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Abstract

Guitar effects are commonly used in popular music to shape the guitar sound to
fit specific genres, or to create more variety within musical compositions. The
sound is not only determined by the choice of the guitar effect, but also heavily
depends on the parameter settings of the effect. Previous research focused on the
classification of guitar effects and extraction of their parameter settings from solo
guitar audio recordings. However, more realistic is the classification and
extraction from instrument mixes. This work investigates the use of convolution
neural networks (CNNs) for classification and parameter extraction of guitar
effects from audio samples containing guitar, bass, keyboard and drums. The
CNN was compared to baseline methods previously proposed, like support vector
machines and shallow neural networks together with predesigned features. On two
datasets, the CNN achieved classification accuracies 1− 5 % above the baseline
accuracy, achieving up to 97.4 % accuracy. With parameter values between 0.0
and 1.0, mean absolute parameter extraction errors of below 0.016 for the
distortion, below 0.052 for the tremolo and below 0.038 for the slapback delay
effect were achieved, matching or surpassing the presumed human expert error of
0.05. The CNN approach was found to generalize to further effects, achieving
mean absolute parameter extraction errors below 0.05 for the chorus, phaser,
reverb and overdrive effect. For sequentially applied combinations of distortion,
tremolo and slapback delay, the mean extraction error slightly increased from the
performance for the single effects to the range of 0.05 to 0.1. The CNN was
found to be moderately robust to noise and pitch changes of the background
instrumentation suggesting that the CNN extracted meaningful features.

Keywords: convolutional neural networks; guitar effects; parameter extraction;
music information retrieval

1 Introduction
Audio effects are a wide-spread tool used in the production and creation of music

[1]. They find application in all kinds of music and are applied to virtually all kinds

of instruments such as vocals, guitar, keyboard and so on [2]. For example, in the

domain of guitar-centered music, a prominent and well known effect is the overdrive

effect, closely related to the distortion effect. A multitude of other effects exist such

as phaser, delay, ring-modulator and many more [3]. Several professional guitarists

use guitar effects to create an unique, distinctive sound, strongly associated with

the artist, a prime example being U2’s the Edge. For the production of music, and
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the creative process of writing music, automatic creation of guitar effect settings

that yield a desired sound can be of interest. For this purpose, extraction algorithms

are required, that map audio recordings or signals to effect classes and associated

effect parameter settings.

1.1 Background

Early work in this domain focused solely on the classification of guitar effects. Stein

et al. pioneered this area of research with their fundamental work [4, 5], using a

large set of audio features and a support vector machine to classify eleven guitar

effects. They achieved an accuracy of 97.7 % for solo guitar recordings.

Further work regarding the classification of guitar effects was done by Eichas et

al. [10] and Schmitt et al. [11], the latter investigating the importance of audio

features and comparing the so called bag-of-audio-words approach to the use of

functionals. They found both approaches to achieve similar high performance. The

issue of deriving or extracting the parameter settings of a guitar effect from audio

samples is closely related to sound matching [12], the estimation of synthesizer

parameters replicating a certain given sound. Yee-King et al. [13] proposed a special

long short-term memory network structure for this purpose, and achieved a close

sound for 25 % of their test set. Sheng and György [14] investigated extraction of

dynamic range compression parameter settings from audio samples of violins and

drums using several audio features and regression models. For the same purpose,

the authors investigated deep neural networks [15] and found them to improve

performance, predicting multiple dynamic range compression parameters at once

from monophonic and polyphonic audio samples.

Research regarding the extraction of guitar effect parameter settings is scarce. So

far, only three previous works exist: Jürgens et al. [16] pioneered this task using

shallow neural networks combined with specifically designed features for each guitar

effect, achieving or surpassing the (presumed) performance of a human expert.

Comunità et al. [17] used convolutional neural networks (CNNs) to extract the

parameter settings of different implementations of distortion related guitar effects

from monophonic and polyphonic audio samples, achieving below 0.1 root mean-

square error in all cases. In [18], a CNN was used for classification of guitar effects

from instrument mixes as well as extraction of their parameter settings. The CNN

Table 1: Overview of the used guitar effect plugins. The variable parameters are

those varied to generate the audio samples of the datasets. To generate the slapback

delay effect, the feedback delay with its feedback parameter set to zero was used.

Manufacturer Plugin-Name Effect Type Variable Parameters
Kjaerhus Audio [6] Classic Chorus Chorus Rate, Depth

Vibrato Rate, Depth
Classic Delay Feedback Delay Time, Feedback, Mix

Slapback Delay Time, Mix
Classic Flanger Flanger Rate, Depth, Feedback
Classic Phaser Phaser Rate, Depth
Classic Reverb Reverb Room Size, Mix

SimulAnalog [7] RednefTwin Equalizer Bass, Mids, Treble
Tube Screamer Overdrive Gain, Tone

PechenegFX [8] Pecheneg Tremolo Tremolo Rate, Depth
Buzzroom [9] OctBUZ Distortion Gain, Tone
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Figure 1: Tablature showing the drum pattern used in all samples. All other

instruments played a single note for the duration of two seconds, i.e. one bar.

was used for the extraction of single guitar effects limited to distortion, tremelo and

slapback delay. The CNN yielded presumed human expert level results for all effects

considered. Except for [18], none of these research papers considered extraction of

guitar effect parameter settings from instrument mixes, i.e. audio recordings or

signals, in which several instruments play at once.

1.2 Contribution

This manuscript expands our results of [18] in several ways: i) multi-effects are also

considered, i.e. sequences of guitar effects applied one after the other, ii) results

are expanded to four additional guitar effects, namely chorus, reverb, overdrive

and phaser, proving the versatility of the CNN, and iii) the error analysis is more

indepth.

For this purpose, a custom dataset was created consisting of instrument mixes of

guitar, bass, keyboard and drums using virtual instruments. As baseline approach

for effect classification, we used the method of Stein et al. [4], and for extraction of

the effect parameter settings we used the method of Jürgens et al. [16] and compared

it to the performance of a CNN at different volume levels of the instrument mix.

Four different time-frequency representations - the chromagram, the spectrogram,

mel-frequency cepstral coefficients (MFCCs) and gammatone frequency cepstral

coefficients (GFCCs) - were assessed with respect to the achieved CNN performance.

Because guitar effects can and are used often in conjunction (”effect chains”), we

investigated the extraction of the parameter settings for single guitar effects as well

as for up to three guitar effects at once. The focus in the extraction of the guitar

effect parameter settings lied on the distortion, tremolo and slapback delay effect

to allow a comparison to the method by Jürgens et al. [16]. Additionally, using the

knowledge of the previous experiments, we considered the phaser, chorus, reverb and

overdrive effect as well. Because a common issue regarding artificial neural networks

is their robustness [19, 20] and proneness to over-fitting [21], the sensitivity of the

CNN towards noise on the input data as well as different pitches of the background

instrumentation was assessed as well.

To shorten the phrasing a little, guitar effect parameter setting extraction will be

called effect parameter extraction or just parameter extraction.

Section 2 describes the datasets used for classification and parameter extraction,

the time-frequency representations used and the training and evaluation of the

CNNs. Section 3 reports the classification, extraction and robustness results. Section

4 discusses and interpretes these results and the manuscript is concluded in Section

5.
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Figure 2: Audio sample with tremolo on the guitar at (a) lowest (-36 dB) and (b)

highest (+3 dB) mixing volume after peak normalization. The two large peaks

in (b) are due to the snare hits. Modulation depth of the tremolo effect was 1.0,

modulation frequency was 0.15.

2 Method and Materials
This section first explains in detail the creation of the used datasets. Then, the

investigated time-frequency representations as well as the architecture of the con-

volutional neural networks are discussed. Finally, the robustness and error analysis

is presented.

2.1 Dataset

Two datasets were created specifically for the investigations of this work, one for

guitar effect classification, abbreviated GEC-GIM (for Guitar Effect Classification -

Guitar Instrument Mix), and one for guitar effect parameter extraction, abbreviated

GEPE-GIM (for Guitar Effect Parameter Extraction - Guitar Instrument Mix). The

motivation to create two separate datasets was the large number of samples that

had to be created, if the same amount of parameter settings used for GEPE-GIM

had been used for GEC-GIM. The very same effect plugins of Stein et al. [4] and

Jürgens et al. [16] were used in this work, and are listed in Tab. 1. Effect descriptions

and their parameters can be found in [4, 16, 3]. Additionally, to further test the

capability of the CNN, the monophonic guitar samples of the IDMT-SMT dataset

from Stein et al. [16] were used for classification.

GEC-GIM, the dataset for guitar effect classification from instrument mixes, used

exactly one fixed (relative) mixing volume of 0 dB, where the mix was created as

described shortly, however, in contrast, in total eleven guitar effects were used. For

each combination of guitar plugin, instrument mix and guitar effect, 60 random

settings of the effect parameters were used. This resulted in 1440 samples for each

effect. The dataset consisted of twelve instrument combinations of the guitar and

the other instruments, i.e. guitar and keyboard, guitar and bass, guitar and bass

and keyboard, guitar and bass and keyboard and drums. It also covered solo guitar

as well as guitar together with individual drum parts, i.e. guitar and snare, guitar

and crash cymbal etc. In total, this dataset contained 15,840 audio samples.
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Figure 3: Example of all four investigated time-frequency representations of one

sample of the GEPE-GIM dataset with distortion on the guitar and gain set to

0.7 and tone set to 0.85 at a mixing volume of +3 dB.

GEPE-GIM, the dataset used to investigate parameter extraction, consisted of

instrument mixes of guitar, keyboard, bass and drums. It consisted of single guitar

effect samples, where only one individual guitar effect was applied to the guitar

signal, and multi effect guitar samples, where two or three guitar effects were ap-

plied sequentially forming an effect chain. All instruments were virtual instruments

and created using the following plugins: Sonivox Bright Electric Guitar and Ample

Guitar LP (guitar), Bitsonic Keyzone Classic (keyboard), Ample Bass P Lite (bass)

and Manda Audio MT POWER DrumKit 2 (drums). All plugins are sample-based

and thus could be expected to create realistic waveforms/sounds. The IDMT-SMT

dataset was not considered for the creation of these datasets, because the gui-

tar samples vary considerably in their initial silence. Due to that, the instrument

mixes would sound odd without further processing. This would have complicated

the dataset creation (using midi data) and the investigations without a clear ad-

vantage. The chosen guitar plugins are also using real recordings of electric guitars,

and thus are just as realistic as the recordings of the IDMT-SMT dataset.

While guitar, keyboard and bass played a single note in each sample, starting at

the exact same time lasting for two seconds, the drums played the pattern depicted

in Fig. 1. The guitar and keyboard played the notes E2 and E3, bass played the

notes E1 and E2. The guitar note was independently varied from keyboard and

bass, however, keyboard and bass notes were always moved together by an octave

to reduce the amount of data.

Keyboard, bass and drums were mixed at different volume levels with the guitar

according to

premix(t) = b(t) + k(t) + d(t) (1)
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Table 2: Structure of the convolutional neural networks (CNNs) used for (a) effect

classification and (b) parameter extraction. Each guitar effect investigated had two

parameters resulting in an output dimension of two for the CNN for extraction of

the guitar effect settings.

(a) CNN Structure for Effect Classification

Layer Kernel Filter Activation Dropout

Convolutional 3 × 3 32 ReLU -

Batch Norm. - - - -

Max Pooling 2 × 2 - - -

Convolutional 3 × 3 64 ReLU 0.3

Batch Norm. - - - -

Max Pooling 2 × 2 - - -

Flatten - - - -

Dense - 64 ReLU 0.3

Batch Norm. - - - -

Dense - 64 ReLU 0.3

Batch Norm. - - - -

Dense (Output) - 11 Softmax -

(b) CNN Structure for Effect Parameter Extraction

Layer Kernel Filter Activation Dropout

Convolutional 3 × 3 6 ReLU -

Batch Normalization - - - -

Max Pooling 2 × 2 - - -

Convolutional 3 × 3 12 ReLU 0,2

Batch Normalization - - - -

Max Pooling 2 × 2 - - -

Flatten - - - -

Dense - 64 ReLU 0,2

Batch Normalization - - - -

Dense - 64 ReLU 0,2

Batch Normalization - - - -

Dense (Output) - 2 Sigmoid -

and

mix(t) = g(t) + α · premix(t), (2)

where b(t), k(t), d(t) and g(t) are the bass, keyboard, drum and guitar signals,

respectively. All guitar effects were applied to the signal g(t) before mixing. The

parameter α controlled the (relative) mixing volume and was set such that

β = 20 · log10

maxtα|premix(t)|
maxt|g(t)|

(3)

equaled the desired mixing volumes. The mixing volumes used were β =

−36 dB,−24 dB,−12 dB,−6 dB,−3 dB, 0 dB and β = +3 dB. After mixing, the

waveforms mix(t) were peak normalized, yielding the final audio samples. Sub-

jectively, the mix was considered realistic in the sense that, e.g. keyboard and bass

were clearly and loudly audible, not overshadowing each other, and the guitar clearly

moved towards the background with increasing mixing volume. An example wave-

form of an audio sample with tremolo on the guitar showing the lowest and highest

mixing volume after normalization is depicted in Fig. 2. For each of these guitar

effects, their parameters were varied in steps of 0.05, starting at 0.05 and ending at

1, creating a grid of parameter values with 400 tuples of parameter settings. Thus,

for each mixing volume, 23 · 400 = 3200 samples per guitar effect were generated,

where the multiplication with 23 is due to the two guitar plugins and the two octaves

played by guitar, keyboard and bass.

To create multi effect samples, distortion, tremolo and slapback delay were ap-

plied in conjunction, one after the other. All possible combinations were considered.

The order in which the effects were applied (and bypassed if not present) was not

changed, i.e. always distortion first, tremolo second and slapback delay last. In con-

trast to the generation of the single effect samples, for the generation of multi effect

samples using two effects, 800 random tuples of parameter settings were used. For



Hinrichs et al. Page 7 of 25

Time in s0
64

128
256
512

1024
2048
4096
8192

16384

Fr
e
q
u
e
n
cy

 i
n
 H

z

0 0.5 1 1.5 2
Time in s

0
64

128
256
512

1024
2048
4096
8192

16384

Fr
e
q
u
e
n
cy

 i
n
 H

z

-80 dB

-60 dB

-40 dB

-20 dB

-80 dB

-60 dB

-40 dB

-20 dB

+0 dB

Figure 4: Spectrogram of an audio sample at 0 dB mixing volume using distortion

with gain set to 0.15 and tone set to 0.8 after normalization of the dataset as

explained in Sec. 2.2 without (top) additional noise, i.e. α = 0, and with (bottom)

additional noise with α = 0.001 and α as explained in Sec. 2.3.2. The noise is

noticeable mostly at low magnitudes.

three effects, 1200 random tuples of parameter settings were used. The reason was

to reduce the total amount of data.

Finally, to extend the investigation beyond the guitar effects considered by Jürgens

et al. [16], we included four additional guitar effects in the dataset, namely chorus,

phaser, overdrive and reverb. No effect combinations were considered in this case.

Single and multi effects combined, 268,800 samples were created for the investigation

of parameter extraction.

All audio waveforms were sampled at 44.1 kHz and had a duration of two seconds,

each corresponding to four quarter notes or one bar at 120 beats per minute and

four quarters time.

2.2 Architecture

Four different time-frequency representations were investigated as input of the

CNNs. These were the (magnitude) spectrogram, the chromagram, mel-frequency

cepstral coefficients (MFCCs) and gammatone frequency cepstral coefficients

(GFCCs). The chromagram is a mapping of an audio waveform to the twelve semi-

tones of the western music that yields the energy in the respective semitones. See

[22] for a description of the chromagram and the spectrogram, and [23] for a descrip-

tion of the MFCCs and GFCCs. While the spectrogram and MFCCs were chosen

due to their wide-spread use and known good performance, the GFCCs because

some publications [24, 25] find them to be slightly superior to MFCCs in audio

classification tasks. Finally, the chromagram was considered due to its widespread

usage in music signal processing.

For the MFCCs and GFCCs, 40 coefficients were used, denoted MFCC40 and

GFCC40 in the figures. For the computation of the GFCCs, the sampling rate had
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Table 3: 95 % confidence intervals for the classification accuracy of the convolutional

neural network (CNN) using the listed time-frequency representations as well as the

accuracy of the baseline support vector machine (SVM) using the method by Stein

et al. [4]. As subsequent parameter extraction is not necessarily compromised by a

confusion of slapback delay (SD) and feedback delay (FD), the respective accuracies,

when SD and FD are treated as the same effect, are given as well.

Method GEC-GIM GEC-GIM (SD = FD) IDMT-SMT
SVM 85.0 % ± 0.44 % 89.4 % ± 0.32 % 96.1 % ± 0.3 %
CNN + Spectrogram 90.0 % ± 0.57 % 95.8 % ± 0.52 % 97.4 % ± 0.7 %
CNN + MFCCs 87.7 % ± 0.52 % 93.4 % ± 0.32 % 96.5 % ± 0.13 %
CNN + GFCCs 24.7 % ± 27.3 % 28.7 % ± 30.47 % 97.4 % ± 0.3 %
CNN + Chromagram 87.0 % ± 0.64 % 92.9 % ± 0.12 % 86.2 % ± 0.2 %

to be reduced to 16 kHz. An example of the four time-frequency representations

applied to the same audio sample is shown in Fig. 3. The dimensions of the images,

obtained by applying the time-frequency representations to the audio samples, were

256 x 173 (spectrogram), 40 x 173 (MFCCs), 12 x 173 (chromagram) and 40 x 193

(GFCCs). The time-frequency representations were normalized before being passed

to the CNN using sklearn’s Standard Scalar class.

Two slightly different CNNs were used, one for effect classification and one for

the parameter extraction. The CNN structures are given in Table 2 and were based

on [17]. The total number of weights of the CNN used for classification ranged from

192,587 (chromagram) to 10,436,683 (spectrogram) with 1,368,139 for MFCCs and

1,597,515 for GFCCs. The total number of weights of the CNN used for parame-

ter extraction ranged from 37,146 (chromagram) to 1,957,914 (spectrogram) with

257,562 for MFCCs and 300,570 for GFCCs. In the case of effect classification,

the output dimension was eleven, matching the number of effects. In the case of

parameter extraction, the output dimension for single effect parameter extraction

was two, matching the number of parameters per effect. Accordingly, the output

dimensions were four and six for multi effect parameter extraction.

The CNNs were trained for 70 epochs with a learning rate of 0.001 using the

adam solver for single effect parameter extraction. For classification and multi effect

parameter extraction, 100 epochs were used. The loss functions for the classification

and extraction of the parameters were the cross-entropy loss and mean squared

error, respectively. A 80%/20% training/test split of the datasets was used where

the test set was only used for evaluating the CNNs performance and did not influence

the training process in anyway. Five fold cross validation was performed and each

training used a new training/test split. The batch size was set to 64 for classification

and 128 for parameter extraction.

2.3 Experimental Setup

2.3.1 Baseline

For effect classification we used the support vector machine (SVM) classifier as de-

scribed in [4]. It was later also tested in [16]. In our case, the onset detection was

removed as the onset was always the same due using virtual instruments. Using the

features and functionals proposed in [4], a total of 649 functionals were used. For

effect parameter extraction, the method proposed by Jürgens et al. [16] served as
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Figure 5: Confusion matrices of the support vector machine classifier (SVM) on

the (a) IDMT-SMT and (b) GEC-GIM dataset as well as the convolutional neural

network (CNN) classifier on the (c) IDMT-SMT and (d) GEC-GIM dataset. On

the GEC-GIM both classifiers tend to confuse slapback and feedback delay which

was due to random settings of the feedback parameter. For feedback settings

below at least 0.3, slapback and feedback delay indeed were very difficult to

distinguish which was confirmed through selected listening tests.

baseline. Furthermore, the presumed human expert setup error of 0.05 served as

baseline for parameter extraction. This value, first used in [16], was derived infor-

mally, i.e. without performing rigorous listening tests. It stems from the experience

of the authors, which recognized that usually guitar effect (plugin) parameters are

set in 0.05 steps or larger and smaller step sizes usually are indistinguishable. The

impact of background instrumentation on this reference is unknown and difficult to

judge, however, it appears reasonable that, given a sufficiently long audio sample,

human hearing should be rather robust towards mixing volume.

2.3.2 Robustness Analysis

As artificial neural networks are prone to overfitting or to fit to unexpected pat-

terns in the data [20, 26], the robustness of the CNN for parameter extraction was
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(e) Delay Mix
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(f) Delay Time

Figure 6: Boxplots of the absolute parameter extraction error for the (a) dis-

tortion gain, (b) distortion tone, (c) tremolo frequency, (d) tremolo depth, (e)

delay mix and (f) delay time parameter for all investigated methods across all

volumes.

analyzed. For this purpose, white gaussian noise with zero mean and a standard

deviation σs, set according to

σs = α ·max{|Cs(t, f)|}, (4)

with α ∈ {0, 0.001, 0.01, 0.05} was added to the time-frequency representations after

normalization. Cs(t, f) denotes the respective time-frequency representations. We

then assessed the impact of this noise on parameter extraction of the CNN. The

maximum in Eq. 4 was taken across the entirety of the dataset. An α value of zero,

included as reference, corresponded to the original, noise-free samples. Additionally,

the CNN was tested with novel tones of keyboard and bass, which now were moved

in semitone steps from E2 (keyboard) and E1 (bass) to the next octave, and the

impact on the parameter extraction error was assessed. An example of the impact

of the noise on the spectrogram for α = 0.001 is depicted in Fig. 4.
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Table 4: 95 % confidence interval of the mean absolute error across the five repeti-

tions of the parameter extraction across all volumes of the CNN and the respective

time-frequency representations as well as the method by Jürgens et al. [16] for the

individual effects. The lowest errors are highlighted using bold font.

Distortion Tremolo Slapback Delay
Gain [10−2] Tone [10−2] Depth [10−2] Freq. [10−2] Time [10−2] Mix [10−2]

CNN + Chromagram 3.2 ± 0.15 5.1 ± 0.48 6.3 ± 0.17 6.1 ± 0.38 6.2 ± 0.25 5.4 ± 0.3
CNN + GFCC 1.6 ± 0.25 1.7 ± 0.15 3.4 ± 0.2 6.3 ± 0.33 3.8 ± 0.07 2.7 ± 0.14
CNN + MFCC 1.4 ± 0.09 1.6 ± 0.09 4.9 ± 0.45 6.5 ± 0.15 3.9 ± 0.1 3.1 ± 0.22
CNN + Spectrogram 2.1 ± 0.63 2.3 ± 0.18 3.9 ± 0.25 5.2 ± 0.59 4.9 ± 0.09 3.7 ± 0.47
Jürgens et al. 4.8 ± 0.82 7.1 ± 2.4 12.9 ± 3.4 11.8 ± 2.08 22.8 ± 7.6 20.07 ± 6.1

2.3.3 Error Analysis

We also investigated the dependence of the parameter extraction errors of the CNNs

on the true parameter settings. Large errors occuring for parameter settings, where

one parameter has no to little effect on the audio (e.g. tone parameter when the

gain parameter is near zero for the distortion effect), can be attributed to subjective

equivalence and not failures of the CNN. Then, extraction errors are of little subjec-

tive relevance and the extracted parameter settings are still useful. We considered

only the maximum extraction error across the 5-fold cross validation, and not e.g.

the mean, to reduce the amount of figures.

3 Results
The results are presented in several steps: First, the effect classification is presented.

Secondly, the effect parameter extraction for individual effects is presented. Thirdly,

the effect parameter extraction for multi effects is presented. Then, results for the

chorus, phaser, reverb and overdrive effect are given. Finally, results regarding the

robustness of the CNN and the error analysis are presented.

3.1 Effect Classification

Fig. 5 depicts the confusion matrices of the SVM and CNN classifiers on the IDMT-

SMT and GEC-GIM dataset. Accuracies are summarized in Table 3. For the CNN,

the depicted confusion matrices were achieved using GFCCs (IDMT-SMT) and the

spectrogram (GEC-GIM). The accuracies for the other time-frequency representa-

tions were similiar, except for the GFCCs on the GEC-GIM dataset where the CNN

failed to converge. While no obvious reason was found, inspection of the loss curves

suggested an insufficient learning rate. However, because the GFCCs otherwise per-

formed very well, this issue was not investigated further. On the GEC-GIM, both

classifiers tended to confuse slapback and feedback delay which greatly impacted

the overall accuracies. However, it was later recognized that, at least for settings

below 0.3 of the feedback parameter, a range which due to chance about 30 % of the

parameters settings belonged to, the feedback and slapback delay were very difficult

to distinguish as confirmed by selected listening tests. This issue did not arise on

the IDMT-SMT, which uses rather distinct settings for slapback and feedback de-

lay. On both datasets, the CNN outperformed the SVM classifier with an accuracy

of up to 90.02 % for the CNN on the GEC-GIM and 85.01 % for the SVM. On

the IDMT-SMT, the CNN achieved up to 97.38 % accuracy compared to 96.16 %

accuracy for the SVM classifier. As the slapback delay is identical to the feedback
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(b) Jürgens et al.: Distortion
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(c) CNN: Tremolo
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(d) Jürgens et al.: Tremolo
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(e) CNN: Slapback Delay
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(f) Jürgens et al.: Slapback Delay

Figure 7: Mean absolute error of the parameter extraction for the distortion effect

of the (a) convolutional neural network (CNN) and (b) Jürgens et al. [16], the

tremolo effect of the (c) CNN and (d) Jürgens et al. and the slapback delay effect

of the (e) CNN and (f) Jürgens et al. The CNN was used with mel-frequency

cepstral coefficients as time-frequency representation.

delay when the feedback parameter is set to zero, confusing these two effects is not

necessarily a problem for subsequent parameter extraction. Due to this, the classi-

fication accuracy, when these two are considered as the same effect, was specified

as well, increasing the accuracies by about 4-5 % in all cases.

3.2 Effect Parameter Extraction of Single Effects

Boxplots of the absolute extraction error across volume for the CNN as well as the

method by Jürgens et al. [16] are shown for the distortion, tremolo and slapback

delay effect in Fig. 6. The mean absolute extraction error across volume is summa-

rized in Table 4. No single time-frequency representation was optimal irrespective of

the considered guitar effect. The CNN using MFCCs achieved the minimum mean

absolute error of below 0.017 for the distortion effect and either parameter. The

GFCCs worked best for the slapback delay, yielding a mean absolute error below

0.04 for either parameter. The outliers occured mostly for parameter settings that

were very difficult to distinguish as will be discussed shortly.
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Table 5: 95 % confidence intervals of the mean absolute error across the five fold

cross-validation of the parameter extraction across all volumes of the CNN. Results

are reported for all time-frequency representations and the combination of distortion

and tremolo effect.

(a) Distortion + Tremolo

Gain Tone Depth Frequency
CNN + Chromagram 0.096 ± 0.002 0.133 ± 0.0039 0.094 ± 0.0024 0.099 ± 0.0023
CNN + GFCCs 0.077 ± 0.0007 0.085 ± 0.0008 0.056 ± 0.0034 0.083 ± 0.0011
CNN + MFCCs 0.079 ± 0.001 0.085 ± 0.003 0.084 ± 0.0029 0.097 ± 0.0039
CNN + Spectrogramm 0.076 ± 0.0013 0.081 ± 0.0007 0.072 ± 0.0054 0.069 ± 0.0039

The mean absolute extraction error across volume for the slapback delay for all

time-frequency representations is shown in Fig. 8. The other effects qualitatively

showed similiar dependency on the volume. Usually, a two or three fold increase

from the lowest to the highest mixing volume was observed, albeit even at the

highest mixing volume of +3 dB the error was, on average, equalling or surpassing

human expert level. Fig. 7 depicts a comparison of the CNN using MFCCs and the

method by Jürgens et al., both evaluated across volume. The method by Jürgens

et al. was less affected by the volume, increasing by at most about 50 % in mean

absolute error with increasing volume. Still, its performance was considerably worse

than the CNN at the highest volume.

3.3 Effect Parameter Extraction of Multi Effects

The 95 % confidence intervals for the mean absolute error of the parameter ex-

traction are given for the combinations of distortion and tremolo in Table 5, for

the distortion and slapback delay in Table 6, for the combination of tremolo and

slapback delay in Table 7. For the combination of distortion, tremolo and slapback

delay, results are reported in in Table 8. Boxplots comparing the absolute extraction

error achieved for individual effects and effect combinations are depicted in Fig. 9.

It was observed that, except for the distortion effect, the mean absolute error of the

parameter extraction generally increased from single to multi guitar effect extrac-

tion. E.g. as a single effect using MFCCs, the setting of the depth parameter of the

tremolo effect was extracted with a mean absolute error of 0.049 and rose to 0.09

when distortion, tremolo and slapback delay were combined.

The mean absolute error across mixing volume for multi effect parameter ex-

traction is depicted in Fig. 10, where the spectrogram was used as time-frequency

representation. Similiar results were obtained with either time-frequency represen-

tation.

3.4 Additional Effects

Fig. 11 shows boxplots of the absolute extraction errors. Fig. 12 depicts the mean

absolute error of the parameter extraction across mixing volume for the chorus,

phaser, reverb and overdrive effect. Generally, the presumed human expert setup

error of 0.05 was achieved or undercut and, as with the other effects, an increase of

the mean absolute error was observed for increasing mixing volume. The setting of

the rate parameter of the phaser effect was found to be the most difficult to extract

with a mean absolute error of almost 0.06 at a mixing volume of only -12 dB.
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(b) GFCCs
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(c) MFCCs
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(d) Spectrogram

Figure 8: Mean absolute error of the parameter extraction of the convolutional

neural network across mixing volume for the slapback delay effect and each of the

four investigated time-frequency representations. Qualitatively identical results

were obtained for the distortion and tremolo effect.

3.5 Robustness to Noise and Pitch Changes

The mean absolute error across noise levels of the effect parameter extraction is

shown for all time-frequency representations in Fig. 13. Depicted are the results for

the time parameter of the slapback delay. For the MFCCs and GFCCs, the mean

absolute error was relatively robust to additive gaussian noise, with an approximate

increase of the mean absolute error by around 0.01-0.03 depending on the guitar

effect and time-frequency representation considered. The spectrogram and chroma-

gram both tended to be the most sensitive showing a considerable increase of about

0.05-0.15 depending on the guitar effect.

Fig. 14 depicts the mean absolute error across pitch at a mixing volume of -12 dB

and -3 dB for the distortion and tremolo effect. The CNN was found to be relatively

robust towards unknown pitches of bass and keyboard for the distortion effect. At

a mixing volume of -12 dB, all time-frequency representations, except for the chro-

Table 6: 95 % confidence intervals of the mean absolute error across the five fold

cross-validation of the parameter extraction across all volumes of the CNN. Results

are reported for all time-frequency representations and the combination of distortion

and slapback delay effect.

(a) Distortion + Slapback Delay

Gain Tone Time Mix
CNN + Chromagram 0.093 ± 0.0013 0.125 ± 0.0014 0.127 ± 0.001 0.082 ± 0.0013
CNN + GFCCs 0.065 ± 0.0014 0.07 ± 0.0019 0.089 ± 0.0009 0.051 ± 0.001
CNN + MFCCs 0.067 ± 0.0005 0.071 ± 0.0004 0.083 ± 0.0021 0.055 ± 0.0015
CNN + Spectrogramm 0.069 ± 0.0005 0.074 ± 0.001 0.097 ± 0.0015 0.064 ± 0.0013



Hinrichs et al. Page 15 of 25

Table 7: 95 % confidence intervals of the mean absolute error across the five fold

cross-validation of the parameter extraction across all volumes of the CNN. Results

are reported for all time-frequency representations and the combination of tremolo

and slapback delay effect.

(a) Tremolo + Slapback Delay

Depth Frequency Time Mix
CNN + Chromagram 0.106 ± 0.0017 0.085 ± 0.0038 0.152 ± 0,0024 0.128 ± 0.0017
CNN + GFCCs 0.071 ± 0.0018 0.09 ± 0.0036 0.106 ± 0.0029 0.067 ± 0.0017
CNN + MFCCs 0.092 ± 0.0034 0.098 ± 0.0046 0.084 ± 0.0017 0.064 ± 0.0011
CNN + Spectrogramm 0.069 ± 0.0023 0.083 ± 0.0028 0.083 ± 0.0019 0.058 ± 0.0017

magram, yielded mean absolute errors around or below 0.05, the presumed human

expert setup error. At a mixing volume of -3 dB, all time-frequency representations

except for the chromagram yielded mean absolute errors mostly between 0.05 and

0.1. The tremolo effect was less robust towards pitch shifts of keyboard and bass,

with the frequency parameter being especially sensitive. An immediate increase of

the mean absolute error occurred once deviating from the outer E notes by about

0.1 at a mixing volume of -12 dB, and 0.15 at a mixing volume of -3 dB. The spectro-

gram, often yielding the most robust parameter extraction, yielded a considerable

less sensitive parameter extraction for the depth parameter of the tremolo effect.

At -12 dB, its mean absolute error was between about 0.05 to 0.15 below the mean

absolute errors of the other time-frequency representations for keyboard and bass

pitches between the outer E notes. At -3 dB, this gap in mean absolute error rose

to about 0.1 to 0.4.

3.6 Error Analysis

Fig. 15 depicts the maximum absolute extraction error across the five fold cross-

validation for the gain parameter of the distortion effect, the frequency parameter

of the tremolo effect and of the time and mix parameter of the slapback delay ef-

fect. These results were calculated for the MFCCs. For the gain parameter, large

errors of about 0.12 almost exclusively occur for true gain settings below 0.3. In

this range, the signal distortion introduced by the distortion effect occurs solely at

the beginning of the audio samples. This is due to the distortion being an ampli-

tude dependent nonlinear effect and the natural attenuation of the guitar signals.

Similiarly, for the time parameter of the slapback delay, largest errors of about 0.8

occured almost exclusively at the lowest setting of the mix parameter, i.e. when the

Table 8: 95 % confidence intervals of the mean absolute error across the five fold

cross-validation of the parameter extraction across all volumes of the CNN. Re-

sults are reported for all time-frequency representations and the combination of

distortion, tremolo and slapback delay effect.

(a) Distortion + Tremolo + Slapback Delay

Gain [10−2] Tone [10−2] Depth [10−2] Frequency [10−2] Time [10−2] Mix [10−2]
CNN + Chromagram 7.8 ± 0.12 13.4 ± 0. 16 11.8 ± 0.27 10.4 ± 0.46 19.4 ± 0.22 13.5 ± 0.22
CNN + GFCCs 3.6 ± 0.06 4.9 ± 0.17 7.3 ± 0.14 9.1 ± 0.17 13.6 ± 0.18 8.0 ± 0.33
CNN + MFCCs 3.5 ± 0.12 4.5 ± 0.13 9.0 ± 0.3 10.2 ± 0.44 13.3 ± 0.13 8.6 ± 0.1
CNN + Spectrogram 3.3 ± 0.014 4.1 ± 0.45 8.5 ± 0.3 8.6 ± 0.28 14.4 ± 0.12 10.3 ± 0.29
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(f) Slapback Delay Mix

Figure 9: Boxplots comparing the mean absolute error of the parameter extrac-

tion with respect to the effect combination. Depicted are the absolute parameter

extraction errors for the (a) gain (distortion), (b) tone (distortion), (c) depth

(tremolo), (d) frequency (tremolo), (e) time (slapback delay) and (f) mix (slap-

back delay) parameters. These results were achieved using the spectrogram as

time-frequency representation.

effect was almost inaudible. For the frequency parameter of the tremolo effect, the

largest errors of about 0.8 accumulated for large values of the frequency parameter

in conjunction with very low values of the depth parameter. In contrast, for the

mix parameter of the slapback delay, the largest errors of about 0.2 occured for

isolated parameter settings, although mildly accumulating at the largest true time

parameter setting.

4 Discussion

Generally, the CNN was found to be superior to the investigated baselines in both

effect classification and effect parameter extraction. All time-frequency representa-

tions allowed to achieve an accuracy around or better than human expert level in

parameter extraction, with the chromagram performing the worst out of the four.

MFCCs and GFCCs were found to perform approximately the same, neither having

a clear edge over the other.
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(a) Distortion + Tremolo
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(b) Distortion + Slapback Delay
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(c) Tremolo + Slapback Delay
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(d) Distortion + Tremolo + Slapback Delay

Figure 10: Mean absolute error of the parameter extraction across volume of the

convolutional neural network (CNN) for the effect chains using the spectrogram.

Depicted are (a) distortion and tremolo, (b) distortion and slapback delay, (c)

tremolo and slapback delay and (d) distortion, tremolo and slapback delay effect.

4.1 Effect Classification

The CNN outperformed the SVM classifier on both datasets, except when using

the chromagram on the IDMT-SMT and GFCCs on the GEC-GIM dataset. The

chromagram contains the most coarse information about the audio out of all investi-

gated time-frequency representations, as it maps different octaves to the same pitch

value. Therefore it performing the worst was not surprising. Interestingly, the CNN

achieved, in its best configuration, an accuracy of 97.4 % on the IDMT-SMT which

is very close to the 97.7 % reported by Stein et al. [4] in their SVM implementation

for monophonic guitar samples. Albeit they included, in contrast to our work, the

unprocessed guitar signals as an additional effect class, this may be indicative of

an upper bound of the achievable classification accuracy on the IDMT-SMT. As

the CNN achieved good results for both datasets, one using virtual, sample-based

instruments, with all kinds of instrument mixes, and the other real recordings and

a large variety of solo guitar pitches, it can be assumed that the CNN is suitable

for a wide range of audio data. The confusion of slapback and feedback delay on

Table 9: 95 % confidence intervals of the mean absolute error of the parameter

extraction of the convolutional neural network for the chorus, phaser, reverb and

overdrive effect using mel-frequency cepstral coefficients as time-frequency repre-

sentation.

Effect Parameter 1 Parameter 2

Chorus (Rate. Depth) 0.025 ± 0.0006 0.035 ± 0.0007
Phaser (Rate. Depth) 0.058 ± 0.0009 0.031 ± 0.0023
Reverb (Room Size. Mix) 0.041 ± 0.0009 0.034 ± 0.0006
Overdrive (Gain. Tone) 0.024 ± 0.0007 0.029 ± 0.0016
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Figure 11: Boxplots of the absolute error of the parameter extraction using the

convolutional neural network with mel-frequency cepstral coefficients for the (a)

chorus, (b) phaser, (c) reverb and (d) overdrive effect.

the GEC-GIM was due to the feedback delay being very difficult to make out for

settings at least below 0.3, confirmed informally through selected listening tests.

Therefore, in about 30 % of cases due to the random settings used, the slapback

delay and feedback delay samples were in large parts indeed very difficult to dis-

tinguish, and the confusion of these two effects by the CNN is no indicator of poor

performance. The CNN and the SVM both failing to distinguish these two effects

on the GEC-GIM dataset, and both not failing to do so on the IDMT-SMT dataset,

is a strong indicator that the issue lies in the data and not the classifiers.

4.2 Parameter Extraction

The impact of the mixing volume on the parameter extraction error qualitatively

was as expected, with the error increasing generally with increasing mixing vol-

ume. For single effects, MFCCs and GFCCs performed the best, the spectrogram

achieving similiar but worse performance. For multi effects, except for the chroma-

gram, which performed the worst, no time-frequency representation was consistently

better than the others. However, considering the impact of the time-frequency rep-

resentations on the number of parameters of the CNNs, the MFCCs outperformed

all others and are commended for future work.

For all effects and volumes, the CNN outperformed the approach of Jürgens et

al. [16], although the CNN showed a greater sensitivity towards the mixing volume.

While the boxplots revealed considerable outliers, usually about 75 % or more of

the extraction errors were below the error of a human expert. Outliers, as suggested

by Fig. 15, usually occured at settings that were very difficult to distinguish and

also at high mixing volumes. Some parameters have an impact on each other and

render the other virtually impactless at certain settings. An example is the mix pa-

rameter of the slapback delay effect, which renders the time parameter subjectively
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Figure 12: Mean absolute error of the parameter extraction across mixing volume

using mel-frequency cepstral coefficients for the (a) chorus, (b) phaser, (c) reverb

and (d) overdrive effect. The presumed human expert setup error of 0.05 was

added as well, where appropriate, as a reference.

impactless if set very close to zero. Then, parameter extraction is considerably more

difficult. Nonetheless, a few isolated large errors occur at apparently random param-

eter settings without an obvious explanation and also intermediate mixing volumes.

These large errors perhaps indicate an insufficient amount of data or suboptimal

data creation, i.e. more data is needed around criticial parameter settings. How-

ever, if we apply the accuracy metric used by Comunità et al. [17], the publication

most similiar to this work, which considered root mean-square absolute errors of

the parameter settings below 0.1 as correct, in almost all conditions the CNN cor-

rectly extracted the parameter settings. Specifically for the distortion effect, some

comparisons can be made to the results by Comunità et al., which only investi-

gated nonlinear effects. For their discrete monophonic dataset they report a mean

absolute extraction error of 0.03 for the gain, and 0.039 for the tone parameter.

This is about twice the error achieved in this work, however, Comunità et al. did

not consider instrument mixes, but extraction of parameter settings from different

implementations of the same guitar effect. However, they saw an improvement when

training with polyphonic guitar samples, achieving mean absolute extraction errors

down to around 0.02, which is very similiar to our performance. They argued this

was due to richer information being present in polyphonic recordings. Similiarly,

our low extraction errors could be due to considering richer information through

the different mixing volumes.

Interestingly, except for the distortion effect, the absolute extraction error in-

creased with increasing number of guitar effects. The mean absolute error of the

parameter extraction based on the spectrogram increased the most for the slapback

delay effect, from a mean absolute error of 0.049 for the individual effect to 0.144
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Figure 13: Mean absolute error of the parameter extraction of the convolu-

tional neural network across background noise levels for the (a,b) distortion,

(c,d) tremolo and (e,f) slapback delay effect and all investigated time-frequency

representations. The noise factor α was described in Section 2.3.2.

when distortion, tremolo and slapback delay were combined. However, the slapback

delay was also the last effect applied in the effect chain made of distortion, tremolo

and slapback delay. Similarily, the tremolo effect was the second effect applied and

did not see an increase as sharp, with a mean absolute error for the frequency pa-

rameter of e.g. 0.052 for the individual effect, and 0.086 for the distortion, tremolo

and slapback delay effect chain. No consistent increase was observed for the distor-

tion effect. This suggests that the increase in extraction error might be linked to

the position in the effect chain.

Initially, we investigated, whether training on instrument mixes was necessary to

achieve high performance. One could train the CNNs on unmixed guitar signals,

to then apply the CNNs on instrument mixes. However, as the results were poor

even at intermediate mixing volumes - classification accuracy dropped to below

40 % when only a kick drum was mixed with the guitar -, it became clear that

this was not a reasonable approach. Another point that could be raised is, that

source separation algorithms could be applied, to separate the guitar signal from

the other instruments first, to then apply the parameter extraction/CNN. However,

in pilot investigations using FASST [27], we noticed that FASST did not separate the
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Figure 14: Mean absolute error of the parameter extraction of the convolutional

neural network across pitch of keyboard and bass for all time-frequency repre-

sentations investigated. Only the two E tones were part of the training. Shown

are, respectively, the extraction errors for the gain, tone, depth and frequency

parameter of the distortion and tremolo effect at -12 dB mixing volume (a,c,e,g)

and at -3 dB mixing volume (b,d,f,h).

instrument mix into the separate instruments. It rather tended to seperate sources

present in more than one channel from those that are not. Considerable artifacts

from other instruments, e.g. drums, remained and would deteriorate algorithms that

assume unmixed guitar signals. Other, newer source separation algorithms might

be beneficial, but after these initial results we focused on direct extraction of the

parameter settings.
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Figure 15: Maximum of the absolute parameter extraction error for the (a) dis-

tortion gain, (b) tremolo frequency, (c) slapback delay time and (d) slapback

delay mix parameter across the ground truth parameter settings. The maximum

was taken across the five fold cross validation.

A drawback of the proposed method to parameter extraction is the necessity to

train specialized neural networks for any effect and any effect combination consid-

ered. It is very likely, that different implementations of the same effect, say phaser,

while obviously belonging to the same effect type to the human ear, would yield very

poor results with a CNN trained on another implementation. Additionally, due to

combinatoric explosion, even if the CNNs were generalizing to different implemen-

tations, the vast number of possible effect combinations would yield our approach

computationally too expensive. Therefore, a technique or approach to generalize to

effect combinations should be investigated in the future. To verify that this was an

issue, we used a CNN trained on single effect samples using the distortion effect and

tested it on multi effect samples using the distortion and tremolo effect. Using the

spectrogram, this CNN achieved a mean absolute extraction error of 0.021 and 0.023

for the gain and tone parameter, respectively. This CNN achieved a mean absolute

extraction error of 0.119 and 0.126 for the gain and tone parameter, respectively, on

the multi effect samples. This is in contrast to mean absolute extraction errors of

0.076 and 0.081 for the gain and tone parameter, respectively, when the CNN was

trained specifically on this effect combination, an increase of about 50 %. As distor-

tion was generally the easiest effect to extract, this suggests that specifically trained

CNNs are indeed required to achieve high performance on multi effect samples.

4.3 Robustness

As the CNN showed only a minor decrease in accuracy when small amounts of

noise were added to the input time-frequency representations, over-fitting, at least

to the individual pixels, seems unlikely. Some some deep networks are susceptible to
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these types of over-fitting [20]. Because at lower mixing volumes robustness was also

observed across pitch, it is very probable that the CNN indeed extracts meaningful

features. Albeit at the largest noise level the noise was considerable, it was estimated

that a human expert would not see a similiarly large increase in parameter extraction

error as the CNN. Here, the CNN potentially performed suboptimally and could

be improved in the future. Imporvements could be achieved by inclusion of noisy

samples in the dataset. The chromagram generally yielding the least robust CNN

is due to fact, that the energy for the chromagram in the training data was almost

solely contained in the E note. The CNN then had to focus mostly on this particular

pitch. Once the other instruments changed their pitch, and therefore the energy

distribution, this approach was prone to fail.

The extraction error for the gain parameter of the distortion effect - and less so

the tone parameter - was found to be rather robust to pitch changes of keyboard and

bass. The CNN achieved, except when using the chromagram, around and below

0.1 mean absolute error even at -3 dB mixing volume, unlike all other effects and

parameters. The reason likely is the nonlinear nature of the distortion effect. As

such it introduces novel frequencies into the audio signals, which certainly convey

information about the parameter settings. Therefore it appears reasonable, that

the CNN learned a more diverse look at the time-frequency representations for the

distortion effect. In return, this allowed to be more robust to changes of the pitch

of the other instruments. Although the number of weights of the CNN, especially

for the spectrogram, was rather large in comparison to the amount of training data,

the results of the robustness analysis and the use of dropout layers make it seem

unlikely that relevant over-fitting occured.

4.4 Limitations and Future Work

One limitation of our investigation is the simplicity of the music played by the

instruments. More complex musical pieces, including polyphonic guitar melodies,

likely will be more challenging to extract guitar effects from. The true variability

of recorded music, like different guitar timbres or further audio tracks, should be

focused on in the future. Furthermore, additional audio effects on the other instru-

ments could interfere with the parameter extraction of the guitar effects. Also a

second guitar could have a considerable impact on the classification and extrac-

tion performance. Finally, a thorough subjective listening test would be desirable

to precisely measure the human setup performance.

5 Conclusion
In this work guitar effect classification and guitar effect parameter extraction

with convolutional neural networks (CNNs) from instrument mixes was investi-

gated and compared to two baselines approaches. Four time-frequency representa-

tions were investigated, namely the spectrogram, mel-frequency cepstral coefficients,

gammatone-frequency cepstral coefficients and the chromagram.

On two datasets the CNN achieved classification accuracies 1 − 5% above the

baseline accuracy, achieving up to 97.4 % accuracy. Mean absolute parameter ex-

traction errors of below 0.016 for the distortion, below 0.052 for the tremolo and

below 0.038 for the slapback delay effect were achieved, matching or surpassing the
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presumed human expert error of 0.05. The CNN approach was found to general-

ize to further effects, achieving mean absolute parameter extraction errors below

0.05 for the chorus, phaser, reverb and overdrive effect. For sequentially applied

combinations of distortion, tremolo and slapback delay, the mean extraction error

slightly increased from the performance for the single effects to the range of 0.05

to 0.1. The CNN was found to be moderately robust to noise and pitch changes

of the background instrumentation suggesting that the CNN extracted meaningful

features. Due to their high performance at moderate number of CNN parameters,

MFCCs are recommended for future work.
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