2/c, 0/d, 2/e, 1/f}

The intersection MD1∩D2 of these two decks is the multiset:

MD1∩D2 = {1/a, 1/b, 2/c, 0/d, 0/e, 1/f}

While the resulting set describes the core of these two decks, the
information of possible variants is lost during the generation of the
common subset. A similar problem occurs if we generate the union
MD1∪D2 of both decks:

MD1∪D2 = {1/a, 1/b, 2/c, 1/d, 2/e, 2/f}

While the union operator preserves information on the inclusion of
d and e we misleadingly represent these variants, i.e., based on its
count in MD1∪D2 variant object d is indistinguishable from the core
objects a and b (similar observations can be made for the objects c
and e). Hence, objects with different inclusion patterns inD1 andD2
are equally represented in the merged multiset. Replacing the union
with the addition operation would yield similar problems and also
increase the cardinality of the resulting multiset.

For the crisp multiset we define the average multiset M⟨L,M⟩ of two
multisets L andM to include the average number of occurrences per
object in these multisets and denote it by

C⟨L,M⟩(x) =
CL(x) + CM(x)

2 , ∀x ∈ X (21)

Hence, the average of clusters D1 and D2 is

M⟨D1,D2⟩ = {1/a, 1/b, 2/c, 0.5/d, 1/e, 1.5/f}

While the average operator already clearly distinguishes the inclu-
sion patterns for a, b, and d, we can still observe problems with
varying numbers of inclusion, e.g., a and e. However, extending the
representation to fuzzy multisets can help to solve this problem.

For this purpose, we transfer the average operator for crisp multisets
to fuzzy multisets by calculating the average of every element of an
object’s grade sequence. Thus, the average operator for two fuzzy
multisets A and B can be denoted by

𝜇i
⟨A,B⟩(x) =

𝜇i
A(x) + 𝜇i

B(x)
2 , i = 1,… , p, ∀x ∈ X (22)

A. Dockhorn and R. Kruse / International Journal of Computational Intelligence Systems 13(1) 1207–1217 1211

Representing both decks as fuzzy multisets results in the following
centroid:

D1 = {(1)/a, (1)/b, (1, 1)/c, (1)/d, (0)/e, (1, 1)/f}
D2 = {(1)/a, (1)/b, (1, 1)/c, (0)/d, (1, 1)/e, (1)/f}

M⟨D1,D2⟩ = {(1)/a, (1)/b, (1, 1)/c, (0.5)/d,
(0.5, 0.5)/e, (1.0, 0.5)/f}

To ensure a stable clustering process we want to adjust the def-
inition of the (fuzzy) multiset centroid to fulfill the associative
property, since the result of merging multiple multisets should be
independent of their merging order, specifically we want the fol-
lowing properties to be fulfilled:

C⟨⟨D1,D2⟩,D3⟩(x) = C⟨D1,⟨D2,D3⟩⟩(x), ∀x ∈ X
M⟨⟨D1,D2⟩,D3⟩ = M⟨D1,⟨D2,D3⟩⟩

(23)

Let a cluster ℂ be a multiset over the set {M1, … ,Mn} of multisets
over the set of objects X. The centroid ⟨ℂ⟩ of cluster ℂ, which is
itself a multiset over the set of objects X, should be independent of
the order of inclusion of said multisets, thus fulfilling the associative
property of the order of merges. For this purpose, we generalize the
average operator of two multisets (Equation 21) to take the number
of inclusions per multiset into account:

C⟨ℂ⟩(x) =
∑Mi∈ℂ

CMi
(x) ⋅ Cℂ(Mi)

∑j Cℂ(Mj)
, ∀x ∈ X (24)

The same can be done for a cluster of fuzzy multisets

𝜇k
⟨ℂ⟩(x) =

∑Mi∈ℂ
𝜇k
Mi
(x) ⋅ Cℂ(Mi)

∑j Cℂ(Mj)
,

k = 1,… , p, ∀x ∈ X
(25)

We will use the cluster centroid to represent the cluster and all its
contained decks in a single (fuzzy) multiset.

3.2. Clustering of (Fuzzy) Multisets

For mining deck archetypes we are going to apply the clustering
algorithms introduced in Section 2.3 to a data set of recently played
decks. Since these clustering methods are distance-based we need a
suitable distance measure to group data points into clusters of sim-
ilar objects.

To measure the distance of two multisets L and M we define their
Euclidean distance by

deuclid(L,M) =
(
∑
x∈X

(CL(x) − CM(x))2
) 1

2
(26)

and transfer the definition to be applied to fuzzy multisets A and B:

deuclid(A,B) =
(
∑
x∈X

L(x;A,B)
∑
i=1

(
𝜇i
A(x) − 𝜇i

B(x)
)2) 1

2
(27)

In our work, we will compare results based on the Euclidean dis-
tance with results obtained from applying the Jaccard distance mea-
sure. Here we use the general Jaccard distance [26]:

djaccard(X,Y) = 1 − |X ∩ Y|
|X ∪ Y| = 1 −

∑i min(xi, yi)
∑i max(xi, yi)

(28)

and apply it to two multisets L and M:

djaccard(L,M) = 1 −
∑x∈X min(CL(x),CM(x))
∑x∈X max(CL(x),CM(x))

(29)

Similar to the Euclidean distance we transfer the equation to mea-
sure the distance of two fuzzy multisets A and B:

djaccard(A,B) = 1 −
∑x∈X∑

L(x;A,B)
j=1 𝜇 j

A∩B

∑x∈X∑
L(x;A,B)
j=1 𝜇 j

A∪B
(30)

4. CLUSTERING EVALUATION

All project files for the following evaluation are available at Github
(see Ref. [27]). We evaluated our clustering approach using deck
data of the HSReplay website [28]. The website offers easy access
to a large collection of recently played games. Players can choose
to use the Hearthstone Deck Tracker plugin, which automatically
records played games and uploads them to the HSReplay servers.
In return, players can access information on the probability of their
opponent’s cards while playing the game.

We have extracted a deck data set that contains data from Febru-
ary 5th to 20th 2019. Each deck entry stores the deck’s cards, the
total amount of games recorded during the two weeks, its average
win-rate, average game-length, and average turn count. Addition-
ally, each deck entry provides information on the suggested deck
archetype, which was labeled by expert players. The deck data set
consists of a total of 956 distributed over 9 hero classes (cf. Table 1).

We will compare the result of each clustering method with the label-
ing provided in the data set. For this purpose, we use the external
validation measures homogeneity, completeness, and v-measure
[29]. While homogeneity is satisfied in case the clusters contain
only data points that are members of a single class (as labeled in the
ground truth), completeness is satisfied if all the data points that
are members of a given class are elements of the same cluster. The
v-measure is the harmonic mean of homogeneity and completeness.
All three measures provide values between 0.0 and 1.0, where larger
values are desirable.

We first calculated the distance matrix of decks of the same hero
class for each of the nine heroes. Figure 1 shows the heat map plot
of the Jaccard distance of all Druid decks (70) contained in the data
set encoded as fuzzy multisets. Clusters of similar groups are clearly
distinguishable. Euclidean distance looks similar but is not limited
to a range of 0.0 to 1.0, which makes it harder to define a cutoff
threshold for stopping the clustering process.

For each clustering algorithm we perform a parameter search. For
k-means we varied the number of clusters k and repeated the clus-
tering 10 times with varying initializations. The best-performing
clustering in terms of SSE will be reported as the final cluster-
ing result. In case of the hierarchical clusterings, we first create a

1212 A. Dockhorn and R. Kruse / International Journal of Computational Intelligence Systems 13(1) 1207–1217

Table 1 Distribution of hero classes in used data sets.

Hero nr Games in
Class Deck Data Set Replay Data Set

Druid 70 191
Hunter 171 264
Mage 118 344
Paladin 120 187
Priest 183 542
Rogue 89 205
Shaman 18 287
Warlock 108 243
Warrior 79 799
Total 956 3062

Figure 1 Jaccard distance matrix of Druid decks.

full hierarchy and horizontally cut it at each layer of the hierar-
chy. Finally, for DBSCAN we use the mPts-DBSCAN algorithm [30]
to quickly generate a hierarchy of clusters for all relevant param-
eterizations of the 𝜀-radius. We repeat this process for mPts = 2,
mPts = 5, and mPts = 10. For each retrieved clustering we report
homogeneity, completeness, and the v-measure in Figure 2. Addi-
tionally, the best-performing parameterization per clustering in
terms of the v-measure is reported in Table 2. Presented results are
calculated using the Jaccard distance. Using the Euclidean distance
yielded similar results and will therefore be omitted.

The results show that the best clustering result in terms of the
v-measure was achieved by single linkage (0.949) closely followed
by complete linkage (0.945). Both hierarchical methods, achieve
result in relatively stable v-measures for in the range of [70 − 130]
clusters. Since Hearthstone’s meta-game is dynamic, the number
of played deck archetypes will be varying over time. Their stable
clustering performance makes these two methods relatively robust
against these changes in the meta-game. In comparison, k-means
achieves a peak performance for 50 clusters. Finally, DBSCAN with
mPts = 2 performs similar, but is very sensitive to the chosen 𝜀
value and its resulting number clusters. This problem gets worse for
higher mPts values and is likely to be a result of the high dimnen-
sionality of the input space.

5. PREDICTING UPCOMING CARDS

In the previous sections we have shown how a clustering of decks
that resembles a human labeling can be extracted from a data set of
played games. In the following, we will propose a method to predict
upcoming cards based on a given clustering. Knowing the cluster
centroids, a prediction of the opponent’s cards can be made using
the multi-process described in the following subsections.

5.1. Keeping Track of Observed Cards

At the beginning of the game the agent starts with an empty fuzzy
multiset. During the opponent’s turn, the agent keeps track of all the
opponent’s actions. Each card played is added to the agent’s fuzzy
multiset with a membership grade of 1.0. In case the card has previ-
ously been played the membership sequence of this card is extended
by another entry of 1.0.

5.2. Determine the Most-Likely Deck
Archetype

During the agent’s turn, the agent first needs to determine the most-
likely deck archetype. This can be done by calculating the pair-wise
distance between the fuzzy multiset of observed cards and all the
cluster centroids, which represent the deck archetypes of the cur-
rent meta-game. The closest centroid is assumed to be the most-
likely deck archetype and will be considered for the card predic-
tion of upcoming cards. In case the agent can handle multiple state
determinizations, a distance-weighted sampling can be applied to
select one deck archetype per requested determinization. For this
purpose, all distances d(⟨ℂi⟩, obs) between the observation obs and
the fuzzy centroids ⟨ℂi⟩ of the i-th cluster are first transformed into
a similarity value by

sim(⟨ℂi⟩) = 1 − d(⟨ℂi⟩, obs)
maxi(d(⟨ℂi⟩, obs))

(31)

The resulting similarity values are further transformed into a prob-
ability distribution by

P(⟨ℂi⟩) =
sim(⟨ℂi⟩)

∑K
j=1 sim⟨ℂj⟩)

(32)

In the upcoming evaluation of the agent’s prediction accuracy, we
will only consider the most-likely deck archetype during the pre-
diction process. However, in the context of a game-playing agent
which uses a search process that can handle an ensemble of state
determinizations [11] it may be advantageous to extract cards from
a variety of possible archetypes to find a more robust sequence of
actions.

5.3. Sample Cards

The final step of the prediction process is the sampling of cards.
For this purpose, the agent first removes previously observed cards
from the centroids membership sequence. For each observed card,
the agent removes the highest value from the centroids member-
ship sequence of this card. The remaining entries in the centroid are

A. Dockhorn and R. Kruse / International Journal of Computational Intelligence Systems 13(1) 1207–1217 1213

Figure 2 Comparison of clustering results based on external validation measures homogeneity, completeness, and the v-measure.

Table 2 Best-performing parameter configuration per clustering
algorithm.

Algorithm Parameters Max V-Measure

k-means k = 50 0.919
HAC single linkage k = 120 0.949
HAC complete linkage k = 90 0.945
mPtsDBSCAN mPts = 2 𝜀 = 0.422 0.923
mPtsDBSCAN mPts = 5 𝜀 = 0.500 0.905
mPtsDBSCAN mPts = 10 𝜀 = 0.571 0.870

ranked according to the sum of their membership sequence. Sim-
ilar to the bigram-based prediction each card receives a sampling
probability based on the determined sum. The resulting probability
distribution can be used to sample cards based on their likelihood
to appear in the remaining cluster. Sampled cards are temporarily
removed from the decks centroid before the next cards are sampled.
This process will be repeated until a set of opponent cards has been
determined to fully determinize the current game state.

6. EVALUATING THE PREDICTION
ACCURACY

Given the prediction process proposed in the previous section, we
evaluate the resulting prediction accuracy in two prediction tasks.
First, we are testing the agent’s ability to predict cards of the remain-
ing game (Section 6.1), and second, we evaluate its accuracy to pre-
dict cards of the upcoming turn (Section 6.2). While the former
gives us an understanding how well the considered deck archetype
matches the opponent’s deck, the second scenario is especially rel-
evant when selecting the agent’s next actions.

In this evaluation, we will be using a second data set that con-
sists of human player replay data. Each record includes all observed
cards that have been played per match but does not contain any

information on the remaining cards of both players’ decks. Only
records that cover games of the standard game mode played during
the same patch period (21 February 2019 to 3 April 2019) will be
used for evaluating the proposed methods’ prediction performance.
Used data sets, the source code for the following evaluations, and
the raw results can be found in the public git-repository [27].

6.1. Card Prediction for the Remaining
Game

In this first evaluation, the accuracy of predicting upcoming cards
of the remaining game will be measured. Since the number of
observed cards and the complexity of turns changes over time,
results will be reported bucketed by turn. Each algorithm is used to
predict the 10 most-likely cards after each of the first 10 turns. To
assure that the prediction of the last turns can be reasonably tested,
only games that lasted at least 15 turns have been selected for this
evaluation which resulted in a total of 3062 games. The hero class
distribution is shown in (cf. Table 1).

Figure 3 shows the prediction accuracy for the best clustering per
algorithm (see Table 2) bucketed by turn. Rank 1 represents the card
that is believed to be the most-likely card to be played by the oppo-
nent during the remaining game. Vice versa rank 10 is believed to be
the 10th most-likely card. Additionally, we report the average accu-
racy of the 10 cards to be believed the most likely to appear. Since
the opponent is not able to play many cards per turn, we also report
the aggregated prediction accuracy in Figure 4. This value repre-
sents the accuracy of any of the top k-ranked cards being correct.

For all algorithms, the peak performance of predicting the highest-
ranked card is achieved in turns 6 or 7. This is likely to be a result
of the information gained until this turn, which helps the agent to
identify the deck. Since the replay length is limited, we do not know
all cards of the opponent’s deck. Even in case cards are correctly
predicted, chances are that the agent will not be able to observe them
due to winning or losing the game before the card can be played.

1214 A. Dockhorn and R. Kruse / International Journal of Computational Intelligence Systems 13(1) 1207–1217

Figure 3 Accuracy for the prediction of cards that may appear in the remaining turns of the game bucketed by turn. Subfigures (a)-(f)
show the prediction results based on the clustering result achieved using each algorithm’s best-performing parameters. The highest-ranked
card is marked in green while the prediction of the 10th ranked is shown in red. The average accuracy of all ten ranks is shown in blue.

Figure 4 Accuracy for the aggregated prediction of cards that may appear in the remaining turns of the game bucketed by turn.
Subfigures (a)-(f) show the prediction results based on the clustering result achieved using each algorithm’s best-performing parameters.
Reported values describe the accuracy of any of the top ranked cards being correct.

This is likely to be the cause of the steady decline of the prediction
accuracy from turn 8 on.

Since multiple cards need to be sampled to create a state deter-
minization of the opponent’s hand cards, we also compared the
aggregated prediction accuracy of the top k ranks. Values indicate
that there is more than a 50% chance that any of the top 2 ranked
cards will be seen througout the remainder of the game. Increasing
the number of considered cards increases this chance with dimin-
ishing returns for higher values of k. Overall, the aggregated top- 10

cards prediction achieves an accuracy of about 80% for all cluster-
ing algorithms from the 5th turn onward.

6.2. Card Prediction of the Next Turn

In a similar manner we evaluate the agent’s accuracy in predicting
cards of the next turn. Naturally, the accuracy will be much lower,
since the number of cards that can be played during the next turn
is limited.

A. Dockhorn and R. Kruse / International Journal of Computational Intelligence Systems 13(1) 1207–1217 1215

Figure 5 reports the prediction accuracies of the highest-ranked
card, the card with rank 10 and the average of the first 10 ranked
cards. While the accuracy during all turns is very low, the aggre-
gated values shown in Figure 6 look more promising. The predic-
tion accuracy of upcoming cards steadily increases until the 9th
turn at which it peaks at a value in between 40% and 50% depending
on the clustering algorithm used. As a result the agent has a 40%–
50% chance to correctly sample a card to be played during the next
turn when only considering the most-likely deck.

It needs to be noted that the sampling approach does not consider
if a card is playable during the next turn. Using an opponent model,
the agent still needs to determine which of the sampled cards is
likely to be played next.

7. CONCLUSION

In this paper we reviewed our automatic clustering process for deck
archetypes and evaluated it in the context of the collectible card

Figure 5 Accuracy for predicting cards that may appear in the remaining turns of the game bucketed by turn. Each model (a)-(f) ranks
cards according to their estimated probability of appearance. The validation set is used to determine the accuracy of each prediction for
every rank. The highest-ranked card is marked in green, while the prediction of the 10th ranked is shown in red. The average accuracy of
all ten ranks is shown in blue.

Figure 6 Accuracy for the aggregated prediction of cards that may be played by the opponent during its next turn bucketed by the turn the
prediction has been made. Each model (a)-(f) ranks cards according to their estimated probability of appearance. The validation set is used
to determine the accuracy in case the ranks 1-k are considered. Values describe the accuracy of the top ranked being correctly predicted.

1216 A. Dockhorn and R. Kruse / International Journal of Computational Intelligence Systems 13(1) 1207–1217

game Hearthstone. We chose to represent decks in the form of
(fuzzy) multisets and define a centroid of clusters of such multi-
sets. On the basis of fuzzy multisets, we clustered real player deck
data using multiple clustering algorithms. The result of each algo-
rithm was evaluated in context of real player data and has shown
to match human expert player labels of deck archetypes reasonably
well. Based on the extracted deck archetypes we proposed a sam-
pling algorithm, which can be used to determinate a state. Predicted
state determinizations have been evaluated regarding the prediction
accuracy of upcoming cards of the whole game and the opponent’s
next turn. Results show that the process is able to identify upcoming
cards with high accuracy. This forms an excellent basis for apply-
ing the proposed approach to state-determinizing search agents and
may allow agents to play complex games such as Hearthstone on a
higher level than they can currently achieve. Our next step will be
to compare state-determinization methods and their effects on an
agent’s game-playing performance.

While our process currently assumes a static meta-game, we are
eager to explore dynamic clustering and prediction schemes in the
future. Since web sources frequently update their databases, it may
be interesting to capture the dynamic evolvement of new strategies
and decks among human players. At the same time, it would allow
the agent to keep track of popular strategies to play accordingly.
A better understanding of the process in which decks emerge may
even help to construct new decks or to further balance the game.
However, much work needs to be done until these challenges can
be solved.

CONFLICT OF INTEREST

The authors declare they have no conflicts of interest.

AUTHORS’ CONTRIBUTIONS

We would not like to explicitely state the authors contributions.

Funding Statement

No funding to be reported.

ACKNOWLEDGMENTS

Nothing to report.

REFERENCES

[1] Blizzard Entertainment, Hearthstone webpage, 2019.
https://playhearthstone.com

[2] Statista Inc., Number of hearthstone: heroes of war-
craft players worldwide as of November 2018 (in mil-
lions), 2019. https://www.statista.com/statistics/323239/
number-gamers-hearthstone-heroes-warcraft-worldwide/

[3] Hearthstone Top Decks, Hearthstone beginner’s guide
2018 – guides, tips, and tricks for new players!, 2019.
https://www.hearthstonetopdecks.com/hearthstone-beginners-
guide-2017-guides-tips-tricks-new-players/

[4] A. Dockhorn, S. Mostaghim, Introducing the hearthstone-ai com-
petition, CoRR, abs/1906.04238, 2019.

[5] J.S.B. Choe, J.K. Kim, Enhancing monte carlo tree search for play-
ing hearthstone, in IEEE Conference on Computatonal Intelli-
gence, London, UK, 2019,

[6] A. Dockhorn, M. Frick, U. Akkaya, R. Kruse, Predicting oppo-
nent moves for improving hearthstone AI, in: J. Medina, M.
Ojeda-Aciego, J.L. Verdegay, D.A. Pelta, I.P. Cabrera, B. Bouchon-
Meunier, R.R. Yager (Eds.), 17th International Conference on
Information Processing and Management of Uncertainty in
Knowledge-Based Systems, IPMU 2018, Springer International
Publishing, Cham, Switzerland, 2018, pp. 621–632.

[7] J. Long, N.R. Sturtevant, M. Buro, T. Furtak, Understanding the
success of perfect information monte carlo sampling in game tree
search, in Proceedings of the Twenty-Fourth AAAI Conference
on Artificial Intelligence, (2010), pp. 134–140.

[8] D. Whitehouse, E. Powley, P. Cowling, Determinization and
information set monte carlo tree search for the card game dou
di zhu, in Proceedings of the 2011 IEEE Conference on Com-
putational Intelligence and Games (CIG’11), IEEE, Seoul, South
Korea, 2011, pp. 87–94.

[9] A. Santos, P.A. Santos, F.S. Melo, Monte carlo tree search exper-
iments in hearthstone, in 2017 IEEE Conference on Computa-
tional Intelligence and Games (CIG), IEEE, New York, NY, USA,
2017.

[10] P. García-Sánchez, A. Tonda, A.J. Fernández-Leiva, C. Cotta,
Optimizing hearthstone agents using an evolutionary algorithm,
Knowl. Based Syst. 188 (2020), 105032.

[11] S. Sievers, M. Helmert, A doppelkopf player based on UCT, in:
S. Hölldobler, R. Peñaloza, S.Rudolph (Eds.), Lecture Notes in
Computer Science (including subseries Lecture Notes in Artifi-
cial Intelligence and Lecture Notes in Bioinformatics), vol. 9324,
Springer, Cham, Switzerland, 2015, pp. 151–165.

[12] A. Dockhorn, C. Doell, M. Hewelt, R. Kruse, A decision heuris-
tic for Monte Carlo tree search doppelkopf agents, in 2017 IEEE
Symposium Series on Computational Intelligence (SSCI), IEEE,
Honolulu, HI, USA, 2017, pp. 1–8.

[13] E. Bursztein, I am a legend: hacking hearthstone using statistical
learning methods, in 2016 IEEE Conference on Computational
Intelligence and Games (CIG), IEEE, Santorini, Greece, 2016, pp.
1–8.

[14] A. Dockhorn, T. Schwensfeier, R. Kruse, Fuzzy multiset cluster-
ing for metagame analysis, in Proceedings of the 2019 Confer-
ence of the International Fuzzy Systems Association and the Euro-
pean Society for Fuzzy Logic and Technology (EUSFLAT 2019),
Atlantis Press, Paris, France, 2019.

[15] S. Miyamoto, Fuzzy multisets and their generalizations, in: C.
Calude, G. Puaun, G. Rozenberg, A. Salomaa (Eds.), Multiset Pro-
cessing, Mathematical, Computer Science, and Molecular Com-
puting Points of View [Workshop on Multiset Processing, WMP
2000, Curtea de Arges, Romania, August 21-25, 2000], vol. 2235
of Lecture Notes in Computer Science, Springer, Berlin, Heidel-
berg, Germany, 2000, pp. 225–236.

[16] R.R. Yager, On the theory of bags, Int. J. Gen. Syst. 13 (1986),
23–37.

[17] C.C. Aggarwal, C.K. Reddy, Data Clustering: Algorithms and
Applications, CRC Press, Boca Raton, FL, USA, 2013.

[18] M.R. Berthold, C. Borgelt, F. Höppner, F. Klawonn, Guide to
Intelligent Data Analysis. Texts in Computer Science, Springer,
London, UK, 2010.

https://www.statista.com/statistics/323239/number-gamers-hearthstone-heroes-warcraft-worldwide/
https://www.statista.com/statistics/323239/number-gamers-hearthstone-heroes-warcraft-worldwide/
https://www.hearthstonetopdecks.com/hearthstone-beginners-guide-2017-guides-tips-tricks-new-players/
https://www.hearthstonetopdecks.com/hearthstone-beginners-guide-2017-guides-tips-tricks-new-players/
https://doi.org/10.1109/CIG.2019.8848034
https://doi.org/10.1109/CIG.2019.8848034
https://doi.org/10.1109/CIG.2019.8848034
https://doi.org/10.1007/978-3-319-91476-3_51
https://doi.org/10.1007/978-3-319-91476-3_51
https://doi.org/10.1007/978-3-319-91476-3_51
https://doi.org/10.1007/978-3-319-91476-3_51
https://doi.org/10.1007/978-3-319-91476-3_51
https://doi.org/10.1007/978-3-319-91476-3_51
https://doi.org/10.1007/978-3-319-91476-3_51
https://doi.org/10.1109/CIG.2011.6031993
https://doi.org/10.1109/CIG.2011.6031993
https://doi.org/10.1109/CIG.2011.6031993
https://doi.org/10.1109/CIG.2011.6031993
https://doi.org/10.1109/CIG.2011.6031993
https://doi.org/10.1109/CIG.2017.8080446
https://doi.org/10.1109/CIG.2017.8080446
https://doi.org/10.1109/CIG.2017.8080446
https://doi.org/10.1109/CIG.2017.8080446
https://doi.org/10.1016/j.knosys.2019.105032
https://doi.org/10.1016/j.knosys.2019.105032
https://doi.org/10.1016/j.knosys.2019.105032
https://doi.org/10.1007/978-3-319-24489-1_12
https://doi.org/10.1007/978-3-319-24489-1_12
https://doi.org/10.1007/978-3-319-24489-1_12
https://doi.org/10.1007/978-3-319-24489-1_12
https://doi.org/10.1007/978-3-319-24489-1_12
https://doi.org/10.1109/SSCI.2017.8285181
https://doi.org/10.1109/SSCI.2017.8285181
https://doi.org/10.1109/SSCI.2017.8285181
https://doi.org/10.1109/SSCI.2017.8285181
https://doi.org/10.1109/CIG.2016.7860416
https://doi.org/10.1109/CIG.2016.7860416
https://doi.org/10.1109/CIG.2016.7860416
https://doi.org/10.1109/CIG.2016.7860416
https://doi.org/10.2991/eusflat-19.2019.74
https://doi.org/10.2991/eusflat-19.2019.74
https://doi.org/10.2991/eusflat-19.2019.74
https://doi.org/10.2991/eusflat-19.2019.74
https://doi.org/10.2991/eusflat-19.2019.74
https://doi.org/10.1007/3-540-45523-X_11
https://doi.org/10.1007/3-540-45523-X_11
https://doi.org/10.1007/3-540-45523-X_11
https://doi.org/10.1007/3-540-45523-X_11
https://doi.org/10.1007/3-540-45523-X_11
https://doi.org/10.1007/3-540-45523-X_11
https://doi.org/10.1007/3-540-45523-X_11
https://doi.org/10.1080/03081078608934952
https://doi.org/10.1080/03081078608934952
https://doi.org/10.1201/b15410
https://doi.org/10.1201/b15410
https://doi.org/10.1007/978-1-84882-260-3
https://doi.org/10.1007/978-1-84882-260-3
https://doi.org/10.1007/978-1-84882-260-3

A. Dockhorn and R. Kruse / International Journal of Computational Intelligence Systems 13(1) 1207–1217 1217

[19] C. Borgelt, R. Kruse, Agglomerative fuzzy clustering, in:
M. Ferraro et al. (Eds.), International Conference on Soft Meth-
ods in Probability and Statistics, Springer, Cham, Switzerland,
2016, pp. 69–77.

[20] R. Kruse, C. Borgelt, C. Braune, S. Mostaghim, M. Steinbrecher,
Computational Intelligence, Texts in Computer Science, second
ed., Springer, London, UK, 2016.

[21] K. Honda, S. Miyamoto, H. Ichihashi, Hidetomo Ichihashi. Algo-
rithms for Fuzzy Clustering: Methods in C-Means Clustering with
Applications, Studies in Fuzziness and Soft Computing 229, first
ed., Springer-Verlag, Berlin, Heidelberg, Germany, 2008,

[22] J.B. MacQueen, Some methods for classification and analysis of
multivariate observations, in 5th Berkeley Symposium on Math-
ematical Statistics and Probability, Berkeley, California, USA,
1967, vol. 1, pp. 281–297. https://projecteuclid.org/euclid.bsmsp/
1200512992

[23] R. Sibson, SLINK: an optimally efficient algorithm for the single-
link cluster method, Comput. J. 16 (1973), 30–34.

[24] D. Defays, An efficient algorithm for a complete link method,
Comput. J. 20 (1977), 364–366.

[25] M. Ester, H.P. Kriegel, J. Sander, X. Xu, A density-based algo-
rithm for discovering clusters in large spatial databases with
noise, in Second International Conference on Knowledge Discov-
ery and Data Mining (KDD-96), Portland, Oregon, USA, 1996,
pp. 226–231. ,

[26] M. Levandowsky, D. Winter, Distance between sets, Nature. 234
(1971), 34–35.

[27] A. Dockhorn, Project files and supporting material, 2020. https://
github.com/ADockhorn/StateDeterminizationExperiments

[28] HearthSim, HSReplay.net, 2019. https://hsreplay.net/decks/
[29] A. Rosenberg, J. Hirschberg, V-measure: aconditional entropy-

based external cluster evaluation measure, Comput. Linguistics. 1
(2007), 410–420.

[30] A. Dockhorn, C. Braune, R. Kruse, An alternating optimization
approach based on hierarchical adaptations of DBSCAN, in 2015
IEEE Symposium Series on Computational Intelligence, IEEE,
Cape Town, South Africa, 2015, pp. 749–755.

https://doi.org/10.1007/978-3-319-42972-4_9
https://doi.org/10.1007/978-3-319-42972-4_9
https://doi.org/10.1007/978-3-319-42972-4_9
https://doi.org/10.1007/978-3-319-42972-4_9
https://doi.org/10.1007/978-1-4471-7296-3
https://doi.org/10.1007/978-1-4471-7296-3
https://doi.org/10.1007/978-1-4471-7296-3
https://doi.org/10.1007/978-3-540-78737-2
https://doi.org/10.1007/978-3-540-78737-2
https://doi.org/10.1007/978-3-540-78737-2
https://doi.org/10.1007/978-3-540-78737-2
https://projecteuclid.org/euclid.bsmsp/1200512992
https://projecteuclid.org/euclid.bsmsp/1200512992
https://doi.org/10.1093/comjnl/16.1.30
https://doi.org/10.1093/comjnl/16.1.30
https://doi.org/10.1093/comjnl/20.4.364
https://doi.org/10.1093/comjnl/20.4.364
https://doi.org/10.1038/234034a0
https://doi.org/10.1038/234034a0
https://github.com/ADockhorn/StateDeterminizationExperiments
https://github.com/ADockhorn/StateDeterminizationExperiments
https://hsreplay.net/decks/
https://doi.org/10.1109/SSCI.2015.113
https://doi.org/10.1109/SSCI.2015.113
https://doi.org/10.1109/SSCI.2015.113
https://doi.org/10.1109/SSCI.2015.113

	Predicting Cards Using a Fuzzy Multiset Clustering of Decks
	1 INTRODUCTION
	2 PRELIMINARIES
	2.1 Deck Building and Deck Archetypes
	2.2 (Fuzzy) Multisets/Bags
	2.3 Clustering Algorithms
	2.3.1 Partitional clustering
	2.3.2 Hierarchical agglomerative clustering
	2.3.3 Density-based clustering

	3 (FUZZY) MULTISET ANALYSIS OF DECK ARCHETYPES
	3.1 Modelling Deck Archetypes
	3.2 Clustering of (Fuzzy) Multisets

	4 CLUSTERING EVALUATION
	5 PREDICTING UPCOMING CARDS
	5.1 Keeping Track of Observed Cards
	5.2 Determine the Most-Likely Deck Archetype
	5.3 Sample Cards

	6 EVALUATING THE PREDICTION ACCURACY
	6.1 Card Prediction for the Remaining Game
	6.2 Card Prediction of the Next Turn

	7 CONCLUSION

