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Abstract

The study of three-dimensional folding of chromosomes is important to understand
genomics processes. This is done through techniques, such as Hi-C, that analyze the spatial
organization of chromosomes in a cell. The data coming from the study is a 2-dimensional
quantitative maps with genomic coordinate systems. We present a novel approach called
Contact Matrix Compressor(CMC) for the efficient compression of Hi-C data. By exploiting
the properties of the data, such as diagonally dominant and symmetrical, CMC achieves
a much higher compression. CMC outperforms the existing method Cooler, and also the
generic compression methods LZMA as well as BZip2.

Introduction

Genomic processes can be better understood by studying the relationship between
chromosome organization and genome activity. This is done through techniques that
analyze the spatial organization or interactions of chromosomes in a cell. These
techniques, referred to as chromosome conformation, are categorized based on the
scope of the experiment. Chromosome Conformation Capture (3C) [1] quantifies the
interaction between two specific loci (genomic region), while Hi-C [2] [3] quantifies
all interactions between all possible pairs of loci of all chromosomes simultaneously.
The scale of a Hi-C experiment allows us the identification of long range interactions.
However, it is generating a huge quantity of data at around 30 GB per sample. In
this paper, we focus on the data coming from Hi-C experiments. Throughout this
paper, we refer to the data coming from a Hi-C study as the contact matrix.

As the name name suggests, the contact matrix is a two-dimensional array. Each
row and column of the contact matrix corresponds to a region in a certain chro-
mosome. A region is described by the chromosome where it belongs to, the start
position of the region and the end position of a region. The size of a region is con-
stant, meaning that the difference between end and start position is the same for all
regions. Each value in the contact matrix represents the number of contacts between
a pair of regions or loci. Many of the values are zero, therefore it is more efficient
to store the contact matrix in a sparse representation or in a coordinate-value form.
An example of this representation can be seen in Table 1. All columns with suffix
”1” refer to the row coordinate, and columns with the suffix ”2” refer to the column
coordinate in the contact matrix. Columns with the prefix ”start” or ”end” describe
the start position and end position of a region, respectively. The second row in Table
1 describes that there are 4 contacts between two different regions. The first region
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Table 1: An example of how Hi-C data is represented in a coordinate-value form.

chrom1 start1 end1 chrom2 start2 end2 value
chr1 10,000 15,000 chr1 10,000 15,000 5
chr1 10,000 15,000 chr1 15,000 20,000 4
chr1 10,000 15,000 chr1 790,000 795,000 1

Table 2: Compact data representation by splitting table 1 into 2 different tables.

bins
chrom start end
chr1 10,000 15,000
chr1 15,000 20,000
chr1 790,000 795,000

elements
bin1 id bin2 id value

1 1 5
1 2 4
1 3 1

is located on chromosome 1 (written as chr1), with chromosomal position between
10,000 and 15,000. The second region is also located on chromosome 1, with chro-
mosomal position between 15,000 and 20,000. The contact matrix is symmetrical
because we quantify the interactions between all possibles pairs of regions (see Figure
1). Moreover, Lieberman-Aiden et al. [2] described that the probability of contact
decreases as a function of distance for contacts within a chromosome. This probabil-
ity is almost constant for contacts between two different chromosomes. Therefore, we
expect a contact matrix to be a diagonally dominant matrix.

A format called Cooler was proposed by Abdennur et al [4] to store the contact
matrix efficiently. The Cooler format is based on the container format HDF5 [5].
HDF5 allows flexible data organizations of collections of multi-dimensional arrays and
supports random access. Moreover, it supports data compression for efficient storage,
based on ZLIB [6] and SZIP [7]. To increase storage efficiency, the coordinate-value
form table is split into two different tables (see Table 2). The first table, called bins,
stores all of the possible regions. The regions stored in the bins table are sorted
by chromosome, start and end positions. Then, an identifier is assigned implicitly,
starting from 1, to each region. The second table, called elements, stores the identifier
of the first region bin1 id, the identifier of the second region bin2 id and the number
of contacts value.

However, the performance of the ZLIB compressor is worse compared to some
generic compressors, such as LZMA [8] and BZip2 [9]. Additionally, Cooler does not
exploit the properties of the contact matrix to achieve better compression. In this
paper, we present a novel approach for the compression of contact matrices, Contact
Matrix Compressor(CMC). To achieve better compression, we exploit some properties
of the contact matrix, such as diagonally dominant and also symmetrical. The data
is split into smaller matrices such as sub-contact matrices and further down into tiles.
These structures allow random access and parallel decompression process.
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Methods

Our approach is a combinations of transformations and methods to efficiently store the
matrix coming from Hi-C studies [2][3]. For a given set of chromosomes, the contact
matrix contains all of the possible interactions between chromosomes. As an example,
suppose that there are 3 chromosomes in the data. The contact matrix is structured
as depicted in Figure 1. In our proposed approach, the contact matrix is split into
sub-contact matrices. Each sub-contact matrix quantifies all interactions between
two chromosomes, enabling chromosome-pair level random access. The sub-contact
matrix is classified as intra-chromosomal for interaction between a chromosome and
itself and it is classified as inter-chromosomal for an interaction between two different
chromosomes. Lieberman-Aiden et al. [2] describe that the probability of contact
decreases as a function of distance for intra-chromosomal sub-contact matrices and
constant for inter-chromosomal sub-contact matrices. Hence, a contact matrix is ex-
pected to be a symmetrical and diagonally dominant. These properties are exploited
to reduce the overall storage costs with a combination of transformations, such as
row-column masking, diagonal transform, and row binarization. Moreover, it is suffi-
cient to store only the sub-contact matrices in the upper triangle part of the contact
matrix. For encoding of the transformed data, we use a specialized codec for binary
matrices (or bi-level images) called JBIG [10].

Figure 1: The sub-
contact matrices can
be classified into intra-
chromosomal or inter-
chromosomal based on
the chromosomes pair.

Figure 2: The compression pipeline of
the contact matrix compressor comprises
transformations and entropy coding. For a
faster encoding and decoding speed, some
of the transformations can be switched off.

The coding of a sub-contact matrix comprises the following steps, and is depicted
in Figure 2: First, by using row-column masking, the sub-contact matrix is reduced
by marking the rows and columns that contains only zeros. The flags are stored in the
arrays called mask. The marked rows and columns are removed, yielding the reduced
sub-contact matrix. Then, each of the sub-contact matrices is split into smaller
matrices called tile matrices. By splitting into smaller matrices, the user can balance
the trade-off between compression efficiency and random access speed. Optionally,
the tile matrix is diagonally transformed. This allows values with similar magnitudes
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to be placed in the same rows. After that, optionally, the row binarization decomposes
the values of the tile matrix into their binary forms. In combination with the previous
transformation, this step significantly increases the compression efficiency. At the end
of the pipeline, the tile matrix is entropy coded. In the case that row binarization is
enabled, the entropy codec selected is based on JBIG standard. Otherwise, methods
such as LZMA or BZip2 can be used as entropy codec.

Row-Column Masking

(a) (b)

Figure 3: (a) The blue boxes denote values greater than zero and the black boxes
denote zeros. Both the row and column mask mark the rows and the columns which
contain only zeros. Only the masked tile matrix is transformed and compressed. (b)
The binary run-length encoding requires only the first value and all of the run-lengths
to represent the original data.

The sub-contact matrix contains values of zero and non-zero. Some of the rows
or columns contains only zeros, depicted in the example of Figure 3a. To reduce
the redundancy in the data, those rows and columns are marked and then removed
from the sub-contact matrix. For rows or columns with only zeros, the flag is set
to 0. Otherwise, it is set to 1. This process is called row-column masking. For the
decoding process, rows or columns containing zeros are concatenated in the places
where the value of the mask is zero.

An array can be transformed by the run-length encoding (RLE), yielding the
value/run-length pairs. For a binary array, the value of an array element is either
zero or one, simplifying the encoding. If the value of the current run-length is one,
the value of the next run-length must be zero and vice versa. Only the first value
and all of the run-lengths of the value/run-length pairs are required to reconstruct
the original binary array. At the end of the transformation, both masks are encoded
using the binary run-length encoding (see Figure 3b).

Splitting into Tiles

To decrease the random access time and to allow parallel decoding, the sub-contact
matrix is split into smaller structures called tile matrices as shown in Figure 4. The
tile matrix is parameterized by the maximum number of rows and columns tile size,
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Figure 4: The sub-contact matrix is divided into tile matrices. The tile matrix is
parametrized with the number of columns and the number of rows tile size.

allowing a simpler computation of the partition. Typically, tiles are squares. The tile
matrices at the right or bottom boundary of a sub-contact matrix can be rectangu-
lar. Each tile tilei,j is assigned with index i and j for row coordinate and column
coordinate, respectively.

Diagonal Transformation

An integer number can store a value exactly. The number of bits required depends
on the range of the allowed values. Based on the finding described by Lieberman-
Aiden et al [2], most of the values with high magnitude are located in the main
diagonal of the matrix. Normally, an (unsigned) integer value follows a certain bit-
length and it applies to the whole matrix. Using a variable-length integer, the bit-
length of the values in the upper and lower triangle can be reduced, resulting in a
smaller compressed data. To set a specific bit-length for each value is too complex and
will generate a huge overhead in terms of storage and processing. Hence, we propose
a transformation called diagonal transformation. The core idea of this transformation
is to place values with similar magnitude in the same row. First, the values in the
diagonal direction are taken and placed in the first row of the new matrix. Then, we
take the values from the next diagonal and place it next to the last position of the
value placed. When the last column of the new matrix is reached, we continue to the
next row of the new matrix. Later, the bit-length of the integer is specified for each
row by the next transformation called Row Binarization. For a symmetrical matrix,
the values in the lower triangle of the matrix are redundant. After the diagonal
transformation, all of the redundant values are placed in the lower half of the matrix
(see Figure 5). Hence, those rows can be removed, given the property that the number
of rows and columns at the beginning are equal.

As the result of splitting of the sub-contact matrix into tile matrices, depending
on the relative position of the tile matrix to the sub-contact matrix, the values with
higher magnitude are not located in the main diagonal anymore. The problem is
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Figure 5: Using diagonal transformation, all of the redundant values in the lower
triangle, depicted in black, are placed to the lower half of the matrix. Then, those
rows can be removed.

mitigated by using the other forms of diagonal transformation. In total we propose
four diagonal transformations which can be applied to the tile matrix depending on
its relative position to the sub-contact matrix.

(a) Mode 0 (b) Mode 1 (c) Mode 2 (d) Mode 3

Figure 6: The proposed diagonal transformations modes. The mode is chosen based
on the class of chromosomal pairs and the relative position of the tile matrix.

We apply mode 0 for tile matrices with index i == j of intra-chromosomal contact
matrix and mode 2 for tile matrices with index i < j. Tiles located in the lower
triangle of the intra-chromosomal sub-contact matrix contain only zeros. Therefore,
those are not stored. For an inter-chromosomal matrix, the mode of the tiles depend
on the relative position of the sub-contact matrix to the contact matrix. All tiles of
the inter-chromosomal sub-contact matrix located in the upper triangle of the contact
matrix are assigned to mode 2 and mode 3 for the lower triangle part.

Row Binarization

To assign variable bit-length integer number, each row is decomposed into its binary
form, yielding binary rows. The number of binary rows (or the bit-length) depends
on the maximum value of each row and can be computed as follows:

qi =

⌈
log2

(
max
∀i,j

{ai,j}+ 1

)⌉
. (1)

where qi is the number of binary rows decomposed from a row i. ai,j is the value
of the matrix at row i and column j. The value qi is not stored in the compressed
data. For each binary row that corresponds to a certain bit position of the original
row, a flag called sentinel flag is added at the beginning. This flag signals that the
current binary row represents the last bit of the original row. Therefore, the number
of binary rows equals to the bit-length. The binary rows are concatenated in row
direction, starting from the binary row that represents the first bit with the next bit
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and so on. This process forms a binary matrix from binary rows As an example,
consider the following matrix A:

A =

[
1 2 3
4 5 6

]
. (2)

The bit-length of each row qi is computed based on the maximum value, where the
maximum values are 3 and 6 for the first and the second row, respectively. Based on
the maximum values, the first row requires 2 bits (q1) and the second row requires
3 bits (q2). The rows are decomposed into binary rows, depicted with an arrow in
equation 3, and a sentinel flag is added to the beginning of each row:

q1 = 2, q2 = 3,
[
1 2 3

] →
[
0 1 0 1
1 0 1 1

]
,
[
4 5 6

] →
⎡
⎣0 0 1 0
0 0 0 1
1 1 1 1

⎤
⎦ . (3)

The values depicted in red are the sentinel flags. At the end of the process, all of
the binary matrices from all rows are concatenated in row direction, forming a single
binary matrix.

Entropy Coding

In the case where the row binary split transformation is disabled, a generic codec such
as LZMA [8] or BZip2 [9] can be used to compress the data. Otherwise, the input of
this process is a binary matrix and equivalent to a bi-level image. Thus, we code this
binary image using an encoder compliant to the JBIG standard (ISO/IEC 11544 [10]),
that specifies the lossless compression of bi-level images. It takes advantage of spatial
correlation of bi-level pixels or contexts (in this case values of the binary matrices).
The length of the context varies between in total of 10 to 12 neighboring values in
both row and column directions, depending on context mode. We decided to use
JBIG and not JBIG2 (ISO/IEC 14492 [11]) as both technologies offer comparable
results for lossless compression and we do not need additional features offered by the
JBIG2 standard such as lossy compression.

Results

For the evaluation, we used the test data compiled by Rao et. al [12] and described
in Table 3. The experiment data are stored in Cooler format and then the content
are extracted. We refer the extracted content 1 of Cooler as the raw data and the file
size is based on the raw data. Thus, we does not include the encoding and decoding
time of Cooler.

All experiments were carried out on a Linux machine with 8-cores Core i9-9900K
at 5.0 GHz, 64 GB of RAM and solid state drive. Our software is written in Python
and the code for transformations are compiled using Cython. For the entropy coding,
we use the software Jbig-kit [13]. We activated all of the optional transformations to
maximize the compression performance of CMC. The tile size was set to 10,000. The

1https://cooler.readthedocs.io/en/latest/schema.html
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Table 3: Test items used for the evaluation. The raw data are extracted from the
Cooler format.

Test Item File name File size [MB]

1.5.1 GSE63525 CH12-LX combined 22,030
1.5.3 GSE63525 GM12878 dilution combined 12,788
1.5.4 GSE63525 GM12878 diploid maternal 15,603
1.5.5 GSE63525 GM12878 insitu DpnII combined 12,224
1.5.9 GSE63525 HMEC combined 16,493
1.5.10 GSE63525 HUVEC combined 22,288
1.5.11 GSE63525 IMR90 combined 32,386
1.5.12 GSE63525 K562 combined 30,863
1.5.13 GSE63525 KBM7 combined 37,956
1.5.14 GSE63525 NHEK combined 30 20,021

Figure 7: File size of each test item compressed using Cooler, CMC, LZMA and
BZip2.

diagonal transformation mode was selected as described in Section Diagonal Transfor-
mation and the row binarization was turned on whenever the diagonal transformation
was applied. For both LZMA and BZip2, we compressed all of the information ex-
tracted from a Cooler data into a single file. Hence, random access functionality is
not supported for both LZMA and BZip2.

As shown in Figure 7, the CMC outperforms all other methods in terms of com-
pression, and that both LZMA and BZip2 perform better than Cooler. To have a
better view on the relative performance of CMC compared to BZip2 and LZMA, we
computed the compression ratio of CMC w.r.t. the other methods. It is computed by
dividing the compressed file size of the other approaches by the file size of the CMC.
The relative compression ratios are shown in Figure 9. Compared to CMC, Cooler is
about half as efficient and CMC is at least 1.4 times better than LZMA.

In terms of encoding time (see Figure 8), CMC is comparable to LZMA and faster
than BZip2. However, CMC’s decoding speed is about ten times as slow as LZMA and
slower compared to BZip2, as shown in Figure 10. CMC has a symmetrical complexity.
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Figure 8: The encoding time of CMC, LZMA and BZip2. The encoding performance
of CMC is comparable to LZMA2 while BZip2 is the slowest.

Figure 9: Relative compression ratio of CMC compared to the other approaches.

Therefore, the decoding and the encoding speed is about the same. Compared to
CMC, LZMA has an asymmetrical complexity. The encoding process requires the
searching of a matching pattern, resulting in a higher encoding complexity. Finally,
the decoding speed can be scaled up by utilizing parallel processing. The tiles and
sub-contact matrices are independent from each other. This simplifies the decoding
process and allows for possible parallel decoding process.

Summary

We have presented Contact Matrix Compressor(CMC), a compressor specialized for
the coding of contact matrices coming from Hi-C experiments. It outperforms Cooler,
and generic compressors LZMA as well as BZip2. CMC is about 2 times and 1.4 times
as efficient as Cooler and LZMA, respectively, while offering random access capability
at the chromosome-pairs and tiles levels. Better compression is achieved by exploiting
the properties of the contact matrix, such as symmetrical and diagonally dominant.
To exploit such properties, the diagonal transformation and the row binarization are
utilized. By splitting into smaller structures such as sub-contact matrices and tiles,
CMC enables random access at a more granular level.
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Figure 10: The decoding time of CMC, LZMA and BZip2.
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