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Abstract—In this paper we introduce an error concealment
method for VVC that error-conceals B-frames based on the
neural frame interpolation network RIFE. The network is trained
using the BVI-DVC dataset to infer even full-HD frames. We
integrate our proposed model in the VVC reference software
VTM for its evaluation. The average error of a whole GOP with
a single corrupted frame is decreased by 15% and 24% in terms
of PSNR measurement compared to block matching and frame
copy, respectively. To our knowledge, our approach is currently
the best performing error concealment algorithm for single slice
per B-frame settings.

Index Terms—VVC, video coding, error concealment

I. INTRODUCTION

The evolution of technologies for displaying and recording
of video signals has been responding to the rising demand for
higher resolution devices. To meet these demands, the state-of-
the-art video coding standard Versatile Video Coding (VVC)
[1] has been released in summer 2020. This is driving all
types of communication systems to increase their capacity of
conveying video. For instance, by 2022 nearly four-fifths of the
world’s mobile data traffic will be video [2]. Many applications
like video surveillance, tele-medicine and smart car navigation
systems require greater resolution video communication sys-
tems [3].

For the transmission and storage of video signals, the
imperative systems are video coding, channel coding and
communication systems. However, unidirectional video trans-
mission imposes extra challenges because error-free output can
not be guaranteed at the decoder side by any means. This
forces the execution of error concealment (EC) algorithms
in the video decoder to minimize the impact of errors that
cannot be corrected by the channel decoder. It is worth noting
that the impact of an uncorrected error increases with the
coding efficiency. On the one hand, each video compression
standard reaches a higher coding efficiency in comparison
to its predecessors. On the other hand, the complexity of
a suitable EC increases as well. Additionally, in the last
two video coding standards, VVC and High Efficiency Video
Coding (HEVC) [4], error resilience mechanisms have not
been included and there is no suggestion for EC. These new
standards assume error-free transmissions, which can not be
guaranteed for real systems.

The problem of EC has been of great importance since the
beginning of digital video communication systems. Several

solutions have been proposed for standards prior to HEVC
[5]–[8]. These algorithms were developed for codec settings
using independently decodable macroblocks (MB), in which
the spatio-temporal correlation of MBs is exploited to error-
conceal lost MBs. HEVC and VVC abandoned the MB-based
coding scheme, but similar behavior can implemented using
independently decodable slices. Few EC algorithms for HEVC
can be found in the literature [8]–[13]. These schemes address
EC with analytical methods by exploiting spatio-temporal
information available in the decoder to construct the lost
portion of the video. Recently, neural network-based frame
estimation [14], [15] yielded impressive results and can also
be used for EC: Sankisa et al. trained a deep neuronal network
to emulate EC for a single lost slice assuming a frame is
divided in multiple slices [16]. Its performance was not mea-
sured within any coding standard. Benjak et al. implemented
an EC algorithm based on the frame extrapolation network
PredNet and integrated it into the reference software VVC Test
Model (VTM) [17]. Since their approach is based on frame
extrapolation, it can error-conceal P-frames and I-frames but
not B-Frames.

In this paper we propose a machine learning-based EC
algorithm for B-frames in VVC. We focus on applications
which require high coding efficiencies for video communica-
tion systems over error prone channels. One slice per frame
is assumed, such that just one erroneous bit in the encoded
bit-stream can completely corrupt a whole video frame and
produce the worst video quality degradation for dependent
frames due to inter-prediction. Our model makes use of a
neural frame interpolation network to generate an estimated
version of any lost frame from already decoded frames within
a group of pictures (GOP). The impact of the error-concealed
frame on the video quality is evaluated within VTM. Currently,
VTM has no capability to detect and error-conceal a lost slice,
which means that our proposed EC algorithm is implemented
and adapted to the VTM decoder. I-frames cannot be error-
concealed using our proposed algorithm, but combined with
the work of Benjak et al. [17], all types of frames can be
error-concealed.

The remainder of this paper is organized as follows. In Sec-
tion II, we present the proposed algorithm. In Section III, an
evaluation and experimental results are given and Section IV
provides a conclusion for this paper.
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Fig. 1: Block diagram of VVC and NN method. FEC switches
between concealed frame (cf) and decoded frame (df) depend-
ing on whether a frame is uncorrectably damaged.

B B B B B B

B

B B B B B B B B B B

B B B B B B B

B B B B

B B

B

I
POC

Decode Order
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

I

0 6 5 7 4 9 8 10 3 13 12 14 11 16 15 17 2 21 20 22 19 24 23 25 18 28 27 29 26 31 30 32 1

0

1

2

3

4

5

H
ie

ra
rc

hy
 L

ev
el

Fig. 2: GOP structure used for all experiments

II. PROPOSED ERROR CONCEALMENT METHOD

On the transmitter side, the VTM video encoder compresses
the input video and delivers a bitstream or Network Abstrac-
tion Layer (NAL) unit stream to the channel encoder and com-
munication system blocks. The channel encoder intelligently
adds redundancy to the bitstream to increase its robustness
against errors. These encoded bits are conveyed over an error
prone channel. On the receiver side, the forward error cor-
rection (FEC) block recovers the bitstream from the encoded
bits by removing the redundancy added at the transmitter
side while it detects and corrects the errors added by the
channel. Afterwards, the bitstream is passed to the VTM video
decoder. Figure 1 shows a simplified block diagram of our EC
solution integrated to the VTM video decoder. The CABAC
block maps the received bitstream into syntax elements which
after the inverse transform and quantizer are added to the
prediction values. The prediction block contains the inter and
intra prediction and the buffer block holds the reference frames
needed for inter-prediction. For frames without uncorrectable
errors, the switch is in the decoded frame (df) position.

FEC triggers the EC algorithm when an uncorrectable error
is detected in the bit stream (dashed line). In this paper, we
configure the coding structure as shown in Figure 2. Each GOP
contains 32 frames with the 32nd frame always being an I-
frame. All other frames within a GOP are B-frames. A slice is
configured to contain an entire frame, since this configuration
offers the best bitrate trade-off between channel and source
coding [18]. Therefore, a NAL unit contains a whole frame as
well. Just one erroneous bit in a NAL unit is enough to prevent
CABAC from recovering the syntax elements of an entire
frame and thus the frame is considered to be lost. If an error is
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Fig. 3: PSNRY over all frames of a GOP. The frame with POC
8 is corrupted and estimated.
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Fig. 4: Quality measurement ∆PSNRY between error-free and
error-concealed video plotted over the relative position of a
lost frame in a GOP for NN.

detected, the EC algorithm is started: The neural network (NN)
estimates the lost frame from two already decoded frames from
a lower hierarchy level as indicated by the arrows in Figure 2.
One from the future and one from the past in relation to the lost
frame. Also, the switch is changed to the concealed frame (cf)
position, indicating that the lost frame will be replaced with the
error-concealed frame in the output sequence and saved in the
buffer block for the inter-prediction of the following frames.
Since the error-concealed frame is stored in the buffer, it may
also be used as an input for the estimation of another lost
frame.

The NN model that estimates any lost B-frame employs the
RIFE-Large architecture [15]. RIFE uses an intermediate flow
network named IFNet to estimate the intermediate flows Ft→0

and Ft→1 from an intermediate frame at t = 0.5 given two
input frames I0 and I1. The input frames I0 and I1 are then
individually backward warped using the intermediate flows
Ft→0 and Ft→1 resulting in the two coarsely reconstructed
frames Ît←0 and Ît←1. To fuse the two coarsely reconstructed
frames into one, RIFE estimates a fusion map M and a
residual signal ∆ using a context extraction network and a
fusion network from I0, I1, Ft→0, Ft→1, Ît←0 and Ît←1. The
estimated intermediate frame Ît is finally calculated following

Ît = M � Ît←0 + (1−M)� Ît←1 + ∆. (1)

The model was trained using the BVI-DVC dataset [19]
which contains 800 sequences with 64 frames each. The
spatial resolution varies between 3840x2176 and 480x272.
Due to GPU-memory limitations, the model was trained
using a resolution of 480x272. To overcome this limitation
and still enable the model to infer full-HD sequences, the



dataset was preprocessed to ensure that the model learns
scale-invariant features. The sequences with a resolution of
3840x2176 were down-scaled to 1920x1088 and afterwards
the following preprocessing steps were performed indepen-
dently: (a) All sequences were down-scaled to 480x272. (b)
All sequences were split into non-overlapping 480x272 parts.
(c) A central 480x272 section was cropped from all sequences.
After this procedure, which also serves as a form of data
augmentation, our training dataset contained 8600 sequences
with 64 frames each. The RIFE model was originally trained
by its authors using the Vimeo90K dataset [20] in [15]. In a
preliminary evaluation, we found that by training the network
with Vimeo90K leads to a PSNR loss of 0.15 dB for luma
in comparison to training it with our augmented BVI-DVC
dataset for resolutions of 1920x1080 while achieving similar
results for lower resolutions. The model was trained over
30 epochs with the full training dataset using AdamW as
optimizer and an initial learning rate of 0.0001. The learning
rate was gradually decreased to 0 using cosine annealing.

III. SIMULATION RESULTS AND DISCUSSION

All simulations were performed according to the JVET
common test conditions (CTC) [21]. Sequences of classes B,
C, D and E were encoded with the unmodified VTM 12.0
with quantization parameter values QP = {22, 27, 32, 37, 42}.
However, for the figures presented in this paper we use
QP = 22. Class A was not included in the simulations due to
GPU memory limitations and class F was not included since
screen content is not present in the BVI-DVC dataset. The
random access configuration of VTM is chosen with a GOP
size of 32. One slice per frame is selected. The VTM decoder

TABLE I: Expected value for ∆PSNR between error-free and
error-concealed video GOPs for all sequences within a class
and different QPs. An evenly distributed single bit error within
a GOP is assumed and different amounts of bits allocated to
the corresponding NAL units are taken into account.

NN BM FC
Video
class QP Y Cb Cr Y Cb Cr Y Cb Cr

22 4.17 1.76 2.49 4.42 1.78 2.51 5.06 2.23 3.00
27 4.15 1.63 2.31 4.40 1.66 2.32 5.11 2.11 2.82
32 3.72 1.39 1.95 3.96 1.40 1.94 4.66 1.84 2.42
37 3.20 1.06 1.55 3.43 1.05 1.54 4.11 1.41 1.96B

42 2.72 0.87 1.33 2.92 0.86 1.30 3.58 1.19 1.70
22 4.07 2.39 2.81 4.68 2.65 3.06 5.28 3.11 3.58
27 3.84 2.22 2.59 4.44 2.44 2.81 5.08 2.92 3.34
32 3.21 1.85 2.16 3.76 2.04 2.35 4.39 2.49 2.85
37 2.59 1.51 1.76 3.10 1.66 1.91 3.71 2.07 2.37C

42 2.04 1.26 1.43 2.49 1.41 1.57 3.06 1.78 1.99
22 3.30 1.65 2.02 4.67 2.15 2.66 5.26 2.44 2.97
27 2.94 1.40 1.75 4.31 1.80 2.30 5.05 2.12 2.68
32 2.31 1.08 1.40 3.52 1.39 1.82 4.26 1.64 2.15
37 1.69 0.81 1.08 2.71 1.01 1.37 3.32 1.19 1.63D

42 1.19 0.62 0.82 1.94 0.76 1.03 2.45 0.92 1.25
22 3.66 1.16 1.36 4.32 1.37 1.58 4.69 1.68 1.92
27 3.54 1.02 1.18 4.15 1.20 1.37 4.51 1.50 1.69
32 3.00 0.77 0.85 3.55 0.92 1.02 3.89 1.21 1.32
37 2.14 0.44 0.51 2.69 0.55 0.62 3.00 0.76 0.87E

42 1.42 0.31 0.35 1.86 0.39 0.43 2.13 0.57 0.64
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Fig. 5: ∆PSNRY between error-free and error-concealed
video for burst errors over number of lost frames and first
POC of the burst error (a). Probability P(∆PSNRY ≤ x) that
∆PSNRY between error-free and error-concealed video is less
or equal to x for an average frame if one evenly distributed
bit error occurs in the GOP (b).

is extended with NN based EC capabilities as described in
Section II. It should be noted that the input and output for
NN are whole frames and not patches. Additionally to NN,
we also implemented two additional well-known EC methods
as reference. The first reference method is frame copy (FC),
which conceals a lost frame by simply copying the closest
previously decoded frame in picture order count (POC) order.
The other reference method is block matching (BM) [13],
where two already decoded frames from a lower hierarchy
level are partitioned into blocks and matched to each other
to estimate motion vectors that are then used to error-conceal
the lost frame. The parameters of BM were set to block size
16x16, and search window size 64x64 following [13]. For the
adaptive filter of BM, the parameters were selected using a
grid search and set to a filter size of 3x3, filter threshold of
100 and a filter weight of 10.

We evaluated the performance of NN and compared it with
FC and BM. First we show the average PSNR for each frame
position within a GOP, as shown in Figure 3. An error in the
8th frame was introduced to every GOP such that the frame is
lost. Each EC method produces an estimated frame to replace
the lost one. PSNRY is computed for each frame, then it is
averaged over all frames belonging to the same relative frame
position in a GOP resulting in PSNRY in Figure 3. As it can
be seen in Figure 2, an error in the 8th frame (POC 8) should
only affect the POCs 1 to 15. This can also be observed in
Figure 3, where frames 1 to 15 suffer PSNR losses which
increase the closer they get to frame 8. As expected, the lost
frame 8 suffers the highest PSNR loss. As shown in the figure,
NN outperforms BM and FC regarding PSNRY by up to 2.2 dB
and 4.0 dB, respectively. Table I confirms this same tendency
in more detail. It gives the expected value for the average
PSNR difference between error-free decoded video and error-
concealed video over all frames in a GOP and over all GOPs
in every video of the CTC. In this setting, an evenly distributed
single bit error occurs in the GOP causing a single slice and



thus a single frame to be lost. NAL units of different slices
within the GOP allocate vastly different amounts of bits and
larger NAL units have a higher probability to get a random
bit error. We took this into account by calculating a weighted
sum with the weight being the probability that the lost frame
can be lost. It can been seen that NN performs better than
BM and that BM performs better than FC for all classes and
QPs regarding ∆PSNRY. For the chrominance, NN and BM
outperform FC for every class and QP, while NN outperforms
BM for all classes except class B in low QP ranges. Averaged
over all classes, ∆PSNRY is 3.85 dB, 4.52 dB and 5.09 dB
for NN, BM and FC for QP 22, respectively.

In Figure 4 the difference between frames of error-free
and error-concealed videos is measured and averaged over all
GOPs of all classes for NN. BM and FC are always slightly
below NN, but not plotted since the figure would otherwise
be hard to read. It can be observed that a loss of frame 16
causes the highest PSNRY decrease followed by the rest of
the frames. The results of Figure 4 show a symmetry that
can be explained by the hierarchy levels in Figure 2. Frames
within the same hierarchy level cause the same PSNRY loss.
The higher the hierarchy level of a lost frame, the lower the
PSNRY loss is. This is to be expected, since frames with a
lower hierarchy level have more dependent frames. Moreover,
the temporal distance to the reference frames used by the EC
algorithm is longer for frames in lower hierarchy levels.

During the transmission of signals, errors often occur as
burst errors which may affect multiple adjacent frames. We
ran the same experiment as described for Figure 4 again with
the difference that we took bursts errors with up to 4 erroneous
frames into account. Figure 5(a) shows ∆PSNRY for burst
errors in the range 1 - 4 starting at frame positions 1, 2,
4, 8 and 16 which represent the hierarchy levels 5, 4, 3, 2
and 1, respectively. As discussed before, the hierarchy level
of lost frames within the coding structure has a significant
impact on the expected PSNR loss. This behavior is once more
confirmed in Figure 5(a). Furthermore, it can be observed that
the hierarchy level of the starting frame has a much higher
impact on the PSNR loss than the burst size. This is partly
caused by the chosen positions of the first frame in the burst
errors. If a burst error would start at frame 15, the following
frame in coding order would be frame 24. Frame 24 and 15
are in hierarchy level 2 and 5, respectively. Therefore, frame
24 has a higher impact on the PSNR loss than frame 15.

If one evenly distributed single bit error is added to a GOP,
the probability Pnaff that a randomly selected frame within that
GOP is not affected by this error is

Pnaff =

5∑
h=1

PH(h) ·
(

1− Naff(h)

N

)
= 0.67, (2)

where h is the hierarchy level, PH(h) the probability that a
frame in h has a bit error, Naff (h) the number of dependent
frames for h in the coding structure and N = 31 the total
number of frames within a GOP excluding the I-frame. That
means that the probability for a randomly selected frame to
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Fig. 6: The top row shows error-free decoded frames of
the BasketballDrive sequence. In the other rows, POC 2 is
estimated using NN, BM and FC approach. POC 1 and 3 are
encoded with POC 2 in their reference picture lists. In each
frame its corresponding PSNRY is given.

have zero PSNR loss within an erroneous GOP is Pnaff = 0.67.
The probabilities for PSNR losses higher than zero can be
seen in Figure 5(b). As expected, all graphs start at 0.67,
but the graph for NN shows higher probabilities for the same
∆PSNRY, e.g. P(∆PSNRY ≤ 10dB) is 0.81, 0.76 and 0.73
for NN, BM and FC, respectively. Figure 6 shows frames
generated by all three EC methods. It can be observed that
the frames error-concealed using NN are sharper than those
using BM.

Both EC algorithms increase the decoder time complexity
for error-concealed frames relative to non error-concealed
frames. Using one CPU core, the complexity increases by a
factor of 251 for BM and 536 for NN. The complexity increase
for NN drops to a factor of 8.5 when a GPU is used.

IV. CONCLUSION

This paper presents a neural network-based EC algorithm
for VVC by estimating a lost B-frame from two success-
fully decoded, temporally neighboring frames. Its performance
was evaluated for video communication systems over error
prone channels using the CTC for neural network-based video
coding. We implemented our proposed method NN and the
reference methods BM and FC in the reference software VTM
12.0. NN outperforms BM and FC for all video classes in
terms of PSNR measurements. The probability that the PSNR
loss of a frame is lower than 10 dB increased by 7% from
0.76 for BM to 0.81 for NN. Compared to FC, the probability
increased by 11% from 0.73. The expected PSNR loss value
for a GOP with a single frame error decreased by 15% from
4.52 dB for BM to 3.85 dB for NN and by 24% from 5.09 dB
for FC. To our knowledge, NN is currently the best performing
EC algorithm for lost B-frames, which makes it a viable option
as an EC solution for VVC.
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