
NEURAL NETWORK-BASED ERROR CONCEALMENT FOR VVC

Martin Benjak, Yasser Samayoa, Jörn Ostermann

Institut für Informationsverarbeitung
Gottfried Wilhelm Leibniz Universität Hannover

30167 Hannover, Germany
Email: {benjak, samayoa, office}@tnt.uni-hannover.de

ABSTRACT

In this paper we introduce an error concealment method for
VVC based on deep recurrent neural networks, which em-
ploys the PredNet model to estimate missing video frames
by using past decoded frames. The network is trained using
the BVI-DVC data set to infer even full-HD frames. We in-
tegrated our proposed model in the VVC reference software
VTM for its evaluation. It performs, in average, 6 dB or up to
5 dB better than the frame copy model in terms of PSNR mea-
surements for a concealed I-frame or P-frame, respectively.

Index Terms— VVC, video communication, video cod-
ing, error concealment

1. INTRODUCTION

The evolution of technologies for the display and recording
of video signals has been responding to the rising demand
for higher resolution devices. To meet these demands, the
state-of-the-art video coding standard Versatile Video Coding
(VVC) [1] has been released in summer 2020. This is driving
all types of communication systems to increase their capac-
ity of conveying information, from which video contents are
predominant. For instance, by 2022 nearly four-fifths of the
world’s mobile data traffic will be video [2]. Many applica-
tions like video surveillance, tele-medicine and smart car nav-
igation systems require greater resolution and lower latency
video communication systems [3].

For the transmission and storage of video signals, the
imperative systems are video coding, channel coding and
communication systems. For low-delay applications how-
ever, video transmission imposes extra challenges because
error-free output can not be guaranteed at the decoder side by
any means. This forces the execution of error concealment
(EC) algorithms in the video decoder to minimize the impact
of errors that cannot be corrected by the channel decoder. It is
worth noting that the impact of an uncorrected error increases
with the coding efficiency. On the one hand, each video
compression standard reaches a higher coding efficiency in
comparison to its predecessors. On the other hand, the com-
plexity of a suitable EC increases as well. Additionally, in the

last two video coding standards, VVC and High Efficiency
Video Coding (HEVC) [4], error resilience mechanisms have
not been included and there is no suggestion for EC. These
new standards assume error-free transmissions, which can
not be guaranteed for real systems.

The problem of EC has been of great importance since the
beginning of digital video communication systems. Several
solutions have been proposed for standards prior to HEVC
[5, 6, 7, 8]. These algorithms were developed for video
codecs based on macroblocks (MB), in which the spatio-
temporal correlation of MBs is exploited to conceal lost MBs.
HEVC and VVC abandoned the MB-based coding scheme
and therefore require new EC solutions. Few EC algorithms
for HEVC can be found in the literature [9, 10, 11, 12, 8].
These schemes address EC with analytical methods by ex-
ploiting spatio-temporal information available in the decoder
to construct the lost portion of the video. In [13], a deep
neuronal network was trained to emulate EC for a single
lost slice assuming a frame is divided in multiple slices. Its
performance was not measured within any coding standard.
Until now, there are no publications regarding EC for VVC.

In this paper we propose a machine learning-based EC
algorithm for VVC. We focus on low-latency applications for
video communication systems over error prone channels. One
slice per frame is assumed, such that just one erroneous bit in
the encoded bit-stream can completely corrupt a whole video
frame and produce the worst video quality degradation for
subsequent frames due to inter-prediction. Our model makes
use of a deep recurrent neural network (RNN) to generate an
estimated version of the lost frame from previously decoded
frames. The impact of the concealed frame on the video qual-
ity is evaluated with the reference software VVC Test Model
(VTM). Currently, VTM has no capability to detect and con-
ceal a lost slice, which means that our proposed EC algorithm
is implemented and adapted to the VTM decoder.

The remainder of this paper is organized as follows. In
Section 2, a high-level introduction of VVC is given. In Sec-
tion 3, we present the proposed algorithm. In Section 4, an
evaluation and experimental results are given and Section 5
provides a conclusion for this paper.



2. VERSATILE VIDEO CODING (VVC)

Initiated in 2018, the Joint Video Expert Team (JVET), a
joint collaborative team established by the ITU-T Video Cod-
ing Expert Group (VCEG) and the ISO/IEC Moving Experts
Group (MPEG) organizations, finalized the standardization of
VVC and released its final draft in 2020 [1]. One of the main
goals of VVC was to increase the compression capability in
comparison to its predecessors. It provides a BD-rate gain of
30% compared to HEVC [14].

The basic coding structure of VCC is the same as its
predecessors since H.261: block-based hybrid video coding.
This hybrid scheme combines intra and inter (motion com-
pensated) prediction, transform coding techniques, quantiza-
tion, entropy coding and loop filtering. Intra coding relies on
previously coded parts of the current picture to predict a new
block within this picture. Inter coding additionally utilizes
temporal redundancy between consecutive pictures to im-
prove the prediction. Conceptually, previously reconstructed
pictures are stored in a reference picture buffer and are used
to make a prediction for the currently coded block via motion
compensated prediction. VVC, however, enhanced legacy
coding tools and introduced new ones compared to HEVC
[1, 15]. Among others these improvements are: more flex-
ible block partitioning structures with up to 128×128 luma
samples; quad-tree and multiple-type tree partition strategy;
sub-block-based motion compensation; adaptive loop filter
for post filtering; 67 intra prediction modes (32 more than
HEVC); 1/16-pel luma and 1/32-pel chroma motion vec-
tor accuracy; different transforms and quantizers; screen
content coding support; affine motion compensation and
bi-directional optical flow. In consequence, VVC achieves
a better prediction accuracy than HEVC. However, motion
compensation still contributes the most to its coding gain,
which also increases its sensibility to errors.

3. PROPOSED ERROR CONCEALMENT METHOD

3.1. System Description

On the transmitter side, the VTM video encoder compresses
the input video and delivers a bitstream or Network Ab-
straction Layer (NAL) unit stream to the channel encoder
and communication system blocks. The channel encoder in-
telligently adds redundancy to the bitstream to increase its
robustness against errors. These encoded bits are conveyed
over an error prone channel. On the receiver side, the forward
error correction (FEC) block recovers the bitstream from the
encoded bits by removing the redundancy added at the trans-
mitter side while it detects and corrects the errors added by
the channel. Afterwards, the bitstream is passed to the VTM
video decoder. Figure 1 shows a simplified block diagram
of our EC solution integrated to the VTM video decoder.
The CABAC block maps the received bitstream into syntax

Fig. 1: Block diagram of VVC and NN method

elements which after the inverse transform and quantizer are
added to the prediction values. The prediction block con-
tains the inter and intra prediction and the buffer block holds
the reference frames needed for the inter prediction. For
frames without errors, the switch is in the decoded frame (df)
position.

FEC triggers the EC algorithm when an error is detected
in the bit stream (dashed line). In this paper, we configure a
slice to contain an entire frame which makes sense for low-
delay applications [16]. Therefore, a NAL unit contains a
whole frame as well. Just one erroneous bit in a NAL unit
is enough to prevent CABAC from recovering the syntax ele-
ments of an entire frame and thus the frame is considered to be
lost. If an error is detected, the EC algorithm is started: The
NN estimates the lost frame from the L previous frames con-
tained already in the ring buffer. Also, the switch is changed
to the concealed frame (cf) position, indicating that the lost
frame will be replaced with the concealed frame in the output
sequence and saved in the buffer block for the inter prediction
of the following frames. Note that the ring buffer can contain
both correctly decoded and concealed frames.

3.2. Neural Network-Based Frame Estimation

In this paper a neural network-based frame estimation, in
short NN, is proposed as an EC algorithm. Our model em-
ploys the RNN architecture from the PredNet model [17]
to estimate corrupted and thus missing frames. This net-
work consists of four stacked modules, each trying to make
predictions for its input. The prediction is generated by a
convolutional layer from a recurrent representation. The dif-
ference between estimated and actual frame (estimation error)
is passed through a convolutional layer and given as the input
to the next layer. In opposite order, the recurrent represen-
tation of each module is generated using a Long Short-Term
Memory (LSTM) layer with the estimated error of the last
time step, the recurrent representation of the last layer and the
recurrent representation of the last time step. This process is
repeated with the next frame of a sequence in each time step.



After the last time step, the concealed frame in the sequence
is obtained by an arbitrary input frame into the first module.

The model was trained using the BVI-DVC data set [18]
which contains 800 sequences with 64 frames each. The spa-
tial resolution varies between 3840x2176 and 480x272. Due
to GPU-memory limitations, the model was trained using a
resolution of 480x272. To overcome this limitation and still
enable the model to infer full-HD sequences, the data set was
preprocessed to ensure that the model learns scale-invariant
features. The sequences with a resolution of 3840x2176 were
down-scaled to 1920x1088 and afterwards the following pre-
processing was performed: (a) All sequences were down-
scale to 480x272. (b) All sequences were split into non-
overlapping 480x272 parts. (c) A central 480x272 section
was cropped from all sequences. After this procedure, which
also serves as a form of data augmentation, our training data
set contained 8600 sequences with 64 frames each. Following
[17], the layer channel size was set to {3, 48, 96, 192}. We
trained the model over 2 epochs with the full training data set
using Adam as optimizer, β1 = 0.1, β2 = 0.999 and an initial
learning rate of 0.0001. After 1 epoch, we linearly decreased
the learning rate down to 0.00008 at the end of the training.

4. SIMULATION RESULTS AND DISCUSSION

4.1. System Configuration

All simulations were performed according to the JVET com-
mon test conditions (CTC) for neural network-based video
coding [19]. Sequences of the classes B, C, D and E were
encoded by means of the unmodified VTM 10.0 with quanti-
zation parameter values QP = {22, 27, 32, 37, 42}. However,
for the figures presented in this paper we use QP = 22. Class
A was not included in the simulations due to GPU memory
limitations and class F was not included since screen content
is not present in the BVI-DVC data set. We modified the low-
delay configuration such that a set of 8 frames forms a group
of pictures (GOP) with an I-slice as its first frame and the rest
being P-slices. One slice per frame is selected. The VTM
10.0 decoder is extended with EC capabilities as described
in Section 3, i.e., the well-known frame copy (FC) and our
NN methods are integrated. FC just conceals a lost frame by
copying the previous decoded frame while NN estimates it
utilizing the L = 5 previously decoded frames. It should be
noted that the input and output for NN are whole frames and
not patches. We also implemented an optical flow [20] EC
method, but the PSNR gain over FC was only 0.38 dB for QP
22 while being computationally far more expensive. Thus we
did not include this method into our evaluation.

4.2. Results

In this section, we evaluate the performance of NN and com-
pare it with FC. We first present the average PSNR for each
frame position within a GOP, as shown in Figure 2. Each
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Fig. 2: PSNRY over a relative frame number in a GOP. The
second frame of the second GOP is corrupted which is 8
frames long and has a structure of IPPPPPPP.

video of the test set was divided into segments of three con-
secutive GOPs. In each of these segments, an error in the
second frame of the second GOP was introduced such that the
frame is lost. Each EC method produces an estimated frame to
replace the lost one. PSNRY is computed for each frame, then
it is averaged over all frames belonging to the same relative
frame position in every video segment of three GOPs result-
ing in PSNRY in Figure 2. As it is expected, a frame lost jeop-
ardizes the video quality significantly until the arrival of the
next intra frame. As it can be observed, once the information
has been lost, it can hardly be recovered using the information
of the following frames withing the GOP. For this reason, it

Table 1: PSNR values for luma and chroma components av-
eraged over all GOPs of the videos in a class and different
QPs when the second frame in every GOP is corrupted.

Original NN FC
Video
class QP Y Cb Cr Y Cb Cr Y Cb Cr

22 40.8 43.9 45.7 33.0 40.6 40.9 27.5 38.7 38.8
27 38.1 42.5 43.9 32.2 40.0 40.4 27.1 38.5 38.6
32 36.0 41.3 42.4 31.5 39.3 39.7 27.0 38.2 38.2
37 33.8 39.6 40.7 30.5 38.3 38.7 26.5 37.7 37.7B

42 31.5 38.6 39.3 29.1 37.5 37.8 25.8 37.2 37.1
22 40.4 42.9 44.2 32.5 39.1 39.5 26.6 36.2 36.1
27 37.0 40.6 41.6 31.7 38.0 38.4 26.3 35.7 35.7
32 34.0 38.8 39.6 30.5 36.9 37.3 25.7 35.0 35.1
37 31.3 37.1 37.8 28.9 35.7 36.0 24.9 34.3 34.4C

42 28.7 35.6 36.0 27.0 34.5 34.7 24.0 33.5 33.6
22 39.8 42.9 43.5 33.7 40.2 40.1 29.4 38.9 38.5
27 35.8 40.4 40.8 32.3 38.8 38.8 29.0 37.7 37.4
32 32.6 38.5 38.7 30.4 37.3 37.3 27.9 36.5 36.0
37 29.8 36.7 36.8 28.4 35.9 35.7 26.5 35.3 34.8D

42 27.2 35.4 35.2 26.2 34.8 34.4 24.9 34.4 33.9
22 43.3 47.9 48.9 40.8 46.4 47.3 38.5 46.3 47.0
27 41.6 46.4 47.4 39.7 45.3 46.2 38.0 45.2 46.0
32 39.5 44.7 45.5 38.2 44.0 44.7 37.0 43.9 44.6
37 37.0 42.5 43.6 36.1 42.0 43.1 35.4 42.0 43.1E

42 34.2 41.1 42.1 33.7 40.8 41.8 33.4 40.7 41.8
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Fig. 3: Quality measurement ∆PSNRY between error-free
and concealed video plotted over the relative position of a lost
frame in a GOP (a) and the number of consecutive lost frames
within a GOP starting with the I-frame (b).

is essential to estimate a lost frame as good as possible. As
shown in the figure, NN gives the highest PSNRY compared
to the FC method. Table 1 confirms this same tendency in
more detail. It gives an average PSNR over all frames in a
GOP and over all GOPs in every video of the CTC. In this
setting, the second frame of every GOP is lost. FC and NN
estimate the lost frames assuming that the previous frames are
error-free. It can been seen, that NN performs better than FC
for all classes. The difference in performance between NN
and FC is more accentuated for videos with high motion con-
tent, however, in class E their differences are less pronounced.
Class E contains video-conference settings, i.e., little move-
ment with static camera and static background. In this class,
the background covers a considerable area of a frame, thus,
a static background would be better concealed by FC than by
NN because NN introduces additional noise inevitably pro-
duced by its own network.

In Figure 3 the difference between frames of the error-free
and the error-concealed videos is measured and averaged over
an i-th GOP, i.e., ∆PSNRY,i = mean{PSNRn−PSNREC,n}
for all n, where PSNR and PSNREC are the error-free and
concealed PSNR measurement of the n-th frame respectively,
0 ≤ n ≤ 7. The average over all i in all videos is denoted
by ∆PSNRY which is plotted in Figure 3 over (a) the rela-
tive position of a lost frame in a GOP and (b) the number
of consecutive lost frames starting at n = 0. Both NN and
FC assume that the previous GOP is error-free. In (a) the
maximum ∆PSNRY is found when the intra-frame is lost and
monotonically decreases with the corrupted frame position.
Clearly, the largest loss of quality is due to the interdepen-
dence of frames caused by inter coding. The more frames
depend on a concealed frame, the higher ∆PSNRY is. In ab-
sence of frames interdependence, ∆PSNRY ≈ 1 dB for both
EC, e.g., when n = 7. Moreover, in case of more than one
consecutive corrupted frame withing a GOP, the loss in PSNR
increases as shown in (b). The loss increases rapidly and after
a few consecutive lost frames it may no longer be worth to
conceal them anymore.

Figure 4 shows a visual comparison of the EC methods
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Fig. 4: The top row shows the original, thus, error-free frames
of the BasketballDrive sequence. The 14th frame is estimated
using NN and FC approach, middle and bottom row respec-
tively. In each frame its corresponding PSNRY is given.

in which the 14th frame is concealed. The uncorrupted and,
therefore, original frame is presented as well. Frames 15
and 16 are also presented to help visualize the inter-frame
error propagation. The differences are clearer by zooming
in on the figure. As it can be seen, the difference between
the original and the concealed frame is up to 10.5 dB and
17.5 dB for NN and FC respectively. In concordance with
Figure 2, these differences do not changes considerably on the
following frames. Interesting are the subjective comparisons
of player No. 10 and the frame of the door. As it can be no-
ticed, the NN method is capable of predicting the movement
not only of the camera but also of the players. QP = 22 was
used for encoding parameters of Figures 2, 3 and 4, however,
we obtained similar results with QP = {27, 32, 37, 42}.

5. CONCLUSION

This paper presents a neural network-based error concealment
algorithm for VVC by estimating a lost frame from five con-
secutive past frames. Its performance was evaluated for low-
delay applications of video communication systems over er-
ror prone channels using the CTC for neural network-based
video coding. We implemented both NN and FC methods
in the reference software VTM 10.0. NN gives the highest
PSNR in comparison to FC for all classes, e.g., NN performs
for an estimated frame on average 5 dB better than FC and if
the interdependency is considered up to 6 dB. We found that
the differences between performance is more accentuated in
sequences with high amount of motions. By means of a vi-
sual comparison it was shown that NN method is capable of
predicting the movement not only of the camera but also of
the content in a video. A well trained neural network can be
used to estimate a lost frame at the decoder even for full-HD
resolution videos, which makes it a viable option as an error
concealment solution for VVC.
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