
Input

Detections

Output

Trajectories

Obtain Costs Create Sparse Graphs

𝑡1 𝑡2 𝑡3 𝑡4 𝑡1 𝑡2 𝑡3 𝑡4

Solve LDP

MLP

Pairwise Cost

Spatial Similarity

Appearance Similarity

× Global Context

Normalization

ApLift

Figure 1. Overview of the ApLift framework. Input detections are used to obtain pairwise costs by an MLP with spatial and appearance
features. Based on the costs, two sparse graphs are constructed and passed to our proposed approximate LDP solver. Dashed arrows
represent lifted edges and solid arrows base edges. In figure Solve LDP equally colored nodes and edges belong to the same trajectory.

8. Appendix

This Appendix contains details about our approximate
LDP solver and the whole MOT framework used in ApLift.
We depicts this framework in Figure 1.
Appendix outline. We start with providing additional no-
tation and abrreviations list in Section 8.1. Sections 8.2-
8.8 present the message passing solver implementation and
the algorithms used for it. Sections 8.9-8.13.2 present de-
tails about processing of the tracking data. Finally, Sec-
tion 8.14 discusses theoretical runtime of the solver and
Section 8.15 presents examples of qualitative results. The
Appendix is rather extensive, especially its algorithmic part.
Therefore, we provide its section outline within the context
of the whole method bellow.
LDP solver outline. Figure 2 contains a scheme of all al-
gorithms used in our LDP solver. The algorithms are stated
either in the main paper or in this Appendix. The solver
performs an explicitly given number of message passing it-
erations. Section 8.7 describes the full solver run and an
overview of all methods used within one message passing it-
eration. Once in five iterations, new primal solution is com-
puted (Sections 4.6 and 8.8). Once in twenty iterations, new
subproblems are separated and added to the problem. These
are path and cut subproblems (see Sections 4.3 and 4.4).
Methods for their separations are described in Sections 8.4
and 8.5.
Message passing. Messages are sent between the sub-
problems. Each subproblem creates messages to be sent
by computing min-marginals of its variables. Section 8.2
presents algorithms used for obtaining min-marginals of in-
flow and outflow subproblems. The algorithms allow us
to efficiently obtain min-marginals of all lifted or all base
edges of a subproblem at once. Messages from cut and path

subproblems are obtained by modifications of the respec-
tive algorithms for their optimization. See Section 4.4 in
the main text for the cut subproblem optimization and Sec-
tion 8.3 for path subproblem optimization.
Tightening by separation. We create the new path and
cut subproblems in order to tighten the LP relaxation of the
problem (3). Section 8.6 discusses the guaranteed lower
bound improvement achieved by separating the new sub-
problems using algorithms in Sections 8.4 and 8.5.
Tracking. The proposed tracking framework contains ad-
ditional processing steps, which are briefly mentioned in the
main paper. A detailed description and additional evalu-
ation data is provided in this appendix. To construct the
graph we calculate costs based on two features as described
in Section 5.1 and add multiple scalings which details can
be found in Section 8.9. We also determine very confi-
dent edges and set their cost based on heuristics explained
in Section 8.12. Furthermore, additional implementation
and training details for the classifier are presented in Sec-
tions 8.10 and 8.11. The efficient inference based on in-
terval solutions is provided in Section 8.13.1. Finally we
show details for the post-processing based on heuristics in
Section 8.13.2.

8.1. Additional notation and abbreviations

• x ∈ AB denotes a mapping x : B → A.
• [n] denotes the set of numbers {1, 2, . . . , n}.
• LP: Linear programming.
• MP: Message passing.
• DP: disjoint paths problem.
• LDP: Lifted disjoint paths.
• DFS: Depth first search.
• MPLP: Max Product Linear Programming.

Figure 2. The scheme of our message passing algorithm and all its subroutines described in this work. An arrow from Algorithm X to
Algorithm Y means that Algorithm X calls Algorithm Y . Algorithms in brackets denote that their modifications are used as the respective
procedures. Abbreviation MP means Messate-Passing. Some algorithms for inflow subproblems are omitted for clarity because they are
analogical to outflow subproblem algorithms.

8.2. Min-Marginals for Inflow and Outflow Sub-
problems

We detail routines for computing min-marginals for all
base edges at once (Algorithm 5) and all lifted edges at once
(Algorithm 6). All the stated algorithms assume outflow
subproblems. Modification to inflow subproblems is done
via proceeding in the oposite edge direction.

Iteratively computing min-marginals and performing op-
eration (6) would be inefficient, since it would involve call-
ing Algorithm 1 O(|δ+E(v)| + |δ

+
E′(v))| times. To speed up

iterative min-marginal updates, we can reuse computations
as done in Algorithm 5 for base edges and in Algorithm 6
for lifted edges.

Algorithm 5 for computing base edge min-marginals
uses the fact that lifted edge costs do not change and there-
fore Algorithm 1 needs to be called only once. For lifted
edges, Algorithm 6 interleaves min-marginal computation
and reparametrization updates (6) such that computations
can be reused. We introduce auxiliary variables γ′vw in
line 3 that keep track of future reparametrization updates.

For the min-marginals, we will need slight extensions of
Algorithm 1 and a method to additionally compute a label-
ing that attains the optimum. These methods are given in
Algorithm 9 and 7.

In Algorithm 6, path P ∗ representing the optimal solu-
tion of the outflow problem is found by calling Algorithm 1
followed Algorithm 7. Then, Algorithm 8 computes min-
marginals for the lifted edges that are active in the optimal
solution. In the end of Algorithm 6, min-marginals are com-
puted for those lifted edges that are not active in the optimal
solution.

For computing min-marginals of edges that are active in
the optimal solution, we need as a subroutine Algorithm 9,
an extended version of Algorithm 1. Algorithm 9 restricts
the vertices taken into consideration during the optimiza-
tion. In particular, a special vertex r is given that is to be
excluded from the optimization. Values lifted cost[u] are
reused for those vertices u where ur /∈ RG because these
values are not affected by excluding vertex r.

Min-marginals for vertices inactive in the optimal solu-
tion are computed by Algorithms 10 and 11. The algo-
rithms rely on structure back cost which is an analogy of
lifted cost. Structure back costs[u] contains the minimum
cost of all vu-paths w.r.t. to the costs of all lifted edges
connecting v with the vertices of the path plus the cost of
the first base edge of the path. Note that lifted costs[u] is
defined analogically but contains the minimum cost of all
ut-paths. Therefore, the minimal solution where a lifted
edge vu ∈ E′ is active can be obtained as follows:

min
(z,y,y′)∈Xout

v :y′
vu=1
⟨(zv, y, y′), θout⟩ =

= lifted cost[u] + back cost[u]− θ̃′vu (11)

The cost of lifted edge θ̃′vu must be subtracted because it is
involved in both values lifted cost[u] and back cost[u].

Algorithm 11 performs two tasks simultaneously. First,
it is a DFS procedure for computing back cost. Contrary
to Algorithm 2 that performs DFS for obtaining lifted cost,
Algorithm 11 proceeds in the opposite edge direction. It
again uses the fact that a subpath of a minimum-cost
path must be minimal. Second, it directly computes min
marginal for already processed vertex u on Line 10 and in-
volves this change in setting back cost[u] on Line 11.
Speeding up DFS: All the algorithms for obtaining opti-
mal solution or min-marginals of inflow and outflow sub-
problems call DFS procedures. It can be considered that the
order of processing the relevant nodes reachable form the
central node is always the same. Therefore, we call DFS
for each inflow and outflow subproblem only once during
their initialization and store the obtained list of processed
nodes. The full DFS in Algorithm 2 is replaced by travers-
ing the precomputed node list in the forward direction. Al-
gorithm 11 is replaced by traversing this node list in the
backward direction.

Algorithm 5 All-Base-MM-Out(v, θ̃)

Input start vertex v, costs θ̃
Output base edge min-marginals γvu ∀vu ∈ δ+E(v)

1: (opt, lifted cost, α) =Opt-Out-cost(v, θout)
2: e∗ = argmin

vw∈γ+
E

{αvw}, e∗∗ = argmin
vw∈γ+

E\{e∗}
{αvw}

3: ∀vu ∈ δ+(v) : γvu = αvu −min(αe∗∗ , 0)

Algorithm 6 All-Lifted-MM-Out(v, θ̃)

Input starting vertex v, θ̃
Output lifted edge min-marginals γ′vu ∀vu ∈ δ+E′(v)

1: (opt, lifted cost, α, next) =Opt-Out-cost(v, θout)
2: P ∗

V =Get-Opt-Path-Out(θout, α, next)
3: ∀vw ∈ δ+E′(v) : γ′vw = 0

4: (opt, γ′) =MM-Opt-Out(v, P ∗
V , opt, γ

′, θ̃)

5: γ′ =MM-Not-Opt-Out(v, opt, γ′, θ̃)

Algorithm 7 Get-Opt-Path-Out

Input costs θ̃, vector α such that ∀vw ∈ δ+E(v) : αvw is the
optimal value if vw is active, next
Output min cost path P ∗

V

1: w∗ = argminw:vw∈δ+E(v) αvw

2: if αvw∗ < 0 then
3: while w∗ ̸= t do
4: P ∗

V ← w∗

5: w∗ = next[w∗]
6: end while
7: else
8: P ∗

V = ∅
9: end if

Algorithm 8 MM-Opt-Out
Input starting vertex v, optimal path P ∗

V = (v1, . . . , vk),
value of optimal path opt, γ′, costs θ̃
Output updated cost of optimal path opt, new
reparametrization updates γ′

1: for all vi = v1, . . . , vk : vvi ∈ δ+E′(v) do
2: α = Skip-One(v, vi, θ̃ − (0, γ′), lifted cost, next)
3: γ′vvi

= opt− α
4: opt = α
5: end for

Algorithm 9 Skip-One

Input v, ignored vertex r, θ̃, lifted cost, next
Output optimal value opt

1: for u ∈ V : vu ∈ RG ∧ ur ∈ RG do
2: lifted cost[u] =∞, next[u] = ∅
3: end for
4: lifted cost[r] = 0, next[r] = t
5: Lifted-Cost-DFS-Out(v, v, θ̃, lifted cost, next)
6: ∀w : vw ∈ δ+E(v) : αvw = θ̃v + θ̃vw + lifted cost[w]
7: opt = min(minw:vw∈δ+E(v) αvw, 0)

8.3. Optimization of path subproblems.

We denote by θP the edge costs in subproblem of
vw-path P . The optimization over the feasible set XP w.r.t.
costs θP is detailed in Algorithm 12. It checks whether
there exists exactly one positive edge and whether it is ei-
ther a lifted or a strong base edge (Line 2). If so, the optimal
solution is either (i) all edges except the two largest ones
(Line 6) or (ii) all edges (Line 8), whichever gives smaller
objective value. If the above condition does not hold, the
optimal solution can be chosen to contain all negative edges
(Line 11).

A variation of Algorithm 12 with a specified edge fixed
to either 0 or 1 is used for computing min-marginals

Algorithm 10 MM-Not-Opt-Out
Input v, current optimum opt, reparametrization update γ′,
θ̃
Output changed reparametrization update γ′

1: (opt, lifted cost) =Opt-Out-cost(v, θ̃ − (0, γ′))
2: for all u : vu ∈ RG do
3: if u ∈ P ∗

V then
4: visited[u] = true
5: back cost[u] = opt− lifted cost[u]
6: if vu ∈ E′ then back cost[u] += θ̃′vu − γ′vw
7: else
8: visited[u] = false
9: if vu ∈ δ+E(v) then

10: back cost[u] = θ̃vu
11: else
12: back cost[u] =∞
13: end if
14: end if
15: end for
16: for all vu ∈ δ+E′(v) do
17: if visited[u] = false then
18: Backward-DFS(v, u, θ̃, γ′, opt, back cost)
19: end if
20: end for

Algorithm 11 Backward-DFS

Input v, u, θ̃, γ′, opt, back cost
Output γ′, back cost

1: α = back cost[u]
2: for wu ∈ δ−E (u) : vw ∈ RG do
3: if visited[w] = false then
4: Backward-DFS(v, w, θ̃, γ′, back cost)
5: end if
6: α = min{back cost[w], α}
7: end for
8: if vu ∈ E′ then
9: optu = α+ lifted cost[u]

10: γ′vu = optu − opt
11: back cost[u] = α+ θ̃vu − γ′vu
12: else
13: back cost[u] = α
14: end if
15: visited[u] = true

8.4. Separation for Path Subproblems

The path subproblem separation procedure is described
in Algorithm 14. The algorithm finds paths together with a
lifted edge connecting the start and the end point of the path
such that exactly one lifted edge has positive cost, while all
the remaining base and lifted edges have negative cost.

Algorithm 12 Path-Subproblem-Optimization
Input Edge costs θP

Output optimal value opt of subproblem.
1: E+ = {kl ∈ PE′ ∪ vw|θ′Pkl > 0}∪ {kl ∈ PE |θPkl > 0}
2: if E+ = {kl} ∧ kl ∈ PE′ ∪ vw ∪ E0 then
3: α = min{ min

ij∈PE\E+
|θPij |, min

ij∈PE′∪vw\E+
|θ′Pij |}

4: β =

{
θ′Pkl , kl ∈ PE′ ∪ vw
θPkl, kl ∈ PE

5: if α < β then
6: opt =

∑
ij∈PE\E+

θPij +
∑

ij∈PE′∪vw\E+

θ′Pij + α

7: else
8: opt =

∑
ij∈PE

θPij +
∑

ij∈PE′∪vw

θ′Pij

9: end if
10: else
11: opt =

∑
ij∈PE\E+

θPij +
∑

ij∈PE′∪vw\E+

θ′Pij

12: end if
13: return opt

First, lifted and base edge costs are obtained in Algo-
rithm 13 by computing min-marginals of inflow and out-
flow factors. Second, a graph with an empty edge set E1

is created. Then, edges with negative costs are added to
E1 in ascending order. After adding an edge, we check
whether separating path subproblems with edge costs lead-
ing to lower bound improvement is possible. Such a factor
must contain the newly added edge, one positive lifted edge
and edges that already are in the edge set E1.

Algorithm 15 separates those paths subproblems where
the only positive edge is the one connecting the path’s end-
points. Algorithm 16 separates those path subproblems
where the only positive edge is one of the edges within
the path. Algorithm 17 updates connectivity structures by
adding edge ij to the edge set E1.

Each path subproblems has a guaranteed lower bound
improvement, see Proposition 2. We add each found path
subproblem to priority queue Q, where we sort w.r.t. the
guaranteed lower bound improvement. After searching for
path subproblems, we add the k best path subproblems from
queue Q to the optimization problem.

8.5. Separation for Cut Subproblems

Algorithm 18 separates cut subproblems. The algorithm
finds cuts consisting of base edges with positive costs and
a lifted edge having endpoints on both sides of the cut and
negative cost. Similarly as for the path subproblem sepa-
ration, lifted and base edge costs are obtained by comput-
ing min-marginals of inflow and outflow factors in Algo-
rithm 13. Each edge uv ∈ E′− is a candidate lifted edge for
a uv-cut factor.

Algorithm 13 Separation-Costs
Input Current cost in inflow and outflow factors θin, θout

Output Cost reparametrization ∀uv ∈ E : θ̃uv , ∀uv ∈ E′ :
θ̃′uv

1: ∀uv ∈ E : θ̃uv = 0, ∀uv ∈ E′ : θ̃′uv = 0
2: for all u ∈ V \ {s, t} do
3: ∀uv ∈ δ+E(u) : γoutuv = 0
4: ∀uv ∈ δ−E (u) : γinvu = 0
5: γ′outu = 0.5·All-Lifted-MM-Out(u, θoutu)
6: γ′inu = 0.5·All-Lifted-MM-In(u, θinu)
7: γoutu =All-Base-MM-Out(u, θoutu − (γoutu , γ′outu))
8: γinu =All-Base-MM-In(u, θinu − (γinu , γ

′in
u))

9: ∀uv ∈ δ+E(u) : θ̃uv += γoutuv

10: ∀uv ∈ δ−E (u) : θ̃vu += γinvu
11: ∀uv ∈ δ+E′(u) : θ̃′uv += γ′outuv

12: ∀uv ∈ δ−E′(u) : θ̃′vu += γ′invu

13: end for

Algorithm 14 Separate-Path-Subproblem
Input Cost threshold ε

1: θ̃ =Separation-Costs(θin, θout)
2: G1 = (V,E1 = ∅)
3: E− = {vw ∈ E|θ̃vw < −ε} ∪ {vw ∈ E′|θ̃′vw < −ε}
4: E′+ = {vw ∈ E′|θ̃′vw > ε}
5: ∀v ∈ V : desc[v] = {v}, pred[v] = {v}
6: Priority-Queue Q = ∅
7: for all ij ∈ E− ascending in θ̃ do
8: if ij ∈ E then cij = θ̃ij
9: else cij = θ′ij

10: Inner-Paths(i, j, cij , pred, desc, E+, E1, Q)
11: Outer-Paths(i, j, cij , pred, desc, E+, E1, Q)
12: Connect(i, j, pred, desc, E1)
13: end for

Algorithm 15 Inner-Paths
Input i, j, cij , pred, desc, E+, E1, Q

1: for all p ∈ pred[i] do
2: for all d ∈ desc[j] do
3: if pd ∈ E+ then
4: P1 =Find-Path(p, i, E1)
5: P2 =Find-Path(j, d, E1)
6: P = (P1, ij, P2)
7: priority = min{|cij |, θ̃′pd}
8: Q← (Path-Problem(P), priority)
9: end if

10: end for
11: end for

The edge set E1 initially contains all base edges with
cost lower than ε. The remaining base edges are added to

Algorithm 16 Outer-Paths
Input i, j, cij , pred, desc, E+, E1, Q

1: for all p ∈ pred[j] do
2: for all d ∈ desc[i] do
3: if dp ∈ E+ then
4: P1 =Find-Path(i, d, E1)
5: P2 =Find-Path(p, j, E1)
6: P = (P1, ij, P2)
7: priority = min{|cij |, θ̃′dp}
8: Q← (Path-Problem(P), priority)
9: end if

10: end for
11: end for

Algorithm 17 Connect
Input i, j, pred, desc, E1

1: for all p ∈ pred[i] do
2: for all d ∈ desc[j] do
3: desc[p]← d
4: pred[d]← p
5: E1 ← ij
6: end for
7: end for

E1 in ascending order. Whenever a newly added edge ij
causes a connection between u and v where uv ∈ E′−, a
uv-cut C is separated. We select the cut C to contain only
those edges that do not belong to E1. This ensures that ij is
the weakest cut edge. In the same time, C is the best uv-cut
with respect to the cost of the weakest cut edge.

The found cut factors are added to a priority queue where
the priority represents guaranteed lower bound improve-
ment (see Proposition 3) after adding the factor to our prob-
lem.

8.6. Tightening Lower Bound Improvement

In order to show that the separation procedures in Algo-
rithms 14 and 18 lead to relaxations that improve the lower
bound we show the following: (i) Certain reparametriza-
tion used in the above algorithms are non-decreasing in the
lower bound. (ii) Separation procedures find new subprob-
lems such that w.r.t. the above reparametrization, a guaran-
teed lower bound improvement can be achieved.

Points (i) and (ii) guarantee that the same lower bound
achievement w.r.t. the original reparametrization can be
found. The special reparametrization chosen helps empir-
ically to find good subproblems.

Lemma 1. Let s ∈ S be a subproblem, θ its cost and Ls(θ)
its lower bound for cost θ. Given a cost reparametrization
γ such that

Algorithm 18 Separate-Cut-Subproblem
Input Cost threshold ε

1: θ̃ =Separation-Costs(θin, θout)
2: E′− = {vw ∈ E′|θ̃′vw < −ε}
3: E− = {vw ∈ E|θ̃′vw < ε}, E+ = E \ E−

4: E1 = E−, G1 = (V,E1)
5: Priority-Queue Q = ∅
6: for all ij ∈ E+ ascending in θ̃ do
7: for all u ∈ pred[i] do
8: for all v ∈ desc[j] do
9: if uv ∈ E′− then

10: C= cut between u, v using edges E \E1

11: priority = min{θ̃ij , |θ̃′uv|}
12: Q← (Cut-Problem(C, u, v), priority)
13: end if
14: end for
15: end for
16: Connect(i, j, pred, desc, E1)
17: end for

1. ∀i ∈ [ds]

γi =

{
≤ 0 if ∃x∗ ∈ argminx∈X s⟨θ, x⟩ : x∗i = 1

≥ 0 if ∃x∗ ∈ argminx∈X s⟨θ, x⟩ : x∗i = 0

(12)
2. argmin

x∈X s

⟨θ, x⟩ ⊆ argmin
x∈X s

⟨θ − γ, x⟩

and a coordinate-wise scaled reparametrization γ(ω) de-
fined by coefficients ω ∈ [0, 1]s where ∀i ∈ [ds] : γ(ω)i =
ωiγi, it holds:

1. The lower bound of s after reparametrization γ(ω) is
Ls(θ − γ(ω)) = Ls(θ)−

∑
i∈[ds]:γi<0 ωiγi.

2. argmin
x∈X s

⟨θ, x⟩ ⊆ argmin
x∈X s

⟨θ − γ(ω), x⟩

Proof. We start with evaluating ⟨θ− γ(ω), x∗⟩ where x∗ ∈
argminx∈X s⟨θ, x⟩.

⟨θ − γ(ω), x∗⟩ =
∑
i∈[ds]

(θi − ωiγi)x
∗
i =

=
∑
i∈[ds]

θix
∗
i −

∑
i∈[ds]:γi<0

ωiγix
∗
i =

= Ls(θ)−
∑

i∈[ds]:γi<0

ωiγi (13)

∀x ∈ X ,∀x∗ ∈ argminx∈Xs⟨θ, x⟩ :

⟨θ − γ(ω), x⟩ =
∑
i∈[ds]

(θi − ωiγi)xi =

=
∑
i∈[ds]

(θi − γi)xi +
∑
i∈[ds]

(1− ωi)γixi ≥

≥ Ls(θ − γ) +
∑

i∈[ds]:γi<0

(1− ωi)γixi =

=
∑
i∈[ds]

(θi − γi)x∗i +
∑
i∈[ds]

(1− ωi)γix
∗
i =

= ⟨θ − γ(ω), x∗⟩ (14)

Formula 14 proves Point 2 of Lemma 1. Formulas 13 and
14 together prove Point 1.

Lemma 2. Variables (γoutu , γ′outu), resp. (γinu , γ
′in
u) in Al-

gorithm 13 satisfy the requirements of Lemma 1 for each
outflow resp. inflow subproblem of vertex u.

Proof. Both Algorithms 5 and 6 output reparametrization
variables that satisfy the requirements of Lemma 1. We
have, for an outflow subproblem of node u:

argmin
(y,y′)∈Xout

u

⟨θ, (y, y′)⟩ ⊆ argmin
(y,y′)∈Xout

u

⟨θ−(0, γ′outu), (y, y′)⟩

⊆ argmin
(y,y′)∈Xout

u

⟨θ − (γoutu , γ′outu), (y, y′)⟩ (15)

Therefore, also (γoutu , γ′outu) together satisfy the require-
ments of Lemma 1. Analogically, for the inflow subprob-
lems.

Costs in the new path and cut subproblems. One edge is
typically shared among multiple newly added path and cut
subproblems. Therefore, the available cost reparametriza-
tions θ̃ and θ̃′ from Algorithm 13 must be redistributed to
the newly added subproblems. We denote the set of all
newly added path subproblems resp. cut subproblems in
tightening iteration i by Pi resp. Ci. For each base resp.
lifted edge uv, we sum up the number of newly added path
and cut subproblems that contain uv.

Nuv =|{P ∈ Pi : uv ∈ PE}|+ |{C ∈ Ci : uv ∈ CE}|,
N ′

uv =|{P ∈ Pi : uv ∈ PE′}|+ |{P ∈ Pi : P is a uv-path}|
+ |{C ∈ Ci : C is a uv-cut}| . (16)

Then, we define coefficient ωuv resp. ω′
uv for each base

edge uv ∈ E resp. lifted edge uv ∈ E′ that belongs to a
newly added subproblem as

ωuv =
1

Nuv
, ω′

uv =
1

N ′
uv

. (17)

Finally, for each newly added path subproblem P resp. cut
subproblem C, we set the cost of base edge uv ∈ E to

θPuv = ωuv θ̃uv , resp. θCuv = ωuv θ̃uv . Analogically, for the
lifted edges.
Cost update in in/outflow subproblems. If we use an
edge uv for creating one or more path and cut suproblems,
it is necessary to update its cost in the inflow subproblem
of vertex v and the outflow subproblem of vertex u accord-
ingly. For instance, we update the cost of base edge uv
in the outflow subproblem of u as follows θoutuv −= γoutuv .
Where we adopt the notation from Algorithm 13. Note that
θ̃uv = γinuv +γ

out
uv . Therefore, the total cost of edge variable

uv is preserved.

Proposition 2 (Guaranteed lower bound improve-
ment of path subproblem). If a path subproblem
corresponding to vw-path P separated by Algo-
rithm 14 is added to the subproblem set S, the guar-
anteed improvement of the global lower bound is
min{minuv∈PE

|θPuv|,minuv∈PE′∪vw |θ′Puv|}, where θP

is the reparametrized cost used for the path factor
initialization.

Proof. Algorithm 14 separates only those subproblems that
contain exactly one lifted edge with cost θ′Puv > ε and
the rest of the edges have cost lower than −ε. The
reparametrized costs of the path factor are fractions of cost
reparametrizations obtained by Algorithm 13. We have

∀uv ∈PE :

θPuv = ωuv · (γoutuv + γinuv) ,

θoutuv −= ωuv · γoutuv , θ
in
uv −= ωuv · γinuv,

∀uv ∈PE′ : (18)

θ′Puv = ω′
uv · (γ′outuv + γ′inuv) ,

θ′outuv −= ω′
uv · γ′outuv , θ′inuv −= ω′

uv · γ′inuv

We evaluate the change of the lower bounds of all rel-
evant inflow and outflow factors after reparametrization
given by Formula 18. According to Lemma 1, we have

∆Lout +∆Lin = (19)

−
∑

uv∈PE :γout
uv <0

ωuv · γoutuv −
∑

uv∈PE′∪vw:γ′out
uv <0

ω′
uv · γ′outuv

−
∑

uv∈PE :γin
uv<0

ωuv · γinuv −
∑

uv∈PE′∪vw:γ′in
uv <0

ω′
uv · γ′inuv ≥

−
∑

uv∈PE :γout
uv +γin

uv<0

ωuv · (γoutuv + γinuv)−

−
∑

uv∈PE′∪vw:γ′in
uv +γ′out

uv <0

ω′
uv · (γ′outuv + γ′inuv) =

−
∑

uv∈PE :θP
uv<0

ωuv · θPuv −
∑

uv∈PE′∪vw:θ′P
uv<0

ω′
uv · θ′Puv

Let kl ∈ PE′ be the only lifted edge with pos-
itive cost in the path subproblem. We set α =

min{ min
ij∈PE

|θPij |, min
ij∈PE′∪vw\kl

|θ′Pij |} as in Algorithm 12. If

we denote by ∆LP the lower bound of the path subprob-
lem, the global lower bound change after adding the path
subproblem is:

∆L = ∆Lout +∆Lin +∆LP (20)

If α < θ′Pkl

∆Lout +∆Lin +∆LP ≥

−
∑

uv∈PE :θP
uv<0

ωuv · θPuv −
∑

uv∈PE′ :θ′P
uv<0

ω′
uv · θ′Puv+

(21)

+
∑

uv∈PE :θP
uv<0

ωuv · θPuv +
∑

uv∈PE′ :θ′P
uv<0

ω′
uv · θ′Puv+

+ α = α

If α ≥ θ′Pkl
∆Lout +∆Lin +∆LP ≥

−
∑

uv∈PE :θP
uv<0

ωuv · θPuv −
∑

uv∈PE′∪vw:θ′P
uv<0

ω′
uv · θ′Puv+

(22)

+
∑

uv∈PE :θP
uv<0

ωuv · θPuv +
∑

uv∈PE′ :θ′P
uv

ω′
uv · θ′Puv =

= θ′Pkl

Proposition 3 (Guaranteed lower bound improvement of
cut subproblem). If a subproblem corresponding to vw-cut
C separated by Algorithm 18 is added to the subproblem set
S, the guaranteed improvement of the global lower bound is
min{minuv∈C θ

C
uv, |θ′Cvw|}. Where θC is the reparametrized

cost used for the cut factor initialization.

Proof. We obtain the reparametrized cost θC for the cut
subproblem analogically as in Formula 18 for the path sub-
problem. Note that Algorithm 18 ensures that all cut edges
in the separated cut subproblem have positive cost and the
lifted edge vw has negative cost. Using the same arguments
as in the proof of Proposition 3, we obtain the lower bound
change of inflow and outflow factors after separating the cut
subproblem:

∆Lout +∆Lin =

−
∑

uv∈C:γout
uv <0

ωuv · γoutuv −
∑

uv∈C:γin
uv<0

ω′
uv · γinuv

− ω′
vwγ

′out
vw − ω′

vwγ
′in
vw ≥ (23)

−
∑

uv∈C:γout
uv +γin

uv<0

ωuv · (γoutuv + γinuv)− ω′
vwγ

′out
vw

− ω′
vwγ

′in
vw = −ω′

vwγ
′out
vw − ω′

vwγ
′in
vw = −θ′Cvw

Algorithm 3 shows how we obtain the lower bound of the
cut subproblem. We set θCij = argminuv∈C θ

C
uv . If θCij <

|θ′Cvw|, we get the overall lower bound improvement

∆Lout +∆Lin +∆LC ≥ −θ′Cvw + θ′Cvw + θCij = θCij .

If θCij ≥ |θ′Cvw|, the lower bound of the cut subproblem is 0
and the overall lower bound improvement is

∆Lout +∆Lin +∆LC ≥ −θ′Cvw . (24)

8.7. Message Passing

One solver run consists of subproblems initialization and
a number of message passing iterations. Algorithm 19 de-
tails the whole run. Algorithms 23-22 present methods that
are called within one iteration.

The number of iterations is predetermined by an input
parameter. We use typically tens or maximally one hundred
iterations in our experiments.

Algorithm 19 sends in each iteration, messages between
all subproblems in the subproblem set S. Each subproblem
creates messages to be sent by computing min-marginals of
its variables (see Formula (5)). These min-marginals are
re-scaled and redistributed between other subproblems that
contain the respective variables. These operations are called
reparametrization. See Section 4 for details.

Algorithm 23 computes lower bound of the LDP ob-
jective by summing up lower bounds of all subproblems.
The cost reparametrization realized via our message passing
procedures ensures that the lower bound is non-decreasing
during the computaiton.

Algorithm 20 shows sending messages from the inflow
subproblem of node u. Algorithm 21 shows sending mes-
sages from a path subproblem. Algorithm 22 presents send-
ing messages from a cut subproblem.

Algorithm 19 Message Passing
Input Graphs G = (V,E) and G′ = (V,E′), costs θ ∈
RV ∪E∪E′

Output Best found primal solution (z, y, y′)ub, lower
bound LB

1: Initialization:
2: for v ∈ V do
3: Add inflow subproblem for node v.
4:

∀uv ∈ δ−E (v) : θinuv =

{
θuv if v = s
1
2θuv otherwise

5: ∀uv ∈ δ−E′(v): θ′inuv = 1
2θ

′
uv .

6: θinv = 1
2θv .

7: Add outflow subproblem for node v with analogu-
ous costs.

8: end for
9: C = ∅

10: P = ∅
11: Lagrange decomposition optimization
12: for iter = 1, . . . ,max iter do
13: Forward Pass:
14: for u = u1, . . . , u|V | do
15: Inflow-Subproblem-Message-Passing(u)
16: Outflow-Subproblem-Message-Passing(u)
17: end for
18: for P ∈ P do
19: Path-Subproblem-Message-Passing(P)
20: end for
21: for C ∈ C do
22: Cut-Subproblem-Message-Passing(C)
23: end for
24: Backward Pass:
25: Revert order of nodes and perform above iteration.
26: if iter ≡ 0 mod k then
27: Separate-Cut-Subproblem(ε)
28: Separate-Path-Subproblems(ε)
29: Add cut and path subproblems to C and P
30: end if
31: if iter ≡ 0 mod l then
32: (z, y, y′) =Compute-Primal(S, θ)
33: if ⟨θ, (z, y, y′)⟩ < ⟨θ, (z, y, y′)ub⟩ then
34: (z, y, y′)ub = (z, y, y′)
35: end if
36: end if
37: LB =Lower-Bound
38: end for

Algorithm 20 Inflow-Subproblem-Message-Passing
Input central vertex u of the subproblem

1: γ′in = All-Lifted-MM-In(u, θin).
2: ω = 1
3: for vu ∈ δ−E (u), P ∈ P : vu ∈ PE do
4: γPvu = Path-Base-Min-Marginal(u, v, θin)
5: ω += 1
6: end for
7: for vu ∈ δ−E′(u), P ∈ P : vu ∈ PE′ do
8: γ′Pvu = Path-Lifted-Min-Marginal(u, v, θin)
9: ω += 1

10: end for
11: for vu ∈ δ−E′(u), P ∈ P : P ∈ vu-paths(G) do
12: γ′Pvu = Path-Lifted-Min-Marginal(u, v, θin)
13: ω += 1
14: end for
15: for vu ∈ δ−E (u), C ∈ C : vu ∈ CE do
16: γCvu = Cut-Base-Min-Marginal(u, v, θin)
17: ω += 1
18: end for
19: for vu ∈ δ−E′(u), C ∈ C : C is a vu-Cut do
20: γ′Cvu = Cut-Lifted-Min-Marginal(u, v, θin)
21: ω += 1
22: end for
23: for vu ∈ δ−E′(u) do
24: θinvu −= 1

ω · γ
′in
vu , θoutvu += 1

ω · γ
′in
vu

25: end for
26: for vu ∈ δ−E (u), P ∈ P : vu ∈ PE do
27: θinvu −= 1

ω · γ
P
vu, θPvu += 1

ω · γ
P
vu

28: end for
29: for vu ∈ δ−E′(u), P ∈ P : vu ∈ PE′ do
30: θ′invu −= 1

ω · γ
′P
vu, θ′Pvu += 1

ω · γ
′P
vu

31: end for
32: for vu ∈ δ−E′(u), P ∈ P : P ∈ vu-paths(G) do
33: θ′invu −= 1

ω · γ
′P
vu, θ′Pvu += 1

ω · γ
′P
vu

34: end for
35: for vu ∈ δ−E (u), C ∈ C : vu ∈ CE do
36: θinvu −= 1

ω · γ
C
vu, θCvu += 1

ω · γ
C
vu

37: end for
38: for vu ∈ δ−E′(u), C ∈ C : C is a vu-Cut do
39: θ′invu −= 1

ω · γ
′C
vu, θ′Cvu += 1

ω · γ
′C
vu

40: end for

Algorithm 21 Path-Subproblem-Message-Passing
Input: uv-Path P ∈ P

1: γP = Path-Min-Marginals(P, θP)
2: ωP = 1

2·|PE |+2·|PE′ |
3: for kl ∈ PE do
4: θPkl −= γPkl
5: θinkl −= ωP · γPkl, θoutkl −= ωP · γPkl
6: end for
7: for kl ∈ PE′ do
8: θPkl −= γPkl
9: θinkl −= ωP · γPkl, θoutkl −= ωP · γPkl

10: end for

Algorithm 22 Cut-Subproblem-Message-Passing
Input: uv-Cut C ∈ C

1: γC = Cut-Min-Marginals(C, θC)
2: ωC = 1

2·|CE |+2

3: for kl ∈ CE do
4: θCkl −= 2ωC · γCkl
5: θinkl += ωC · γCkl, θoutkl += ωC · γCkl
6: end for
7: θ′Cuv −= 2ωC · γ′Cuv
8: θinuv += ωC · γ′Cuv , θoutuv += ωC · γ′Cuv

Algorithm 23 Lower-Bound
Input Subproblems S
Output Lower bound value LB

1: LB = 0
2: for u ∈ V \{s, t} do
3: LB += Opt-In-Cost(u, θin)
4: LB += Opt-Out-Cost(u, θout)
5: end for
6: for P ∈ P do
7: LB += Path-Subproblem-Optimization(P, θP)
8: end for
9: for C ∈ C do

10: LB += Cut-Subproblem-Optimization(C, θC)
11: end for

8.8. Primal Solution and Local Search

Algorithm 24 summarizes the whole procedure for ob-
taining a primal solution. As stated in Section 4.6, we ob-
tain an initial primal solution by solving MCF problem.

Given a feasible solution of the LDP, Algorithm 25 im-
proves it by splitting and merging paths. While we obtain
the costs for MCF from base and lifted edges costs in inflow
and outflow factors (Algorithm 4), the local search proce-
dure uses original input costs of base and lifted edges.

Algorithm 28 finds candidate split point of each path and
recursively splits the path if the split leads to decrease of the

objective function.
For each vertex of each path, function split evaluates the

cost of splitting the path after the vertex:

∀vj ∈ PV = (v1, . . . vn) : (25)

split(vj , P) = −
∑

k≤j,l>j,
vkvl∈E′

θ′vkvl
− θvjvj+1

+ θsvj+1
+ θvjt

The second step of the primal solution post-processing
by Algorithm 25 is merging paths. Before the path merging
itself, some candidate pairs of paths need to be shortened at
their ends in order to enable their feasible merging.

Algorithm 26 identifies pairs of those paths whose merg-
ing should lead to objective improvement but that cannot be
connected directly due to missing base edge between their
endpoints. In order to identify the desired paths pairs, sev-
eral functions are used.

Function l+(P1, P2) resp l−(P1, P2) is the sum of pos-
itive resp. negative lifted edges from path P1 to path P2.
Function l(P1, P2) sums all lifted edges from P1 to P2.

∀P1, P2 ∈ P

l+(P1, P2) =
∑

uv∈E′:u∈P1,v∈P2,θ′
uv≥0

θ′uv

l−(P1, P2) =
∑

uv∈E′:u∈P1,v∈P2,θ′
uv<0

θ′uv (26)

l(P1, P2) = l+(P1, P2) + l−(P1, P2)

We use the above values in functions merge and mergeτ
that evaluate the gain of merging two paths. Threshold τ ≤
1 constraints the ratio between the positive and the negative
part of lifted cost function l that is considered acceptable for
merging two paths.

∀P1 =(v1, . . . , vn), P2 = (u1, . . . , um) ∈ P (27)

merge(P1, P2) =

{
θvnu1

+ l(P1, P2) if vnu1 ∈ E
∞ otherwise

∀P1 = (v1, . . . , vn), P2 = (u1, . . . , um) ∈ P
mergeτ (P1, P2) = (28)

=

∞ if vnu1 /∈ E ∨

l+(P1, P2) > τ |l−(P1, P2)|
θvnu1

+ l(P1, P2) otherwise

Algorithm 27 is applied on all paths pairs found by Algo-
rithm 26. It inspects whether shortening of one or both paths
leads to a feasible connection that ensures a desired objec-
tive improvement. It iteratively removes either the last ver-
tex of the first path or the first vertex of the second path and
checks if a connection is possible and how much it costs.

The last part of Algorithm 25 considers merging paths.
We use formulamergeτ (Pi, Pj)−out(Pi)−in(Pj) to eval-
uate whether merging two paths is beneficial. Here in(Pj)
denotes input cost to the first vertex of Pj and out(Pi) de-
notes output cost from the last vertex of Pi. We state the
full formula just for completeness. We set the input and the
output costs to zeros in our experiments. Usingmergeτ en-
sures that we connect the paths only if the ratio between the
positive lifted cost l+ and negative lifted cost l− between
the paths is below the acceptable threshold.

Algorithm 24 Compute-Primal

Input Subproblems S, original costs θ ∈ R|V ′|+|E|+|E′|

Output Primal solution (z, y, y′)

1: Init-MCF
2: Obtain primal solution of MCF ymcf ∈ {0, 1}Emcf

3: Set (z, y) accroding to ymcf

4: y′ =Adjust-Lifted-Solution(z, y)
5: (z, y, y′) =Local-Search(z, y, y′)

Algorithm 25 Local-Search
Input Input primal solution z, y, y′

Output Improved primal solution z, y, y′

1: Obtain set of disjoint paths P = {P1, . . . , Pn} from y
2: for all P ∈ P do
3: P =Check-Path-Split(Pi,P)
4: end for
5: P =Shorten-For-Merge(P)
6: while true do
7:

(P1, P2) = argmin
(Pi,Pj)∈P×P

mergeτ (Pi, Pj)

− out(Pi)− in(Pj)

8: if mergeτ (P1, P2)− out(P1)− in(P2) < 0 then
9: P = Merge-Paths(P1, P2,P)

10: else
11: break
12: end if
13: end while
14: (z, y, y′)=Set-From-Paths(P)

Algorithm 26 Shorten-For-Merge
Input Set of paths P
Output Updated set of paths P

1: for all P1 = (v1, . . . , vn) ∈ P do
2: P = argmin

P2=(u1,...,um)∈P:vnu1∈E

merge(P1, P2)

3: P ′ = argmin
P2=(u1,...,um)∈P:vnu1 /∈E

l(P1, P2)

4: if l(P1, P
′) < merge(P1, P) ∧ l(P1, P

′) < 0 then
5: P ∗ = P ′, c = l(P1, P

′)
6: else
7: P ∗ = P , c = merge(P1, P)
8: end if
9: if pred[P ∗] = ∅ ∨ score[P ∗] > c then

10: pred[P ∗] = P1, score[P ∗] = c
11: end if
12: end for
13: for all P2 = (u1, . . . , um) ∈ P do
14: if pred[P2]=P1 = (v1, . . . , vn) ∧ vnu1 /∈ E then
15: P =Cut-Ends(P1, P2,P)
16: end if
17: end for

Algorithm 28 Check-Path-Split
Input Input path P , set of all paths P
Output Set of paths P

1: vm = argmaxvj∈PV
split(vj , P)

2: if split(vm, P) < 0 then
3: (P1, P2) =Split-Path(P, vm)
4: P .remove(P), P .insert(P1), P .insert(P2)
5: P =Check-Path-Split(P1,P)
6: P =Check-Path-Split(P2,P)
7: end if
8: return P

Algorithm 27 Cut-Ends
Input P1 = (v1, . . . , vm), P2 = (u1, . . . , um), P , imax

Output New set of paths P
1: c1 =∞, c2 =∞
2: while i1 + i2 < imax do
3: P ′

1 = (v1, . . . , vn−i1), P
′
2 = (u1+i2 , . . . , um)

4: P ′′
1 = (v1, . . . , vn−i1−1), P ′′

2 = (u2+i2 , . . . , um)
5: if merge(P ′

1, P
′′
2) +merge(P ′′

1 , P
′
2) <∞ then

6: α1 = merge(P ′
1, P

′′
2) + split(P1, vn−i1) +

split(P2, u1+i2)
7: α2 = merge(P ′′

1 , P
′
2) + split(P1, vn−i1−1) +

split(P2, ui2)
8: if α1 < α2 then c1 = i1 − 1, c2 = i2
9: else c1 = i1, c2 = i2 − 1

10: break
11: else if merge(P ′

1, P
′′
2) <∞ then

12: c1 = i1 − 1, c2 = i2
13: break
14: else if merge(P ′′

1 , P
′
2) <∞ then

15: c1 = i1, c2 = i2 − 1
16: break
17: else
18: α1 = l(P ′

1, P
′′
2) + split(P1, vn−i1)+

split(P2, u1+i2)
19: α2 = l(P ′′

1 , P
′
2) + split(P1, vn−i1−1)+

split(P2, ui2)
20: if α1 < α2 then i2 ++
21: else i1 ++
22: end if
23: end while
24: if c1 ̸=∞∧ c2 ̸=∞ then
25: P ′

1 = (v1, . . . , vn−c1), P
′
2 = (u1+c2 , . . . , um)

26: if mergeτ (P ′
1, P

′
2) <∞ then

27: if c1 > 0 then
28: (P11, P12) =Split-Path(P1, vn−c1)
29: P .remove(P1)
30: P .insert(P11), P .insert(P12)
31: end if
32: if c2 > 0 then
33: (P21, P22) =Split-Path(P2, uc2)
34: P .remove(P2)
35: P .insert(P21), P .insert(P22)
36: end if
37: end if
38: end if
39: return P

8.9. Global Context Normalization

Our tracking system employs a global context normal-
ization to obtain accurate features between detections (see
Section 5.1). This section elaborates the implementation
details.

Global context normalization puts similarity measure-
ments into global perspective to form more meaningful fea-
ture values. For instance, global illumination changes will
likely decrease measured appearance similarities between
any pair of detections. Likewise, a scene where all peo-
ple are far away from the camera will most likely result in
less confident appearance similarity measurements. In both
cases, positive matching pairs should have higher similari-
ties than negative matching pairs but the absolute similarity
values are reduced by the global effects. These and further
effects make the interpretation of the similarity in absolute
terms less meaningful. Global context normalization com-
pensates such effects.

To this end, let Ωk = {σvw,k : vw ∈ E} com-
prise all computed similarity measurements for feature k ∈
{Spa,App} defined in Section 5.1. For each feature k
and similarity measurement σvw,k ∈ Ωk, we define sets
GCi,k with i ∈ [5]. Each set GCi,k induces two global
context normalization features: σvw,k ·max(GCi,k)

−1 and
σ2
vw,k ·max(GCi,k)

−1.
The sets are defined w. r. t. σvw,k ∈ Ωk as follows:

GC1,k = {svn,k ∈ Ωk : n ∈ B} . (29)
GC2,k = {smw,k ∈ Ωk : m ∈ B} . (30)
GC3,k = {svn,k ∈ Ωk : n ∈ B and fn = fw} . (31)
GC4,k = {snw,k ∈ Ωk : n ∈ B and fn = fv} . (32)
GC5,k = {smn,k ∈ Ωk : m,n ∈ B} . (33)

where fx denotes the frame of detection x and B the batch
as defined in section 5.1. The sets GC1,k and GC2,k result
in a normalization of the similarity score σvw,k over all out-
going or incoming edges to v or w, respectively. The set
GC3,k results in a normalization over all similarity scores
for outgoing edges from v to a detection in frame fw. Anal-
ogously, the set GC4,k collects all edges from a detection
of frame fv to node w. Finally, GC5,k normalizes the simi-
larity score over all existing scores in the batch B.

8.10. Multi Layer Perceptron (MLP)

As reported in Section 5.1 we use a lightweight and scal-
able MLP to obtain edge costs. We use multiple instances
of the same MLP structure. Each MLP is trained on edges
that have a specific range of temporal gaps (more details in
Section 5.1).

The MLP architecture is based on two fully connected
(FC) layers. The input is a 22-dimensional vector (fea-
tures with corresponding global context normalizations).
LeakyReLU activation [43] is used for the first FC layer.
The final layer (FC) has one neuron, whose output repre-
sents the cost value. For training, an additional sigmoid
activation is added. The structure of the neural network is
visualized in Figure 3.

FC

Input Features

(22)

FC

Cost Value

(22)

(1)

LReLU

(22)

Figure 3. Visualisation of the proposed neural MLP. FC denotes
fully connected layers, LReLU denotes LeakyReLU activation
[43] and values in parenthesis denote the dimension of the cor-
responding tensors.

8.11. Batch Creation Using Fixed Frame Shifts

In this section, we elaborate on our batch creation
method using fixed frame shifts (see Paragraph Training of
Section 5.1).

A batch B contains a set of edges with corresponding
edge costs. Important to note is that we use the same batch
creation strategy to form batches for training as well as in-
ference. During training, batches are augmented with cor-
responding ground truth labels. A carefully chosen batch
creation strategy is crucial to ensure accurate and scalable
training and inference.

In order to obtain accurate predictions by our MLPs
(Section 5.1), the distribution of a batch should represent
the characteristics of the training data. In particular, a batch
should comprise edges covering all permissible temporal
gaps between detections. Furthermore, the distribution of a
batch influences the costs of all edges contained in the batch
by the global context normalization (Section 8.9). Thus also
during inference, a batch should comprise edges covering
all permissible temporal gaps between detections. It is thus
important to employ the same batch creation strategy for
training and inference.

A naı̈ve strategy is thus to define a batch on all frames
within a range f up to f+∆fmax, where f is a starting frame
and ∆fmax defines the maximal permissible time gap. Dur-
ing training, one could then sample detections from these
frames and randomly create true positive and false positive
edges. However, such an approach is not tractable during
inference for long sequences with many detections and long
time gaps. To see this, consider the sequence MOT20-05 of
the MOT20 dataset [16]. It contains 3315 frames with 226
detections per frame on average. We use a maximal permis-
sible time gap of 2 seconds, which correspond to 50 frames
for sequence MOT20-05. The number of edges per batch

and for the entire sequence can then be roughly estimated4

with 63 · 106 and 4 · 109, respectively, which is intractable.
To decrease the amount of edges per batch while ensur-

ing that batches consists of samples containing all permissi-
ble temporal gaps, we adapt batch creation to our needs: For
each start frame f of a batch, we subselect the frames to be
considered within the range f, . . . , fmax. During training,
we then subsample detections from these frames. During
inference, we utilize all detections of these frames to form
our batch.

To this end, we define a sequence of frame shifts that
is used to create the frame subselection. Using only few
frame shift makes the approach more computationally effi-
cient. Yet we must ensure that all edges are computed at
least once during inference. That is if B(f) denotes the
batch created according to our strategy with starting frame
f , then

⋃
f B(f) = E must contain all edges.

To ensure that we always cover temporal gaps of up to 2
seconds, the frame shifts depend on the maximal permissi-
ble temporal gaps (measured in frames).

For a start frame f and ∆fmax = 50, we define the frame
shift set Sh(∆fmax) as

Sh(50) = {0, 1, 2, 3, 4, 5, 6, 7, 8, 17, 26, 35, 44, 50} . (34)

For ∆fmax = 60, we define the frame shift set Sh(∆fmax)
as

Sh(60) = { 0, 1, 2, 3, 4, 5, 6, 7, 14, 21, 28, 36, 37,
38, 40, 46, 53, 60 } (35)

Then for each start frame f , a batch is created using the
frames {f + fshift : fshift ∈ Sh(fmax)}. To ensure
that all edges are computed at least once in the infer-
ence stage, one need to calculate batches with start frames
f ∈ {1 − ∆fmax, . . . ,∆fmax}. Compared to the naı̈ve
batch creation strategy, our utilized batch creation results
in 226

∑13
i=1 226 · (14 − i) = 4647916 edges for MOT20-

20, using the same assumptions as before. The number of
edges to be computed is thus significantly lower.

8.12. Determining obviously matching and non-
matching detection pairs

During the graph construction in Section 5.2, we employ
a simply strategy to detect edges that represent obviously
matching or obviously non-matching detection pairs. Cor-
responding edge costs are set such that they induce must-
links or cannot-links as soft constraints. Details are de-
scribed in this section.
Obviously non-matching pairs. We use optical flow
and the object size to calculate the maximal plausible

4With 226 detections per frame, there are about 226
∑49

i=1 226(50 −
i) = 62568100 edges per batch. With 3315 frames there are more
than 3315

50
62568100 = 4148265030 edges. Here we assumed non-

overlapping batches, thereby missing many connections.

displacement dmax(v, w) and velocities vx,max(v, w) and
vy,max(v, w) between two detections v and w. If v is a de-
tection in frame fv and w a detection in fw, we define

dmax(v, w) = kd +

fw−1∑
i=fv

max(O(i, i+ 1)) (36)

where max(O(i, i + 1)) is the maximal magnitude of the
optical flow between the frames i and i + 1 and kd is a
security tolerance, which we set to 175 pixel according to
experiments on the training data. If the distance d(v, w) be-
tween the center points of detections v and w is greater than
dmax(v, w), the detection pair given by vw is regarded as
obviously non-matching. We also assume that the maximal
velocity of a person is limited. With the height h and width
b of the bounding boxes, we define the maximal velocities

vx,max(v, w) = b · ke (37)

and
vy,max(v, w) = h · ke

2
(38)

in x and y-direction. The factor ke is set to ke = 0.3 ac-
cording to experiments on the training data. In sequences
with moving cameras, the factor is increased to ke = 0.8
and decreased to ke = 0.12 in sequences with static camera
and aerial viewpoint. If the velocity vx(v, w) or vy(v, w)
between the detections v and w is greater than correspond-
ing vx,max(v, w) or vy,max(v, w), the connection given by
vw is regarded as obviously non-matching. To avoid wrong
interpretations caused by noise in the velocity calculation,
we set ke to a high value for detection pairs with small tem-
poral distances.

If a detection pair vw is regarded as obviously non-
matching, we induce a cannot-link soft constraint on vw
by setting its costs to a negative value with a high absolute
value, i.e. cvw ≪ 0.
Obviously matching pairs. We induce must-link soft con-
straints on edges, considering only connections between
consecutive frames.

An edge vw ∈ E with an appearance similarity score
σvw,App close to the maximal achievable score (which is 2
in our implementation) is considered an obviously matching
pair. We infer from the training data ks = 1.95 as threshold,
so that edges with σvw,App > ks are regarded as obviously
matching by setting their costs accordingly.

In addition, if two boxes between consecutive frames
have a high overlap, we induce a must-link soft constraint
on the corresponding edge. In more detail, the intersec-
tion over union between the detections must be at least 0.5.
However, such spatial measurements are affected by cam-
era motions, thus potentially leading to wrong interpreta-
tions. In order to induce link soft-constraints only in confi-
dent cases, we employ a simple camera motion compensa-
tion beforehand. To this end, we calculate for a considered

Table 4. Results with and w/o post-processing on MOT20 train set.

MOTA↑ IDF1↑ TP↑ FP↓ FN ↓ IDS ↓

w 74.4 62.8 863203 15778 271411 3511
w/o 72.3 63.6 833473 8462 301141 4201

edge the mean magnitude given by the optical flow between
the frames of the respective detections. Before we compute
the intersection over union, we translate one of the boxes in
horizontal direction by the approximated camera motion, if
this decreases the intersection over union. This procedure
lowers the likelihood of creating wrong must-links caused
by camera motion. Camera motion compensation needs to
be applied only to sequences filmed from a non-static cam-
era. Optical flow can be used to detect if a scene has a
static camera setup. Note that MOT20 contains only scenes
filmed from a static camera.

8.13. Inference

8.13.1 Interval Solution

This section explains how we solve MOT20 using solu-
tions of its intervals. First, we solve the problem in in-
dependent subgraphs containing detections and edges from
time intervals [il + 1, (i + 1)l] for i ∈ {0, 1 . . . , n}, where
l = 3 · tmax, and tmax is the maximum temporal edge
length. We fix resulting trajectories in the centres of inter-
vals, namely in time intervals [il+tmax+1, (i+1)l−tmax]
for i ∈ {1, . . . , n − 1}. Second, we solve the problem in
time intervals covering the end of one initial interval and the
beginning of the subsequent interval while allowing con-
nections with the fixed trajectory fragments. The cost of a
connection between a detection and a trajectory fragment is
obtained as the sum of costs between the unassigned detec-
tion and the detections within the trajectory fragment.

8.13.2 Post-Processing

We perform post-processing on the result provided by our
solver. As it is common, we recover missing detections
within a computed trajectory using linear interpolation. We
also correct wrong connections that mostly stem from situ-
ations which currently cannot be correctly resolved by cur-
rent features, independent of the tracking system, e.g. pair-
wise features computed over very long temporal gaps and
ambiguous feature information due to multiple people ap-
pearing within one detection box.

Consequently, we apply these strategies only to MOT20.
As soon as one of these methods detects a connection as
false, the corresponding trajectory is split into two new tra-
jectories. Table 4 shows the effect of the post-processing on
MOT20 train set.

We noticed an accumulation of wrong connections, where
one end of a trajectory (i.e. its first or last detection) is con-
nected to the successive detection using a skip-connection
over a long temporal gap, and the connection is wrong. This
might be explained by a combination of misleading visual
features (e.g. caused by partial occlusion), not very infor-
mative spatial features (due to the high temporal gap) and
missing lifted edges, because only one detection is existent
at the end of the trajectory. To keep only reliable connec-
tions, we split trajectories if only one detection is existing at
the start or end of a trajectory, followed by a temporal gap
of at least 10 frames.

We also handle cases at the borders of a tracking scene.
If a person leaves the scene, and another person enters the
scene at a position close by after a short time, the tracking
system sometimes joins the trajectories of the two persons.
We explain this behaviour by the high visual similarity be-
tween partially visual persons at image borders. If a person
leaves a scene, normally just one leg, one arm or the head is
visible for some frames. However, a single body party is not
very discriminative and thus can look similar to a body part
of another person. In addition, the spatio-temporal informa-
tion will indicate a likely match in this scenario. Due to the
temporal gap, no or not many meaningful lifted edges are
existing which could give contradicting signals. To elim-
inate this kind of errors, we split trajectories between two
detections, if the temporal gap is greater or equal to 10 and
both detections are located at the image border.

For all detections which are connected over a temporal
time gap greater or equal to 10 frames (skip edges), we per-
form a motion sanity check and split the corresponding tra-
jectory if its motion is not plausible. To this end, we first
determine the highest velocity of obviously correct trajec-
tories, or parts of trajectories with a minimal length of 10
frames (to avoid random noise issues). Then, we split con-
nections at these skip edges, if their velocity is higher than
the determined velocity.

Additionally, we verify that motion between trajectory
parts are consistent. To this end, we consider the motion de-
scribed by a trajectory, using the part before a connection,
and compare it with the resulting motion described by the
trajectory, using the part after the connection. If the veloc-
ities differ by a factor of 5 or greater or if the angle differs
more than π/2, the trajectory is split.

8.14. Solver Runtime

Our solver can compute one interval of MOT20 (150
frames) or an entire sequence of MOT17 with less than
20GB RAM, using a single CPU core.

Subsequently, we analyze the runtime in detail, by per-
forming a theoretical analysis in Section 8.14.1, followed by
a comparison with an existing LDP solver in Section 8.14.2.

8.14.1 Computational Complexity

The solver terminates if one of the following conditions is
satisfied. Either the lower bound is equal to the objective
value of the best primal solution, i.e. optimum has been
found. Or the maximum number of message passing iter-
ations has been reached. The optimum was not found in our
experiments, so the letter condition applied.

The runtime of the solver is, therefore, determined by
the input parameter denoting the maximum number of iter-
ations. The dependence on number of iterations is not ex-
actly linear because the problem size grows with the number
of path and cut subproblems added to set of subproblems S
via cutting plane separation (see Sections 8.4 and 8.5).

An overview of the whole solver run and the tasks per-
formed within one its iteration is given in Section 8.7. The
runtime of the tasks is given by the runtime of computing
min-marginals of the subproblems.

We discuss the complexity of the used algorithms in the
paragraphs bellow. They all have a polynomial complexity.
Therefore, the overall runtime of the solver is polynomial
too.

In order to compute messages between the inflow and
the outflow subproblem, we apply Algorithm 6. Min-
marginals for messages between the path subproblems and
the in/outflow subproblems are obtained for one shared vari-
able at the time. The same holds for exchanging messages
between the cut subproblems and the in/outflow subprob-
lems. This is done by calling restricted versions of opti-
mization algorithms of the path and cut subproblems (Al-
gorithms 12 and 3). For in/outflow subproblems, we use
one call of Algorithm 1 followed by either Algorithm 9 or
Algorithm 11 limited to single variable reparametrization.
Messages between inflow and outflow subproblems.
Messages between inflow and outflow subproblems are re-
alized on lifted edge variables by calling Algorithm 6.
Many subroutines employ full or partial DFS on all nodes
reachable from the central node within the relevant time
gap. In these cases, we use precomputed node order in-
stead of complete DFS as described in the last paragraph
of Section 8.2. One call of the full DFS (Algorithms 1
and 11) requires to process all vertices reachable from v
within maximal time gap for edge length (∆fmax). This
comprises Lmax video frames (we use Lmax = 50 or 60).
Let us denote by n the maximum number of detections in
one frame. The complete DFS processes maximally nLmax

vertices. Incomplete DFS used in Algorithm 9 processes
in each step vertices in L layers. In the worst case, this
is done for all relevant layers L = 1, . . . , Lmax. Process-
ing one vertex requires to check its neighbors in the base
graph. Their amount is bounded by KLmax where K = 3.
See Sparsification paragraph in Section 5. Putting all to-
gether, the complexity of Algorithm 6 for one subproblem
is O(nL3

max). We have two subproblems for each (lifted)

graph vertex, yielding complexity O(|V ′|nL3
max) for send-

ing messages between all inflow and outflow subproblems
in one message passing iteration.
Messages from path subproblems. Obtaining min
marginal for one edge variable of a path subproblem re-
quires two calls of restricted Algorithm 12 whose complex-
ity is linear in the number of path edges. So, min-marginals
for all path edges are obtained in O(|P |2).
Messages from cut subproblems. Min marginal of
one variable of a cut subproblems is obtained by adjusting
its optimization Algorithm 3. The complexity is given by
the complexity of the employed linear assignment problem
which can be solved in polynomial time.
Cutting plane procedures. The cutting plane algorithms
are called each 20 iterations. We allow to add maximally
0.5 · |S0| new factors during one separation call, where S0
is the initial set of subproblems containing only inflow and
outflow factors. So it holds, |S0| = 2|V ′|. Once added,
the subproblems influence the runtime via taking part in
the message passing (see Section 8.7). Cutting plane itself
(Sections 8.4 and 8.5) contains sorting of subsets of base or
lifted edges which has complexity O(|E−| log |E−|) (resp.
O(|E+| log |E+|)). The other algorithms run in quadratic
time w.r.t. number of vertices within relevant time distance
to the currently processed edge.
Primal solution. We compute new primal solution in each
five iterations. We use Algorithm 4 for obtaining base edge
costs. Then, we use successive shortest paths algorithm
for solving minimum cost flow problem and finally local
search heuristic given by Algorithm 25, see Section 4.6.
The complexity of solving MCF is the complexity of suc-
cessive shortest path algorithm which is polynomial. Local
search heuristic requires to compute and update cummula-
tive costs between candidate paths. They can be computed
in time linear in the number of lifted edges O(|E′|). MCF
costs are obtained by calling Algorithm 1. Its complexity is
discussed above.

8.14.2 Comparison with LifT

We perform several experiments for comparing our solver
with an optimal solver for lifted disjoint paths LifT [28].
LifT global solution vs. two-step procedure. LifT is
based on ILP solver Gurobi. It solves the LDP problem
optimally. However, it is often not able to solve the prob-
lem on the full graphs. Therefore, LifT uses a two-step
procedure. First, solutions are found on small time inter-
vals to create tracklets. Second, the problem is solved on
tracklets. This approach simplifies the problem significantly
but the delivered solutions are not globally optimal any-
more. We have observed that using our input costs, LifT
is able to solve some problem sequences globally without
the two step-procedure. Therefore, we compare our solver

with LifT using both the two-step procedure and the global
solution.
Influence of input costs. Our input data contain many
soft constraints for obviously matching pairs of detections.
Those are edges with negative costs significantly higher in
absolute value than other edges costs. LifT finds an initial
feasible solution using only base edges. This solution may
be already very good due to the costs of obviously matching
pairs. Moreover, Gurobi contains a lot of efficient precom-
puting steps, so it can recognize that the respective vari-
ables should be active in the optimum and reduce the search
space.
Parameters. We adjust parameters of our solver to work
with comparable data as LifT. For instance, we do not set
cost of any base edges to zero (as described in Section 5.2)
because LifT does not enable this option. So, the costs
of overlapping base and lifted edges are duplicated as op-
posed to the most of other experiments. Moreover, if there
is no edge between two detections within the maximal time
distance in the input data, we can add a lifted edge with
high positive cost for such pair in ApLift. This is useful
for reducing the input size for MOT20 dataset. LifT does
not have this option. Therefore, we disable this option for
ApLift too.
Subsequences of MOT20. We present a comparison be-
tween our solver and LifT using two-step procedure on an
example subsequence of MOT20-01 in Table 3 in the main
text. On that subsequence, our solver is faster and has even
slightly better IDF1 score than LifT. In Table 5, we present a
comparison on first n frames of sequence MOT20-02 where
LifT finds solutions faster than our solver using many itera-
tions. We assume that this is caused by the input costs that
are convenient for Gurobi, see the discussion above.
Train set of MOT17. We compare our solver with LifT on
global training sequences of MOT17. That is, we do not use
two-step procedure. Therefore, LifT finds the globally opti-
mal solution if it finishes successfully. The runtime of LifT
is exponential in general and it can be often killed because
of memory consumption if run on global sequences. There-
fore, we perform these experiments on a machine having
2000 GB RAM and multiple CPUs each having 64 cores.

The results are in Table 6. Asterisk in LifT time col-
umn indicate that the problem cannot be finished. Some of
the processes are killed by the system because of too much
memory consumption. Some processes do not finish within
more than 27 hours. Moreover, LifT often occupied up to
30 cores for solving one sequence. Our solver uses only
one core. In the cases when LifT does not finish, we eval-
uate the best feasible solution found by LifT. Those were
typically the initial feasible solutions. That is, the solutions
that ignore the lifted edges. Obtaining the initial solutions
for these difficult instances took between 1700 and 4600
seconds. The numbers in brackets relate our results to LifT

results. The time column provides the ratio between our
time and LifT time. The IDF1 column presents the differ-
ence between ApLift and LifT.

Table 5. Runtime and IDF1 comparison of LDP solvers: ApLift
(ours) with 6, 11, 31 and 51 iterations and LifT[28] (two step pro-
cedure) on first n frames of sequence MOT20-01 from MOT20.

n Measure LifT Our6 Our11 Our31 Our51

50
IDF1↑ 83.4 83.4 83.4 83.4 83.4
time [s] 62 4 7 25 46

100
IDF1↑ 80.6 79.9 79.9 79.9 79.9
time [s] 124 30 54 182 360

150
IDF1↑ 78.7 76.8 76.8 76.8 76.8
time [s] 222 61 110 378 780

200
IDF1↑ 77.6 75.8 75.8 75.8 75.8
time [s] 354 95 177 604 1195

8.15. Qualitative Results

Figure 4 and Figure 5 show qualitative tracking results
from the MOT20 [16] and MOT17 [16] datasets. Compar-
ing the samples, it becomes apparent that the density of
objects in MOT20 is much higher than in MOT17. The
sequence MOT20-04 (Figure 4) has an average density of
178.6 objects per frame and sequence MOT17-12 (Fig-
ure 5) only 9.6. The high density in MOT20 results in very
crowded groups of persons which are occluding each other
completely or partially. Accordingly, appearance infor-
mation are ambiguous, leading to less discriminative edge
costs. An additional challenge arises due to the distance
between the camera and the persons, as well as global il-
lumination changes in some sequences. The images shown
in Figure 4 are captured in a temporal distance of 40 frames
(i.e. 1.6 seconds) and the illumination changes heavily. This
leads to appearance changes within a short time, which
makes re-identification challenging. For instance, the per-
son with id 666 (top right corner) in Figure 4 is wearing a
red scarf and a beige jacket. Only a few frames later, the
person is barely visible and colors have changed.

Despite these challenges, our system delivers accurate
tracking results, as can be seen from the result images. Also
the combinatorial and computational challenge in comput-
ing optimal trajectories for MOT20, considering for each
detections all possible connections within a 50 frame range
becomes apparent.

Result video for all test sequences can be obtain from the
official evaluation server, for MOT155, MOT166, MOT177,
and MOT208.

5https://motchallenge.net/method/MOT=4031&chl=2
6https://motchallenge.net/method/MOT=4031&chl=5
7https://motchallenge.net/method/MOT=4031&chl=

10
8https://motchallenge.net/method/MOT=4031&chl=

8.16. Tracking Metrics

A detailed evaluation of our proposed MOT system in
terms of tracking metrics for all sequences of the datasets
MOT20 [16] and MOT17 [45] are reported in Table 7. Eval-
uations on the test set are performed by the official bench-
mark evaluation server at https://motchallenge.net where
our test results are reported as well. The tracking method
for training sequences are trained with leave-one-out strat-
egy to avoid overfitting on the corresponding training se-
quence.

13

https://motchallenge.net/method/MOT=4031&chl=2
https://motchallenge.net/method/MOT=4031&chl=5
https://motchallenge.net/method/MOT=4031&chl=10
https://motchallenge.net/method/MOT=4031&chl=10
https://motchallenge.net/method/MOT=4031&chl=13
https://motchallenge.net/method/MOT=4031&chl=13
https://motchallenge.net/method/MOT=4031&chl=13
https://motchallenge.net/method/MOT=4031&chl=13
https://motchallenge.net/method/MOT=4031&chl=13
https://motchallenge.net/method/MOT=4031&chl=13
https://motchallenge.net/method/MOT=4031&chl=13
https://motchallenge.net
https://motchallenge.net/method/MOT=4031&chl=13
https://motchallenge.net/method/MOT=4031&chl=13
https://motchallenge.net/method/MOT=4031&chl=13
https://motchallenge.net/method/MOT=4031&chl=13
https://motchallenge.net/method/MOT=4031&chl=13

Table 6. Runtime and IDF1 comparison of LDP solvers: ApLift (ours) with 6, 11, 31, 51 and 101 iterations and globally optimal (one step)
LifT[28] on MOT17 train. Numbers in parenthesis in the time column show the difference between the solvers, in the IDF1 column the
ratio between Lift and ApLift.

LifT Ours-6 Ours-11 Ours-31 Ours-51 Ours-101
Sequence Name Time↓ IDF1↑ Time↓ IDF1↑ Time↓ IDF1↑ Time↓ IDF1↑ Time↓ IDF1↑ Time↓ IDF1↑

02-DPM
7324 49.4 94 47.4 157 47.4 513 49.1 989 49.1 2415 49.1
(1.0) (0.0) (0.01) (−2.00) (0.02) (−2.00) (0.07) (−0.30) (0.14) (−0.30) (0.33) (−0.30)

02-FRCNN
4073 54.7 97 54.9 161 54.9 526 54.9 1021 54.9 2503 54.9
(1.0) (0.0) (0.02) (0.20) (0.04) (0.20) (0.13) (0.20) (0.25) (0.20) (0.61) (0.20)

02-SDP
7795 56.7 131 55.0 219 55.0 717 55.0 1410 55.0 3685 55.0
(1.0) (0.0) (0.02) (−1.70) (0.03) (−1.70) (0.09) (−1.70) (0.18) (−1.70) (0.47) (−1.70)

04-DPM
∗ 75.4 449 74.7 756 74.7 2220 74.7 3929 75.0 8578 75.0
(∗) (0.0) (∗) (−0.70) (∗) (−0.70) (∗) (−0.70) (∗) (−0.40) (∗) (−0.40)

04-FRCNN
4889 79.2 383 78.1 644 78.1 1811 76.3 3111 78.2 6565 78.2
(1.0) (0.0) (0.08) (−1.10) (0.13) (−1.10) (0.37) (−2.90) (0.64) (−1.00) (1.34) (−1.00)

04-SDP
∗ 82.3 499 78.0 839 78.0 2441 78.0 4294 77.7 9269 79.9
(∗) (0.0) (∗) (−4.30) (∗) (−4.30) (∗) (−4.30) (∗) (−4.60) (∗) (−2.40)

05-DPM
535 65.0 10 62.6 15 62.6 57 63.5 116 63.5 298 63.5
(1.0) (0.0) (0.02) (−2.40) (0.03) (−2.40) (0.11) (−1.50) (0.22) (−1.50) (0.56) (−1.50)

05-FRCNN
514 66.6 10 63.8 15 63.8 57 64.0 118 63.9 315 65.6
(1.0) (0.0) (0.02) (−2.80) (0.03) (−2.80) (0.11) (−2.60) (0.23) (−2.70) (0.61) (−1.00)

05-SDP
604 67.9 11 67.9 18 67.9 67 67.1 137 67.1 364 67.6
(1.0) (0.0) (0.02) (0.00) (0.03) (0.00) (0.11) (−0.80) (0.23) (−0.80) (0.60) (−0.30)

09-DPM
6692 67.5 42 66.4 70 66.4 232 67.5 480 67.5 1281 67.5
(1.0) (0.0) (0.01) (−1.10) (0.01) (−1.10) (0.03) (0.00) (0.07) (0.00) (0.19) (0.00)

09-FRCNN
11888 68.2 37 68.2 61 68.2 201 68.2 407 68.2 1095 68.2
(1.0) (0.0) (0.00) (0.00) (0.01) (0.00) (0.02) (0.00) (0.03) (0.00) (0.09) (0.00)

09-SDP
1462 68.6 44 67.1 74 67.1 247 68.5 512 68.5 1443 68.5
(1.0) (0.0) (0.03) (−1.50) (0.05) (−1.50) (0.17) (−0.10) (0.35) (−0.10) (0.99) (−0.10)

10-DPM
∗ 66.0 279 68.0 466 68.0 1524 66.8 3087 67.0 9478 67.9
(∗) (0.0) (∗) (2.00) (∗) (2.00) (∗) (0.80) (∗) (1.00) (∗) (1.90)

10-FRCNN
∗ 65.2 310 68.8 511 68.5 1689 69.4 3428 69.4 10743 69.4
(∗) (0.0) (∗) (3.60) (∗) (3.30) (∗) (4.20) (∗) (4.20) (∗) (4.20)

10-SDP
∗ 65.4 379 67.0 630 67.0 2090 67.4 4294 67.1 13379 69.8
(∗) (0.0) (∗) (1.60) (∗) (1.60) (∗) (2.00) (∗) (1.70) (∗) (4.40)

11-DPM
1991 76.3 60 76.3 99 76.3 335 76.3 672 76.3 1672 76.3
(1.0) (0.0) (0.03) (0.00) (0.05) (0.00) (0.17) (0.00) (0.34) (0.00) (0.84) (0.00)

11-FRCNN
2382 78.3 68 78.3 113 78.3 366 78.3 729 78.3 1799 78.3
(1.0) (0.0) (0.03) (0.00) (0.05) (0.00) (0.15) (0.00) (0.31) (0.00) (0.76) (0.00)

11-SDP
3195 80.0 68 79.8 113 79.8 370 80.1 748 80.0 2057 80.0
(1.0) (0.0) (0.02) (−0.20) (0.04) (−0.20) (0.12) (0.10) (0.23) (0.00) (0.64) (0.00)

13-DPM
∗ 62.8 152 66.8 252 66.8 944 66.8 2008 66.8 6340 65.7
(∗) (0.0) (∗) (4.00) (∗) (4.00) (∗) (4.00) (∗) (4.00) (∗) (2.90)

13-FRCNN
∗ 62.5 217 69.8 351 69.8 1331 69.8 2942 67.7 9813 66.2
(∗) (0.0) (∗) (7.30) (∗) (7.30) (∗) (7.30) (∗) (5.20) (∗) (3.70)

13-SDP
∗ 64.5 196 66.8 326 66.8 1237 66.8 2698 66.2 8954 65.6
(∗) (0.0) (∗) (2.30) (∗) (2.30) (∗) (2.30) (∗) (1.70) (∗) (1.10)

OVERALL
∗ 70.7 168 70.3 280 70.3 904 70.2 1768 70.3 4859 70.7
(∗) (0.0) (∗) (−0.40) (∗) (−0.40) (∗) (−0.50) (∗) (−0.40) (∗) (0.00)

Table 7. Evaluation results for training and test sequences for datasets MOT17 [45] and MOT20 [16]

Sequence MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDS↓ Frag. ↓

M
O

T
20

Tr
ai

n MOT20-01 65.8 62.0 31 10 180 6512 109 87
MOT20-02 62.3 55.1 108 18 1393 56420 548 534
MOT20-03 80.4 76.1 427 66 5427 55552 623 591
MOT20-05 74.6 57.8 643 115 8778 152927 2231 2063
OVERALL 74.4 62.8 1209 209 15778 271411 3511 3275

M
O

T
20

Te
st MOT20-04 79.3 68.8 412 40 8315 47364 968 840

MOT20-06 36.1 36.8 41 111 4786 79313 740 744
MOT20-07 56.9 54.7 40 15 936 13135 194 195
MOT20-08 26.5 33.8 20 98 3702 52924 339 333
OVERALL 58.9 56.5 513 264 17739 192736 2241 2112

M
O

T
17

Tr
ai

n

MOT17-02-DPM 42.2 52.5 14 29 125 10588 26 26
MOT17-02-FRCNN 47.3 58.4 15 21 227 9532 27 30
MOT17-02-SDP 55.1 60.5 17 16 289 7994 53 52
MOT17-04-DPM 70.9 78.9 40 21 340 13481 17 29
MOT17-04-FRCNN 68.0 78.4 39 21 179 15044 5 13
MOT17-04-SDP 77.9 80.8 47 13 439 10035 29 68
MOT17-05-DPM 60.0 64.5 48 34 475 2260 31 24
MOT17-05-FRCNN 57.8 64.0 55 32 650 2225 46 41
MOT17-05-SDP 62.6 67.8 59 19 693 1842 53 46
MOT17-09-DPM 73.0 72.8 14 1 46 1380 10 9
MOT17-09-FRCNN 71.5 68.4 14 1 105 1403 10 9
MOT17-09-SDP 74.1 72.9 14 1 66 1302 10 11
MOT17-10-DPM 65.3 67.4 32 6 847 3545 61 74
MOT17-10-FRCNN 62.8 65.8 40 2 2121 2513 139 114
MOT17-10-SDP 66.3 66.5 43 2 1967 2189 173 120
MOT17-11-DPM 69.2 75.7 34 21 248 2624 37 17
MOT17-11-FRCNN 71.5 76.8 38 18 412 2233 47 15
MOT17-11-SDP 72.6 78.5 42 13 547 1981 58 19
MOT17-13-DPM 64.4 64.8 55 33 627 3436 83 56
MOT17-13-FRCNN 67.8 63.4 77 8 1739 1892 120 76
MOT17-13-SDP 67.2 63.7 72 18 1388 2312 117 60
OVERALL 66.0 71.4 809 330 13530 99811 1152 909

M
O

T
17

Te
st

MOT17-01-DPM 48.8 54.3 8 10 113 3181 8 21
MOT17-01-FRCNN 47.0 57.5 9 10 360 3050 11 21
MOT17-01-SDP 45.2 55.4 9 10 488 3033 13 29
MOT17-03-DPM 73.8 73.4 85 17 4360 22905 118 261
MOT17-03-FRCNN 72.8 74.7 74 17 3471 24883 109 234
MOT17-03-SDP 77.7 75.4 94 13 4676 18482 139 386
MOT17-06-DPM 57.7 61.2 94 76 1142 3765 77 91
MOT17-06-FRCNN 57.3 58.4 102 59 1652 3279 102 140
MOT17-06-SDP 57.2 59.5 107 58 1700 3251 87 125
MOT17-07-DPM 45.7 52.5 11 15 1062 8038 80 126
MOT17-07-FRCNN 45.0 53.1 11 15 1345 7862 75 135
MOT17-07-SDP 46.6 53.8 13 11 1622 7310 87 166
MOT17-08-DPM 33.7 44.3 17 37 421 13533 48 67
MOT17-08-FRCNN 31.5 42.1 17 37 462 13948 53 74
MOT17-08-SDP 34.5 45.2 18 34 445 13339 63 85
MOT17-12-DPM 47.6 61.9 23 36 563 3959 20 32
MOT17-12-FRCNN 47.8 62.3 18 40 296 4219 13 24
MOT17-12-SDP 50.0 66.1 19 42 488 3836 11 31
MOT17-14-DPM 37.8 51.0 19 71 1147 10191 151 150
MOT17-14-FRCNN 33.9 48.4 25 62 2369 9636 206 228
MOT17-14-SDP 37.0 49.9 25 58 2427 8970 238 246
OVERALL 60.5 65.6 798 728 30609 190670 1709 2672

Figure 4. Example images from sequence MOT20-04 at frames 1092 and 1132. The images shows a crowded scene captured by a static
camera. The above image is captured before an illumination change happens. The lower image is captured after an illumination change
happens. The appearance of persons changes consequently to the illumination changes (e.g. ID 666 in the top right corner). The result
video can be found at https://motchallenge.net/method/MOT=4031&chl=13&vidSeq=MOT20-04.

https://motchallenge.net/method/MOT=4031&chl=13&vidSeq=MOT20-04

